
Behavioral Adaptation of Component Compositions

based on Process Algebra Encodings
Radu Mateescu

INRIA / VASY project-team
radu.mateescu@inria.fr

Pascal Poizat
INRIA / ARLES project-team

pascal.poizat@inria.fr

Gwen Salaün
University of Málaga
salaun@lcc.uma.es

Model-Based Adaptation

❏ systems are built by reuse and composition

of components developed by different third-parties

❏ adaptation is required to solve mismatch

and to ensure interoperability

❏ model-based adaptation generates adaptors,

automatically from a composition specification

❏ interoperability levels in component interfaces:

● signature (operations), behavior (protocol)

● semantics (ontologies), non functional (QoS)

Behavioral Interfaces

❏ operations' signatures

❏ LTS: (A, S, I, F, T)

Labelled Transition System

(Alphabet, States, Initial states, Final states, Transitions)

reception: _? emission: _!

Composition Specifications

❏ n-ary name correspondences using vectors:

given n components with LTSi = (Ai, Si, Ii, Fi, Ti), 

a vector is an element of 

❏ dynamicity and ordering using a vector LTS

(LTS labelled with vectors)

Contribution - first model-based behavioral adaptation approach performing

adaptor computation on-the-fly (without computing the complete system state space)

Step 1 – Compositor tool

encoding adaptation constraints into

LOTOS processes

❏ component interfaces

(the adaptor must respect them)

● PCi - component processes (n)

❏ composition specification

(the way to solve mismatch)

● PVj - vector processes (1/vect.)

● PL - vector LTS process (1)

❏ system architecture

(centralized adaptation)

● LOTOS specification

Step 2 – Scrutator tool

on-the-fly adaptor generation using

CADP and Open/Caesar

❏ compilation of LOTOS

specification (components' interfaces 

and vector LTS) into an implicit LTS 

using Caesar

❏ forward LTS exploration

❏ on-the-fly detection 

of states potentially reaching 

successful termination

● problem encoding in terms of a 

Boolean Equation System (BES)

● local BES resolution using the 

Caesar_Solve library

❏ linear complexity

wrt LTS size

for CADP and Open/Caesar, see: 

http://www.inrialpes.fr/vasy/cadp

eMuseum - Typical adaptation example. Three components (subscription serv e r, room

information displayer and universal service access GUI on PDA) are reused to build an

added-value application. The adaptor is in charge of resolving mismatches between the

component protocols (service names, ordering,...).

vend=<PDA:shutdown!>,

vpay=<PDA:bank_info!, SUB:bank_info?>,

vreg=<PDA:service_registering!, SUB:user_mode?>,

vid=<PDA:registering_id?, SUB:user_id!>,

vclose=<PDA:close!, SUB:end?>,

vrun=<ROOM:arrival?>, 

vquery=<PDA:query!, ROOM:video_request?>, 

vargument=<PDA:arguments!, ROOM:id?>, 

vservice=<PDA:mpeg?, ROOM:video!>,

vstop=<ROOM:quit!>.

For more details, see http://www.inrialpes.fr/vasy/ - http://www-rocq.inria.fr/arles/ - http://www.gisum.uma.es/

ApplicationAdaptor Generation

eMuseum components’ behavioral interfaces eMuseum adaptor (registration prefix)

eMuseum adaptation mapping


