Asynchrony in embedded systems: the Multival project

Hubert Garavel

INRIA Grenoble

http://vasy.inrialpes.fr

Challenges for embedded systems

- Increase performance
- Reduce size

. . .

- Reduce energy consumption
- Enhance usability and acceptance

Performance issues

- Past:
 - extra performance by increasing clock speed
- Present:
 - physical limitations (no more than 4 GHz)
- Future:
 - extra performance by adding processor cores

A price to pay for everybody

- Pressure on software developers
 - rewrite applications to exploit parallelism
 - better compilers
- Complexity of architecture design
 - Synchronous approach no longer adequate
 - Asynchrony mandatory (previously avoided):
 - massive concurrency
 - nondeterminism
 - message passing, distributed data, caches, etc.
 - Error-prone:
 - deadlocks, livelocks, unspecified receptions, etc.

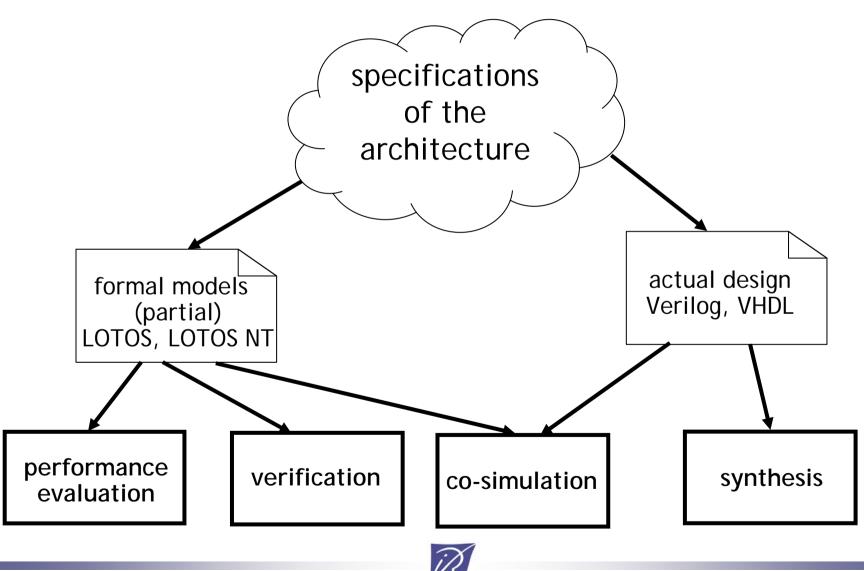
How to proceed?

- Formal models of architectural design
 - emphasis on control, concurrency, synchronization, communications
 - system = set of concurrent machines
 - suitable languages: process calculi
 - CCS [Hoare], CSP [Milner]
 - LOTOS [ISO standard 8807]
 - E-LOTOS [ISO standard 15437]
- Formal specification catches many mistakes

Functional verification

- Detect errors as soon as possible
- Analyze formal models
- Complementary approaches:
 - State space exploration enumerate all possibly reachable states
 - Equivalence checking compare two formal models for equality or inclusion
 - Model checking check if a formal model satisfies a set of logic formula
 - Co-simulation

compare a model wrt traces generated from RTL



Performance evaluation

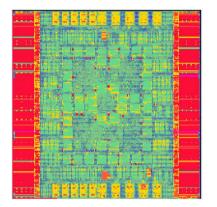
- Goal: predict numerical values
 - latencies
 - throughputs
- Formal models developed for verification can be reused
 - functional behavior extended with performance data
- Techniques:
 - Interactive Markov Chains (IMC, IPC)
 - steady-state and transient analysis
 - simulation

The global flow

Current applications

The Multival project (Minalogic)

- Four partners:
 - Bull
 - CEA/Leti
 - INRIA
 - STMicroelectronics
- Projet leader: Richard Hersemeule
- Duration : Dec. 2006 Dec. 2010
- Budget : 7,5 M€

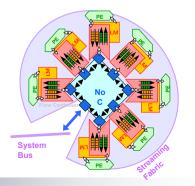

The CADP toolbox

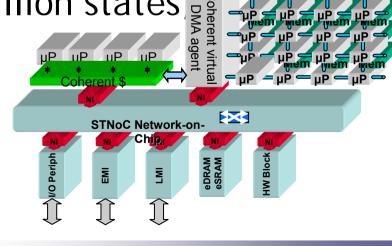
- A verification toolbox for asynchronous systems
 - Several input languages
 - Step-by-step simulation
 - Rapid prototyping
 - Model checking
 - Equivalence checking
 - Test generation
 - Performance evaluation
- International dissemination
 - license agreements signed with 400+ organizations
 - 104 published case-studies accomplished using CADP
 - commercial licences available from INRIA

Collaboration with Bull

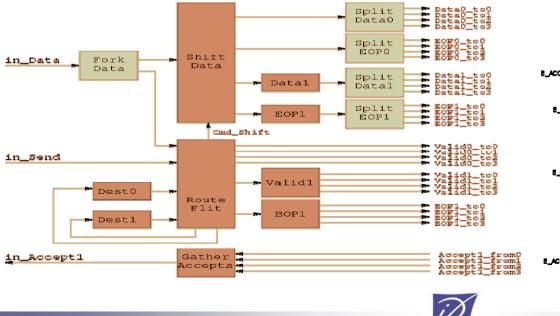
- Validation of supercomputers
- Continuous collaboration since 1995

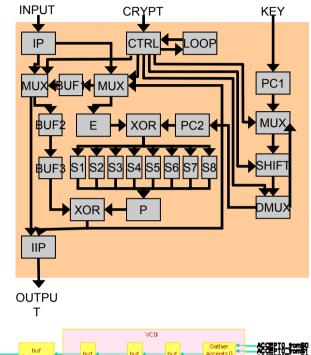
- In crucial part of the BSPS chip (NovaScale servers), CADP revealed errors not detected using "classical" techniques
- Current work:
 - validation of FAME2 protocols
 - performance prediction for MPI

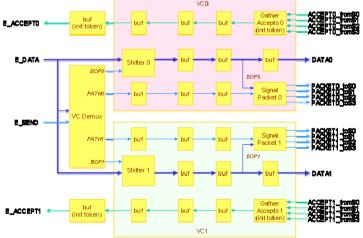



Collaboration with STMicroelectronics

- 2002: CADP revealed an error in the STBus
- 2006-2009: focus on the xSTream architecture (NoC for video : phones, set top boxes...)


- thanks to CADP, ST detected two design issues very early
- (32 concurrent agents, 760 million states 6 billion transitions explored)





Collaboration with CEA/Leti

- CADP used to validate three chips designed at CEA/Leti (DES, FAUST v1, FAUST v2)
- Different levels addressed: system, micro-architecture, asynchronous logic (gate level)

Key findings

- Positive results
 - non-trivial issues detected ("high quality bugs")
 - link between verification and performance evaluation
 - bridges between SystemC/TLM and LOTOS
- Challenges
 - state explosion: complexity grows exponentially => "intelligent" strategies are required
 - need for training industry engineers

Conclusion

- Many new challenges in embedded systems
- Asynchrony is a major challenge
- Formal verification is unavoidable
- INRIA provides verification technology (CADP)
- Used from microprocessors to HPC servers

Multival:

- Verification for multiprocessor architectures
- Multiprocessors architectures for verification

More information...

http://vasy.inrialpes.fr

