
Integrating formal methods
within a process calculi framework

Hubert Garavel
joint work with the VASY team

INRIA Grenoble Rhône-Alpes
http://www.inrialpes.fr/vasy

2

Outline

• Motivations
• A word about CADP
• Integration at a low level: semantic models
• Integration at a high level: user interfaces
• Integration at a high level: languages
• Concluding remarks

Motivations

4

Proliferation of formal methods

• There are so many formal methods!
– see the Formal Methods Web page of J. Bowen
– see Wikipedia

• Why?
there are (at least) 4 possible causes

• Can we integrate them?
(this is the theme of this IPA school)

• Warning! The talk might be biaised towards:
– process calculi, especially LOTOS
– verification, especially explicit-state verification,

especially CADP

5

Cause #1: different concepts
• Complex systems exhibit different aspects

– data: types, functions, equations…
– concurrency: behavior, processes, communication,

synchronization…
– real-time: delays, deadline (urgency)
– performance and probabilities

• Multiplicity of concepts in real systems is a
philosophical problem

• Two schools:
– The rigoric one
– The flexible one

6

The "rigoric" school

• Scientists like to keep things simple (Occam’s
razor principle)

• They like if the world can be seen and
described using one single formalism

• Wonderful result: any formalism with the
expressiveness of a Turing machine can do
the job — Yet, this is not always adequate

7

Counter-examples
• Example 1: algebraic data types

– no support to model concurrency
– SOS semantics ends up being coded in the program!

• Example 2: "pure" process calculi
– "pure CSP", "basic LOTOS", pi-calculus, etc.
– FIFOs modeled by dynamic creation of processes!

• Example 3: real time
– Continous delays modeled by discrete ticks!
– Urgency (“must”) modeled by choice (“may”)

8

The "flexible" school

• Convenience first: do not hesitate to combine
concepts if needed

• Issue #1: coherence
– how to ensure a sound semantics?

• Issue #2: redundancy
– means of expression can be duplicated

(e.g. data vs processes)
– requires guidelines for a preferred style

9

Cause #2: various verification approaches

• Two options:
– one-language
– two-languages

• Actually plenty of other options:
– state-based vs action-based, linear-time vs branching-time, etc.

Verification is essentially a comparison:

COMPLEX simple

(untrusted)

(trusted)

checker

true | false + diagnostic

10

The “one language” approach

• COMPLEX and simple are described in the
same language

• Example 1: theorem proving
COMPLEX and simple are formulas

• Example 2: equivalence checking
COMPLEX and simple are automata (LTS, etc.)

11

The “two languages” approach
• COMPLEX and simple are described using two

different languages
– COMPLEX is often in an imperative language
– simple is often in a declarative language

• Example 1: Hoare’s logic
– COMPLEX is a sequential program
– simple is a pre- and a post-condition

• Example 2: Model checking
– COMPLEX is a concurrent program (or hardware)
– simple is a temporal logic formula

12

Cause #3: different application domains
• Computer science is, in principle, unified
• But it has different applications fields:

– Telecommunications
– Avionics
– Hardware architectures
– Embedded systems
– Web services
– etc.

• Formal methods are often influenced by their
potential users

• Tradeoff between a single universal formal method
and several specialized ("domain specific") ones

13

Examples
• Avionics:

– Many engineers have an electronics or control theory background
– Graphical languages are appealing to them (LUSTRE/SCADE, …)

• Telecommunications:
– Engineers are familiar with message queues
– They like languages with built-in FIFO queues

(which queues? bounded or unbounded? reliable or lossy? order-
preserving or not…)

– Estelle, SDL

• Hardware:
– Designers want to model instantaneous communication (as

electricity on a wire)
– Rendezvous is sometimes too simple for hardware design

14

Cause #4: human factors

• Scientific creativity naturally leads to
different variants

• Formal methods are, to a large extent, a
matter of individual (subjective, aesthetic,
philosophical) taste:
– graphical vs textual
– totally functional, totally algebraical, etc.
– prohibit or require nondeterminism
– …

15

Other personal reasons
• The weight of history: joining forces with a

competitor may be perceived as a defeat

• A tactic to survive in the international
competition:
defining a different language is a way to protect
oneself against comparisons

• National schools:
– UK: CCS, CSP…
– NL: ACP, mCRL…

• Even an international standard (LOTOS) based on
CCS + CSP was not sufficient…

16

Summary

• 4 reasons for proliferation of formal methods
– cause #1: different concepts
– cause #2: different verification techniques
– cause #3: different application domains
– cause #4: human factors

• Is this proliferation suitable or not?
– diversity (= positive)?
– or fragmentation (= negative)?

17

We could accommodate…
• "Moral" arguments:

– All formal methods are equal in dignity ☺
– We should preserve the diversity of formal

methods as we should preserve threatened
species ☺

• "Economical" arguments:
– Competition is suitable by essence
– We already have several operating systems,

graphical user interfaces, file systems, object
oriented languages
(but not as many as formal methods)

18

But…

• The global picture is confused
• Formal methods have a limited industrial

acceptance
• Training is expensive, and industry wants to

know in which method to invest
• Tool development is expensive and

fragmentation prevents reaching a critical
mass of investment

19

What we should do…

• Increase collaboration (rather than
competition)

• Integrate/interconnect formal methods and
tools from different origins

•Expected benefits:
– reduce the complexity presented to end-users
– factorize tool development
– reuse tools developed for other languages

20

Several forms of integration

•Low-level integration: semantic models
– code is shared and reused between tools
– the user still perceives that it has different

tools
– common semantic models

•High-level integration:
– more ambitious
– common user interfaces
– unified languages

A word about CADP

22

What is CADP?
A toolbox for verifying asynchronous systems

• At the crossroads between 2 branches of computer
science:
– Concurrency theory
– Computer-aided verification

• Development started in 1986 …
– Caesar: LOTOS compiler / state space generator
– Aldebaran: bisimulation tool

… continuously enhanced for 20 years

23

CADP wrt other model checkers

• Parallel programs (rather than sequential programs)

• Message passing (rather than shared memory)

• Languages with a formal semantics (process calculi)

• Dynamic data structures (records, lists, trees…)

• Explicit-state (rather than symbolic)

• Action-based (rather than state-based)

• Branching-time logic (rather than linear-time logic)

24

CADP verification features
• Several paradigms:

– Model checking (modal μ-calculus)
– Equivalence checking (bisimulations)
– Visual checking (graph drawing)

• Several techniques:
– Reachability analysis
– On-the-fly verification
– Compositional verification
– Distributed verification
– Static analysis

25

Other CADP features
•Beyond mere verification:

– Multiple input languages
– Step-by-step simulation
– Rapid prototyping
– Test generation
– Performance evaluation

•Generic software components for verification
•Modular, extensible architecture (APIs)

26

CADP today
•A comprehensive toolbox

– 42 tools
– 17 software libraries

•5 computing platforms supported
– Sparc/Solaris, Intel/Linux, Intel/Windows, PowerPC/MacOS X,

Intel/MacOS X

• International dissemination
– License agreements signed with 395 organizations
– Licenses granted for 909 machines (in 2007-2008)
– 104 case-studies accomplished using CADP
– 32 research tools connected to CADP
– 28 university lectures based on CADP (since 2002)

27

Three main uses of CADP
•Design of critical systems:

– academic and industrial case-studies

•Teaching concurrency theory:
– practical feedback of process calculi, LTS,

behavioural equivalences, μ-calculus, etc.
– lab exercises

•Research in verification:
– new tools developed using CADP libraries
– new tools interfaced with CADP tools

28

CADP and integration issues
• CADP is the oldest software program

implementing concurrency theory results
that is still used and enhanced

• From the beginning, the architecture of
CADP was designed
– to be modular
– to be interfaced with other tools

• In the sequel, we review the CADP
approaches to integration

Integration at a low-level:
semantic models

30

Step #1: Interconnection at LTS level
• temporal logics (80's)

– XESAR
– MEC

• bisimulation tools (80's)
– ALDEBARAN
– AUTO
– PIPN
– MEIJE
– SQUIGGLES
– SCAN

• bisimulation tools (90's)
– CWB
– FC2

• graph drawing tools (90's)
– GML
– VCG
– VISCOPE

LOTOS
program

CAESAR
compiler

LTS

31

The BCG format
• Various problems:

– each of these tools had its own LTS format
– these formats were often poorly defined (ambiguous)
– these formats were textual (verbose, loss of disk space)

• Idea: define a generic LTS format
– a binary format with compression techniques
– typed information attached to states and transitions

• BCG (Binary-Coded Graphs):
– a compact file format for storing LTSs
– a set of APIs
– a set of software libraries (30,000 lines of code)
– a set of tools (binary programs and scripts)
– conversions between BCG and other formats

32

Step #2: XTL
• How to exploit the contents of BCG files?
• XTL is both:

– a query language for LTSs encoded in BCG
– a compiler for this language

XTL compiler

LTS XTL

results

33

XTL

• Main features of XTL
– functional language with model checking features
– special types: states, state sets, transitions,

transition sets, labels…
– access to the typed objects of the BCG file

• Applications of XTL
– libraries: HML, CTL, ACTL, mu-calculus
– rapid prototyping of temporal logics
– temporal logics extended with value passing

34

XTL: An example
The 〈A〉F modality of HML (Hennessy-Milner logic) can
be expressed in XTL

〈A〉F denotes the set of states S that
– lead to states satisfying F

– following transitions satisfying A

def Diamond (A:labelset, F:stateset):stateset =
{ S:state where

exists T:edge among out (S) in
(label (T) among A) and (target (T) among F)

end_exists }
end_def

35

Step #3: On-the-fly LTS exploration
• Motivations:

– Most model checkers are dedicated to one particular
input language (Spin, SMV, …)

– They can't be reused easily for other languages

– How can we "open" model-checkers to get access to
their LTS on-the-fly?

• Idea: introduce modularity by separating
– language-dependent aspects:

compilers from languages into an LTS model

– language-independent algorithms:
algorithms for LTS exploration

36

Implicit LTS: Open/Caesar
Another practical issue arising in the early 90's
How to combine:
• a separation betwen LTS generation and LTS verification
• and the need for "on-the-fly" verification?
Both were needed, but seemed incompatible at first sight

Solution: the Open/Caesar architecture [Garavel-1998]
• A programming interface to separate language-dependent

from language-independent aspects
• Many tools have been written above this interface:

simulation, testing, verification, etc.
• Other languages than LOTOS have been connected to this

interface
• An essential feature of CADP, often replicated in other

papers/tools

37

OPEN/CAESAR architecture

Open/Caesar API

LOTOS LTS
communicating

LTSs … UML/RT

implicit LTS

SDL

CAESAR BCG.OPEN EXP.OPEN IF.OPEN UMLAUT…

LTS generation
interactive simulation
random execution
on the fly verification
partial verification
test generation

Open/Caesar
librairies

38

OPEN/CAESAR libraries
A set of predefined data structures

– EDGE: list of transitions (e.g., successor lists)
– HASH: catalog of hash functions
– STACK_1: stacks of states and/or labels
– DIAGNOSTIC_1: set of execution paths
– TABLE_1: state tables
– BITMAP: Holzmann’s "bit state" tables

Specific primitives for on the fly verification
– possibility to attach additional information to states
– stack or table overflow => backtracking
– etc.

39

#include "caesar_graph.h"
#include "caesar_edge.h"
#include "caesar_table_1.h"

TYPE_TABLE_1 t; TYPE_STATE s1, s2; TYPE_EDGE e1_en, e;
TYPE_LABEL l; TYPE_INDEX_TABLE_1 n1, n2 TYPE_POINTER dummy;

INIT_GRAPH ();
INIT_EDGE (FALSE, TRUE, TRUE, 0, 0);
CREATE_TABLE_1 (&t, 0, 0, 0, 0, TRUE, NULL, NULL, NULL, NULL);
if (t == NULL) ERROR ("not enough memory for table");

START_STATE ((TYPE_STATE) PUT_BASE_TABLE_1 (t));
PUT_TABLE_1 (t);
while (!EXPLORED_TABLE_1 (t)) {

s1 = (TYPE_STATE) GET_BASE_TABLE_1 (t);
n1 = GET_INDEX_TABLE_1 (t);
GET_TABLE_1 (t);

CREATE_EDGE_LIST (s1, &e1_en, 1);
if (TRUNCATION_EDGE_LIST () != 0) ERROR ("not enough memory for edge lists");

ITERATE_LN_EDGE_LIST (e1_en, e, l, s2) {
COPY_STATE ((TYPE_STATE) PUT_BASE_TABLE_1 (t), s2);
(void) SEARCH_AND_PUT_TABLE_1 (t, &n2, &dummy);
print_edge (n1, STRING_LABEL (l), n2);

}
DELETE_EDGE_LIST (&e1_en);

}

An example: GENERATOR

40

OPEN/CAESAR applications
– EXECUTOR: random walk
– SIMULATOR: interactive simulation (textual)
– XSIMULATOR: interactive simulation (graphical)
– GENERATOR: exhaustive LTS generation
– REDUCTOR: LTS generation with safety reduction
– PROJECTOR: LTS generation with constraints
– TERMINATOR: Holzmann's bit-space algorithm
– EXHIBITOR: search paths defined by reg. expr.
– TGV: test sequence generation
and more…

41

Step #4: On-the-fly verification
• Motivation:

– The Open/Caesar architecture allows LTS
exploration in a modular, generic way

– Can we get further, with extra software
components especially dedicated to LTS
verification?

• Approch followed in CADP:
– additional software layer on top of OPEN/CAESAR
– BES (Boolean Equation Systems) represented

internally as boolean graphs
– BES: a unified formalism for model checking and

equivalence checking

42

Support for BES in CADP
• CAESAR_SOLVE_1:

– a library for solving (alternation-free) BES on the fly
– 7 solving algorithms implemented so far
– based on top of the OPEN/CAESAR API

• 4 applications of CAESAR_SOLVE_1:
– BES_SOLVE: solver for an explicit (alternation free) BES

contained in a gzipped text file
– EVALUATOR3: evaluation of mu-calculus formulas

(extended with regular expressions)
– REDUCTOR: on-the-fly minimization of an LTS (several

equivalences: strong, branching, weak, etc.)
– BISIMULATOR: on-the-fly comparison of two LTS (an

implicit one in OPEN/CAESAR and an explicit one in BCG)

43

Step #5: Model checking with data
• Introducing data computation in formulas
• Approach:

– A richer formula language:
[{RECV ?l:NatList}]
let n:Nat := sum (l) in

< {DELIVER !n} > < {ACK !n} > true
end let

– Parameterized Boolean Equation Systems (PBES)
[Mateescu's PhD thesis]

– Evaluator 4 model checker (under testing)
• The concept of PBES is now reused in other tools

44

Summary

In CADP, integration at the level of semantic
models was achieved in 5 successive steps:

• #1: BCG (format for explicit LTS)
• #2: XTL (exploration of explicit LTS)
• #3: Open/Caesar (exploration of implicit LTS)
• #4: BES (model- and equivalence-checking on

implicit LTS)
• #5: PBES (BES extended with data computations)

Integration at a high-level:
user-interfaces

46

Interfaces: A key feature for industry

• Early verification tools only had simple
command-line interfaces:
– ad hoc command interpreters (QUASAR, CWB)
– LISP or Tcl/Tk commands (Meije, FcTools)

• More elaborate interfaces have been
developed for CADP

• Two lines of work:
– a graphical user interface (EUCALYPTUS)
– a scripting language for verification (SVL)

47

EUCALYPTUS graphical-user interface

• Version 1 (1994)
• Version 2 (1996-

now)
• Main features:

– file types
– user-friendly

contextual
menus

– support all the
CADP tools

48

SVL (Script Verification Language)

•Scripting language for
verification scenarios

•Special constructs for:
– equivalence checking
– model checking
– compositional

verification

• "Semantics-aware"

"F.exp" = leaf branching reduction of
hide G in

(
"spec.lotos":P1 [A, B, G]
|[G]|
"spec.lotos":P2 [C, G]
) ;

"D.seq" = deadlock of "F.exp";
"L.seq" = livelock of "F.exp";

an SVL script

49

A layered software architecture

Code libraries with APIs

Command-line tools

EUCALYPTUS
graphical user interface

SVL
scripting language

3. Integration at a high level:
languages

51

The LOTOS compilers available in CADP

control and
data flow

optimizations
(static analysis)

LOTOS
program

"symbolic"
model

C code for
types+functions

LTS
explicit (BCG) or
implicit (C code)

• simulation
• code generation
• verification:

— equivalence checking
— model checking
— visual checking

• testing
• performance evaluation

52

How can we reuse these compilers?
• Academic and industrial users:

– In general, users dislike learning new languages
– They want to continue using their favorite languages

• CADP developers:
– The LOTOS tool chain is a huge work
– Developing tools for a new language is costly
– Can we reuse this tool chain for other languages?

• Idea: translate new languages to LOTOS to reuse
the LOTOS compilers

53

Attempt #1: LOTOS vs mCRL
• This was a desirable goal (VASY-CWI collaboration)
• But there are several incompatilities that make the

tranlation cumbersome
• The most annoying one was the order of algebraic

equations in data types
– LOTOS (as handles by CADP) enforces decreasing priority

between equations (rewrite system with priorities)
forall X, Y: T
X eq X = true;
X eq Y = false; (* lower precedence *)

– mCRL has no priority at all (a random selection is made)

• We stopped considering this translation

54

Attempt #2: From CSP to LOTOS
• CSPm (machine-readable CSP): a version of CSP

supported by the FDR model checker
• CSPm and LOTOS are close (both derive from CSP)
• But translation from CSPm to LOTOS is difficult:

– CSPm has higher-order functions (λ-expressions)
– CSPm allows lazy computations and list

comprehensions, whereas CADP relies upon a
strict rewrite strategy

– the choice operator “[]” of CSPm does not
translate easily to LOTOS

•We stopped considering this translation

55

Attempt #3: From CHP to LOTOS

• CHP (Communicating Hardware Processes):
– a process calculus to describe asynchronous

circuits [Martin-86]
– inspired by guarded commands and CSP

• TAST synthesis tool (TIMA Lab., Grenoble)
– compiles CHP specifications to VLSI circuits

• But no model checker available for CHP

56

CHP vs LOTOS (1/2)
• CHP has hardware-oriented data types

– bit arrays
– machine words, etc.

• CHP has an imperative syntax:
– variable assignment
– symmetric sequential composition
– loop statement

• CHP has two different parallel operators:
– collateral composition (inside processes)
– parallel composition to combine processes

57

CHP vs LOTOS (2/2)
• Main difference: interprocess communications

– CHP communication reflect the low-level aspects of
hardware implementation

– communication channels are shared variables
– rendezvous is achieved using special protocols

• In CHP, communication is:
– oriented (an emitter and a receiver)
– dissymetric (an active side and a passive side)
– not atomic (it may takes several steps)

• CHP has a specific "probe" operator:
– before rendezvous, the receiver can check the value

that the emitter is ready to send

58

• chp2lotos: 19,300 lines of code
• code specialization for different kinds of

probes (reduction up to a factor of 156)
• validated on 500 CHP specifications

Translator from CHP to LOTOS

LOTOSLOTOSCHPCHP intermediate
representationparsing

simplified
representation

channel
profiles

optimization
code
gene-

ration

59

Application to asychronous circuits

ANOC node input controller
(complex arrangement of
14 asynchronous processes)

•Three case-studies
(joint work between
VASY and CEA-LETI)

• DES (Data Encryption
Standard) chip

• ANOC (Asynchronous
Network on Chip)
communication node

• FAUST network on chip

60

Attempt #4: From FSP to LOTOS

Work inspired by this book:
Jeff Magee and Jeff Kramer (Imperial College)
Concurrency: State Models and Java Programs
Wiley, 2006

FSP: a simple, popular process algebra
- concise, expressive, user-friendly
- supported by the LTSA too (animation and LTL

property checking)

Joint work undertaken to connect FSP and CADP,
so as to verify larger FSP models

61

Translation from FSP to LOTOS
• Some features of FSP are missing in LOTOS:

– priority operator
– label renaming

• Fortunately, these features are handled by
the EXP.OPEN and SVL tools of CADP

• So, an FSP specification can be translated
into a set of LOTOS, EXP, SVL files
10,500 lines of FSP produce
72,000 l. LOTOS, 8,000 l. EXP, 2,000 l. SVL

62

Translator from FSP to LOTOS

•fsp2lotos: 25,500 lines of code

• Validated on 574 FSP specifications
(the LTSs produced by LTSA and CADP are
checked to be strongly equivalent)

• fsp2lotos will be shipped with the next
version of CADP

63

Enhancements to LOTOS
• 1988: Ed Brinksma’s PhD thesis on Extended LOTOS
• 1993-2001: ISO project to standardize an enhanced

version of LOTOS
• Initial goal: a simple revision of LOTOS
• Final result: E-LOTOS

– complete rewrite of LOTOS
– abstract data types replaced by functional types
– process operators replaced by equivalent functional /

imperative constructs
– new features: time, exceptions, modules

64

E-LOTOS: A mitigated result
•Positive aspects of E-LOTOS:

– better than LOTOS in most respects
– simpler syntax (away from the "algebraic" mania)
– formal semantics (timed LTS, SOS rules)
– industrial users tend to prefer E-LOTOS to LOTOS

•Negative aspects of E-LOTOS:
– semantics too complex, irregular at places
– lack of funding for E-LOTOS
– never implemented entirely

65

LOTOS NT
• A "reasonable subset" of E-LOTOS proposed by

the VASY team (1995-now)
• Main idea: getting closer to programming

languages, still retaining the formal aspects
• Three parts:

– types
– functions
– processes

• Language uniformity: functions are a
particular case of processes

• (no support for time at the moment)

66

LOTOS NT types
• Inductives types:

– set of constructors with named typed
parameters

– special cases: enumerated types, records,
unions, lists, trees, etc.

– shorthand notations for lists and sets
• Notations for constants:

– natural numbers: 123, 0xAD, 0o746, 0b1011
– integer numbers: -421, -0xFD, -0o76, -0b110
– characters: 'a', '0', '\n' , '\\', '\'''

• Standard functions ("==", "<=", "<", ">=", ">" , field
selectors and updaters) are defined automatically

67

Sample LOTOS NT types
type DAY is (* enumerated type *)

MON, TUE, WED, THU, FRI, SAT, SUN
with "==", "<=", "<", ">=", ">"

end type

type DATE is (* record type *)
DATE (D : DAY, N : NAT, M : NAT, Y : NAT)
with "get", "set"
(* for selectors X.D, ... and updaters X.{D => E}*)

end type

type NAT_LIST is (* inductive type *)
NIL,
CONS (HEAD : NAT, TAIL : NAT_LIST)

end type

68

LOTOS NT functions
• Three kinds of parameters: "in" (call by value), "out"

and "inout" (call by reference)
• Function overloading allowed
• Functions defined using standard algorithmic

statements:
– Local variable declarations and assignments
– Sequential composition
– Breakable loops
– If-then-else conditionals
– Case statements
– (Uncatchable) exceptions

• Type checking and variable initialization analysis
ensure a clean imperative style

69

Sample LOTOS NT functions (1/2)

function GET_HEAD (L : NAT_LIST) : NAT
raises EMPTY_LIST : NONE is
case L in

var HEAD : NAT in
NIL -> raise EMPTY_LIST

| CONS (HEAD, any NAT_LIST) -> return HEAD
end case

end function

70

Sample LOTOS NT functions (2/2)
function COUNT (L : NAT_LIST, out EVENS, out ODDS : NAT) : NAT is

EVENS := 0; ODDS := 0;
loop SCAN_L in

case L in
var HEAD : NAT, TAIL : NAT_LIST in

NIL -> break SCAN_L
| CONS (HEAD, TAIL) ->

if IS_EVEN (HEAD)
then EVENS := EVENS + 1
else ODDS := ODDS + 1
end if;
L := TAIL

end case
end loop;
return ODDS + EVENS

end function

71

LOTOS NT processes
• Processes are a superset of functions:

– variable assignment
– if-then-else, case, loops, etc.
– symmetric sequential composition (as in ACP)

• Additional operators:
– action
– choice
– parallel composition
– gate hiding, etc.

• A safer language than LOTOS:
– bracketed syntax
– typed channels (overloading allowed)
– static semantics constraints (variable initialization, etc.)

72

Sample LOTOS NT process
channel C is

(N : Nat)
end channel
process ELEVATOR [CALL, GO, UP, DOWN: C] (CURRENT, TARGET: FLR) is

loop
if TARGET > CURRENT then

CURRENT := CURRENT + 1; UP (CURRENT)
elsif TARGET < CURRENT then

CURRENT := CURRENT - 1; DOWN (CURRENT)
else (* TARGET == CURRENT *)

select
CALL (?TARGET)
[]
GO (?TARGET)

end select
end if

end loop
end process

73

Attempt #5: TRAIAN and LNT2LOTOS
• TRAIAN (1996-now):

– a LOTOS NT → C compiler
– so far, only LOTOS NT data types are compiled
– intensively used to build VASY compilers
– http://www.inrialpes.fr/vasy/traian

• LNT2LOTOS (2005-now):
– a LOTOS NT → LOTOS translator
– translation for types and functions finished
– translation for processes being implemented
– currently 22,300 lines of code
– already in use by Bull

74

Summary
•Translations that do not work:

– mCRL to LOTOS
– CSPm to LOTOS

•Translations that work:
– CHP to LOTOS
– FSP to LOTOS
– LOTOS NT to LOTOS

• Translations under study:
– System C/TLM to LOTOS

Concluding remarks

76

Conclusion
• Diversity of formal methods: a fact

plenty of reasons for it
• Integration of formal methods:

– economically suitable
– scientifically interesting

• 3 different approaches used for CADP:
– integration at a low-level: semantic models
� BCG, XTL, Open/Caesar, BES, PBES

– integration at a high level: user-interfaces
� graphical user interfaces, script languages

– integration at a high level: languages
� translation of CHP, FSP, LOTOS NT to LOTOS

77

More information…

http://vasy.inrialpes.fr

