Integrating formal methods
within a process calculi framework

Hubert Garavel
joint work with the VASY team

INRIA Grenoble Rhone-Alpes
http://www.inrialpes.fr/vasy

%l INRIA

e Motivations

QOutline

e A word about CADP

e Integration at a
e Integration at a
e Integration at a

low level: semantic models
nigh level: user interfaces

nigh level: languages

e Concluding remarks

Motivations

Proliferation of formal methods

e There are so many formal methods!
- see the Formal Methods Web page of J. Bowen
- see Wikipedia

e« Why?
there are (at least) 4 possible causes

e Can we integrate them?
(this is the theme of this IPA school)

« Warning! The talk might be biaised towards:
- process calculi, especially LOTOS
- verification esIPecially explicit-state verification,

especially CAD
Al

Cause #1: different concepts

e Complex systems exhibit different aspects
- data: types, functions, equations...

- concurrency: behavior, processes, communication,
synchronization...

- real-time: delays, deadline (urgency)
- performance and probabilities

e Multiplicity of concepts in real systems is a
philosophical problem

e TWwo schools:
- The rigoric one
- The flexible one

% S—

The "rigoric” school

e Scientists like to keep things simple (Occam’s
razor principle)

e They like if the world can be seen and
described using one single formalism

« Wonderful result: any formalism with the
expressiveness of a Turing machine can do
the job — Yet, this is not always adequate

—— % ———

Counter-examples

o Example 1: algebraic data types
- no support to model concurrency
- SOS semantics ends up being coded in the program!

e Example 2: "pure” process calculi
- "pure CSP", "basic LOTOS", pi-calculus, etc.
- FIFOs modeled by dynamic creation of processes!

e Example 3: real time
- Continous delays modeled by discrete ticks!
- Urgency (“must”) modeled by choice (“may”)

—— % ———

The "flexible"” school

e Convenience first: do not hesitate to combine
concepts if needed

e Issue #1: coherence
- how to ensure a sound semantics?

e Issue #2: redundancy

- means of expression can be duplicated
(e.g. data vs processes)

- requires guidelines for a preferred style

% S—

Cause #2: various verification approaches

Verification is essentially a comparison:

COMPLEX -l checter i/

l (trusted)

untrusted
() true | false + diagnostic

e Two options:
- one-language
- two-languages
e Actually plenty of other options:
- state-based vs action-based, linear-time vs branching-time, etc.

/

The “one language” approach

« COMPLEX and simple are described in the
same language

e Example 1: theorem proving
COMPLEX and simple are formulas

e Example 2: equivalence checking
COMPLEX and simple are automata (LTS, etc.)

— / —

The “two languages” approach

« COMPLEX and simple are described using two
different languages

- COMPLEX is often in an imperative language
- simple is often in a declarative language
e Example 1: Hoare’s logic
- COMPLEX is a sequential program
- simple is a pre- and a post-condition
e Example 2: Model checking

- COMPLEX is a concurrent program (or hardware)
- simple is a temporal logic formula

/ —

Cause #3: different application domains

o Computer science is, in principle, unified
e But it has different applications fields:

- Telecommunications

- Avionics

- Hardware architectures

- Embedded systems

- Web services

- etc.

e Formal methods are often influenced by their
potential users

« Tradeoff between a single universal formal method
and several specialized ("domain specific”) ones

—— % —

12

Examples

e Avionics:
- Many engineers have an electronics or control theory background
- Graphical languages are appealing to them (LUSTRE/SCADE, ...)

e Telecommunications:
- Engineers are familiar with message queues

- They like languages with built-in FIFO queues
(which queues? bounded or unbounded? reliable or lossy? order-
preserving or not...)

- Estelle, SDL

e Hardware:

- Designers want to model instantaneous communication (as
electricity on a wire)

- Rendezvous is sometimes too simple for hardware design

— / —

Cause #4: human factors

e Scientific creativity naturally leads to
different variants

e Formal methods are, to a large extent, a
matter of individual (subjective, aesthetic,
philosophical) taste:

- graphical vs textual
- totally functional, totally algebraical, etc.
- prohibit or require nondeterminism

— / —

Other personal reasons

e The wei_%ht of history: joining forces with a
competitor may be perceived as a defeat

e A tactic to survive in the international
competition: .
defining a different language is a way to protect
oneself against comparisons

e National schools:
- UK: CCS, CSP...
- NL: ACP, mCRL...

e Even an international standard (LOTOS) based on
CCS + CSP was not sufficient...

W 15

Summary

e 4 reasons for proliferation of formal methods
- cause #1: different concepts
- cause #2: different verification techniques
- cause #3: different application domains
- cause #4: human factors

e Is this proliferation suitable or not?
- diversity (= positive)?
- or fragmentation (= negative)?

— / —

We could accommodate...

e "Moral” arguments:
- All formal methods are equal in dignity ©

- We should preserve the diversity of formal
methods as we should preserve threatened
species ©

e "Economical” arguments:
- Competition is suitable by essence

- We already have several operating systems,
graphical user interfaces, file systems, object

oriented languages
(but not as many as formal methods)

— / —

But...

e The global picture is confused

« Formal methods have a limited industrial
acceptance

e Training is expensive, and industry wants to
know in which method to invest

e Tool development is expensive and
fragmentation prevents reaching a critical
mass of investment

— / —

What we should do...

e Increase collaboration (rather than
competition)

e Integrate/interconnect formal methods and
tools from different origins

e Expected benefits:
- reduce the complexity presented to end-users
- factorize tool development
- reuse tools developed for other languages

/ —

Several forms of integration

e Low-level integration: semantic models
- code is shared and reused between tools

- the user still perceives that it has different
tools

- common semantic models

e High-level integration:
- more ambitious
- common user interfaces
- unified languages

/ —

A word about CADP

What is CADP?

A toolbox for verifying asynchronous systems

e At the crossroads between 2 branches of computer
science:

- Concurrency theory
- Computer-aided verification

« Development started in 1986 ...
- Caesar: LOTOS compiler / state space generator
- Aldebaran: bisimulation tool

... continuously enhanced for 20 years

/

22

CADP wrt other model checkers

e Parallel programs (rather than sequential programs)
e Message passing (rather than shared memory)

e Languages with a formal semantics (process calculi)
e Dynamic data structures (records, lists, trees...)

e Explicit-state (rather than symbolic)

e Action-based (rather than state-based)

e Branching-time logic (rather than linear-time logic)

/

23

CADP verification features

e Several paradigms:
- Model checking (modal p-calculus)
- Equivalence checking (bisimulations)
- Visual checking (graph drawing)

e Several techniques:
- Reachability analysis
- On-the-fly verification
- Compositional verification
- Distributed verification
- Static analysis

/

24

Other CADP features

e Beyond mere verification:
- Multiple input languages
- Step-by-step simulation
- Rapid prototyping
- Test generation
- Performance evaluation

e Generic software components for verification
e Modular, extensible architecture (APIs)

— / —

CADP today

e A comprehensive toolbox
- 42 tools
- 17 software libraries

e 5 computing platforms supported

- Sparc/Solaris, Intel/Linux, Intel/Windows, PowerPC/MacOS X,
Intel/MacOS X

e International dissemination
- License agreements signed with 395 organizations
- Licenses granted for 909 machines (in 2007-2008)
- 104 case-studies accomplished using CADP
- 32 research tools connected to CADP
- 28 university lectures based on CADP (since 2002)

— / —=

Three main uses of CADP

e Design of critical systems:
- academic and industrial case-studies

e Teaching concurrency theory:

- practical feedback of process calculi, LTS,
oehavioural equivalences, p-calculus, etc.

- lab exercises

e Research in verification:
- new tools developed using CADP libraries
- new tools interfaced with CADP tools

— @ C—

CADP and integration issues

e CADP is the oldest software program
implementing concurrency theory results
that is still used and enhanced

e From the beginning, the architecture of
CADP was designed

- to be modular
- to be interfaced with other tools

e In the sequel, we review the CADP
approaches to integration

/ —

Integration at a low-level:
semantic models

Step #1: Interconnection at LTS level

LTS

« temporal logics (80's)
- XESAR
- MEC
« bisimulation tools (80's)
- ALDEBARAN
- AUTO
- PIPN
MEIJE
SQUIGGLES
- SCAN
e bisimulation tools (90's)
- CWB
- FC2
_» « graph drawing tools (90's)

- GML
- VCG
- VISCOPE

The BCG format

 Various problems:
- each of these tools had its own LTS format
- these formats were often poorly defined (ambiguous)
- these formats were textual (verbose, loss of disk space)

 [dea: define a generic LTS format
- a binary format with compression techniques
- typed information attached to states and transitions

« BCG (Binary-Coded Graphs):

- a compact file format for storing LTSs
a set of APIs
a set of software libraries (30,000 lines of code)
a set of tools (binary programs and scripts)
conversions between BCG and other formats

— @

31

Step #2: XTL

How to exploit the contents of BCG files?
XTL is both:
a query language for LTSs encoded in BCG
a compiler for this language

@ O

~N 7

XTL compiler

l

results

— / —

XTL

e Main features of XTL

- functional language with model checking features

- special types: states, state sets, transitions,
transition sets, labels...

- access to the typed objects of the BCG file

e Applications of XTL
- libraries: HML, CTL, ACTL, mu-calculus
- rapid prototyping of temporal logics
- temporal logics extended with value passing

/ —

XTL: An example

The (A)F modality of HML (Hennessy-Milner logic) can
be expressed in XTL

(A)F denotes the set of states S that
- lead to states satisfying F

- following transitions satisfying A

def Diamond (A:labelset, F:stateset):stateset =
{ S:state where
exists T:edge among out (S) In
(label (T) among A) and (target (T) among F)
end_exists }
end_def

— / —

Step #3: On-the-fly LTS exploration

e Motivations:

- Most model checkers are dedicated to one particular
Input language (Spin, SMV, ...)

- They can't be reused easily for other languages

- How can we "open" model-checkers to get access to
their LTS on-the-fly?

e Idea: introduce modularity by separating

- language-dependent aspects:
compilers from languages into an LTS model

- language-independent algorithms:
algorithms for LTS exploration

— / —

Implicit LTS: Open/Caesar

Another practical issue arising in the early 90's

How to combine:

e a separation betwen LTS generation and LTS verification
e and the need for "on-the-fly" verification?

Both were needed, but seemed incompatible at first sight

Solution: the Open/Caesar architecture [Garavel-1998]

e A programming interface to separate language-dependent
from language-independent aspects

e Many tools have been written above this interface:
simulation, testing, verification, etc.

e Other languages than LOTOS have been connected to this
interface

e An essential feature of CADP, often replicated in other
papers/tools

— / —

OPEN/CAESAR architecture

communicating

LOTOS

T o

LTSs

SDL UML/RT

Open/Caesar API

implicit LTS

Open/Caesar
librairies

X
AN

/i

LTS generation
interactive simulation
random execution

on the fly verification
partial verification
test generation

37

OPEN/CAESAR libraries

A set of predefined data structures
- EDGE.: list of transitions (e.g., successor lists)
- HASH: catalog of hash functions
- STACK_1: stacks of states and/or labels
- DIAGNOSTIC_1: set of execution paths
- TABLE_1: state tables
- BITMAP: Holzmann’s "bit state” tables

Specific primitives for on the fly verification
- possibility to attach additional information to states

- stack or table overflow => backtracking
- etc.

— / —

Finclude "osoar st An example: GENERATOR

#include "caesar table 1.h"

TYPE TABLE 1t; TYPE STATE sl, s2; TYPE EDGE el _en, ¢;
TYPE LABEL TYPE INDEX TABLE 1nl,n2 TYPE POINTER dummy;

INIT _GRAPH ();

INIT _EDGE (FALSE, TRUE, TRUE, 0, 0);

CREATE TABLE 1 (&t, 0,0, 0, 0, TRUE, NULL, NULL, NULL, NULL);
if (t == NULL) ERROR ("not enough memory for table");

START STATE ((TYPE_STATE) PUT BASE TABLE 1 (t));
PUT TABLE 1 (t);
while (EXPLORED TABLE 1 (1)) {

s1 = (TYPE_STATE) GET BASE TABLE 1 (t);

nl = GET INDEX_TABLE 1 (t);

GET TABLE 1 (t);

CREATE _EDGE LIST (sl, &el _en, 1);
if (TRUNCATION_EDGE LIST () !=0) ERROR ("not enough memory for edge lists");

ITERATE LN _EDGE LIST (el _en,e,1,s2) {
COPY STATE ((TYPE STATE) PUT BASE TABLE 1 (1), s2);
(void) SEARCH_AND PUT TABLE 1 (t, &n2, &dummy);
print_edge (n1, STRING LABEL (1), n2);

;
DELETE_EDGE_LIST (&el_en);

— 7 e

OPEN/CAESAR applications

- EXECUTOR: random walk

- SIMULATOR: interactive simulation (textual)

- XSIMULATOR: interactive simulation (graphical)

- GENERATOR: exhaustive LTS generation

- REDUCTOR: LTS generation with safety reduction
- PROJECTOR: LTS generation with constraints

- TERMINATOR: Holzmann's bit-space algorithm

- EXHIBITOR: search paths defined by reg. expr.

- TGV: test sequence generation

and more...

/ —

Step #4: On-the-fly verification

e Motivation:

- The Open/Caesar architecture allows LTS
exploration in a modular, generic way

- Can we get further, with extra software
components especially dedicated to LTS
verification?

« Approch followed in CADP:
- additional software layer on top of OPEN/CAESAR

- BES (Boolean Equation Systems) represented
internally as boolean graphs

- BES: a unified formalism for model checking and
equivalence checking

/ —

Support for BES in CADP
e CAESAR_SOLVE_1:

- a library for solving (alternation-free) BES on the fly
- 7 solving algorithms implemented so far
- based on top of the OPEN/CAESAR API

e 4 applications of CAESAR_SOLVE_1:

- BES_SOLVE: solver for an explicit (alternation free) BES
contained in a gzipped text file

- EVALUATOR3: evaluation of mu-calculus formulas
(extended with regular expressions)

- REDUCTOR: on-the-fly minimization of an LTS (several
equivalences: strong, branching, weak, etc.)

- BISIMULATOR: on-the-fly comparison of two LTS (an
implicit one in OPEN/CAESAR and an explicit one in BCG)

E— / —

Step #5: Model checking with data

e Introducing data computation in formulas
e Approach:

- A richer formula language:

[{RECV ?l:NatList}]
let n:Nat := sum (l) in

< {DELIVER In} > < {ACK In} > true
end let

- Parameterized Boolean Equation Systems (PBES)
[Mateescu's PhD thesis]

- Evaluator 4 model checker (under testing)
e The concept of PBES is now reused in other tools

E— / —

Summary

In CADP, integration at the level of semantic
models was achieved in 5 successive steps:

e #1: BCG (format for explicit LTS)
o #2: XTL (exploration of explicit LTS)
e #3: Open/Caesar (exploration of implicit LTS)

e #4: BES (model- and equivalence-checking on
implicit LTS)

o #5: PBES (BES extended with data computations)

— / —

Integration at a high-level:
user-interfaces

Interfaces: A key feature for industry

e Early verification tools only had simple
command-line interfaces:

- ad hoc command interpreters (QUASAR, CWB)
- LISP or Tcl/Tk commands (Meije, FcTools)

e More elaborate interfaces have been
developed for CADP

e Two lines of work:

- a graphical user interface (EUCALYPTUS)
- a scripting language for verification (SVL)

— / —

EUCALYPTUS graphical-user interface

Eucalyplus Toolset (Version 2.3)

e Version 1

e Version 2
now
e Main features
file types

user-friendly
contextual
menus

1994
1996-

support all the

CADP tools

Fedkim of pold. pioq qurl-:-cl-*

Resdirtion Felabic Fird peth bo atata,,
WariFy Cesporal formila. ..
P

Sroeg Equisealanca w Mrarching Equ

w Dbaeragtlonsl Equlanlence - Safets Eove Dopae...
Coratihaaa

Deviaion Hethod

Aaumlize
Charcerd

o i
denilak sy " Soript
el | 02 ey PlHF [T
bt FLle
T [nfermticn
Ewiids
Find deardlocks,

Dyl Tedli ..

Hidlmg File doptionall |

Pervmineg File doptione

Reshicrti o Relotion
® Chrong Bl s

+w Brarching Equivalance

= TR

Decdalon Hethed
Charcierd

w Birary bacizion lisgras

Famuliz Hinda Hill Cleer |

Corsrtond polyom G0 Qowpiony 21429560, bog

begopan Atepsemurs 2141 2E5E_I beg ashibitar -bfr -dapkh 0 4 Auzered jorgaranP
arad le |l B [uptamdeadlogh oeg | tes desdlock.geq

beg_opan® uzing .':M\.'I:Mm prfvfachibdkor, s’

boscopc rumbeg " echibdtor SFs -depth 0

L S]] |Cl GepETE F e fore]

S, Gdesdlock

iy ey beasdih-Firak gearoh slae | the
o g foand st depth 33
i repanca fourd sk depkh 33

dinitial rhaba:
"EURL.TRAHS IHL IFERD |F0°
ROT_GET 1ML VUTOOG (A0 (6 BCC_DW0 (A0 _COLL 110
“FRCFET_TRAFER IHL 1D IREAD | IRETRES MIL IUTOID 100°
LMUGET (0 {06 b (e (REC_ [P IFLA (FALGE, FALEED IHOLCOLL WLTOG
“THL_RE P 10 IFERD ICIF
“FRIET_TRAFER 1H0 IHL IFERD 1A0 IRETRESR DOHE DTG WC0°
SRIT_AIT HL fiad IR SH
“FREEIT] 1HL IFERD TR
“LH_AIT iH iad IR SH IFLAG (FALSE, TREY
“FREE.[WD 1HO IHL IRERD IR
SRR TR (HL ICDUMRTTEKILL Wa®
SRLT_CET IHL DOUTOOG (R0 DA TEOC_SH O IMO_OOL 1 TWD00°
"EAR_TRAS |H IFLIEH 1R
“LHI_CET 1H0 IOUTOIG TR0 DA IBCC_SH O IFLAG (FALSE, TRUED M0_O0L | [mdI0°
"FRKET_TRARSFER [0 IH] IFLLER IR0 |HETRESFLHIL MDD KG0°
“RLT_CET IHL I [MO00 D60 (R IRICSH IBCK_O0LL ICeADloe
"FRKET_TRARFER IHL |HD 'I:I:I.IIII'E.HLL 1Rl IHETREEF_HIL KRITQIG 1HOCD"
“1HLBFE_P (H (WCOL MR TE KL | M
SPROET_TRARSFER 10 (M1 I |IIrE_rI|.|. 1B IMETRESF_DOWE |TOLD (miC0*
“FEEE_[AD 1HO ML ICILRRITE_FILL 1#0"
SRIT_AIT IHL fad IR SH
“FREE_ITO 1ML WILMETTE_KILL W0®
SREIT_GET ML P[00 fh0 PR IRDC_SH Ml _OIL IDUTDIG®
"THLREF IHL IFLIEH 107
SPUKET_TRARSFER (i (W0 IFLLER 0 (WETRESP.LOME 100006 |00*
“FREE_[M] IHL iHO IFLLEH 166
“FREE T IH IFLIEH 1hir
“BUE_TRNS IHL IWRTTE_FLLEH Ira®
pr,r_n;:r THL 1Tl TR0 1R ACCSH IROCOLL |IHOTE"
T_TRAESFER 10 (W0 IDCLAM 180 IRETRESFE_MIL 1DUTD0G 100*
'51,5 TRAG |HO IFMITH 1R"
SLHLCET 1H0 [OITONG (G0 te (RO SHOIFLAG (FRLSE. TRUED (CR_OWL 1Ml
“ AL _EPROR*

] ook

Kl

LA|

/<

Larael

47

SVL (Script Verification Language)

e Scripting language for
verification scenarios

 Special constructs for:
- equivalence checking
- model checking

- compositional
verification

e 'Semantics-aware”

"F.exp” = leaf branching reduction of
hide G in
(
“spec.lotos”:P1 [A, B, G]
[[G]]
"spec.lotos”:P2 [C, G]

) ;
"D.seq"” = deadlock of “F.exp”;

“L.seq” = livelock of “F.exp";

an SVL script

/

48

A layered software architecture

49

3. Integration at a high level:
languages

The LOTOS compilers available in CADP

LOTOS
program

control and
data flow
optimizations
(static analysis)

"symbolic”
model

C code for
types+functions

 simulation
e code generation

e verification:
— equivalence checking
— model checking
— visual checking

e testing

» performance evaluation

— / —

LTS
explicit (BCG) or
implicit (C code)

How can we reuse these compilers?

e Academic and industrial users:
- In general, users dislike learning new languages
- They want to continue using their favorite languages

e CADP developers:
- The LOTOS tool chain is a huge work
- Developing tools for a new language is costly
- Can we reuse this tool chain for other languages?

e Idea: translate new languages to LOTOS to reuse
the LOTOS compilers

— / —

Attempt #1: LOTOS vs mCRL

e This was a desirable goal (VASY-CWI collaboration)

e But there are several incompatilities that make the
tranlation cumbersome

e The most annoying one was the order of algebraic
equations in data types

- LOTOS (as handles by CADP) enforces decreasing priority
between equations (rewrite system with priorities)

forall X, Y: T
X eq X = true;
X eqY = false; (* lower precedence *)
- mCRL has no priority at all (a random selection is made)

» We stopped considering this translation

/ —

Attempt #2: From CSP to LOTOS

e« CSPmM (machine-readable CSP): a version of CSP
supported by the FDR model checker

e« CSPmM and LOTOS are close (both derive from CSP)
e But translation from CSPm to LOTOS is difficult:
- CSPm has higher-order functions (A-expressions)

- CSPm allows lazy computations and list
comprehensions, whereas CADP relies upon a
strict rewrite strategy

- the choice operator “[]” of CSPm does not
translate easily to LOTOS

e We stopped considering this translation

— / —

Attempt #3: From CHP to LOTOS

e CHP (Communicating Hardware Processes):

- a process calculus to describe asynchronous
circuits [Martin-86]

- inspired by guarded commands and CSP

e TAST synthesis tool (TIMA Lab., Grenoble)

- compiles CHP specifications to VLSI circuits

e But no model checker available for CHP

— / —

CHP vs LOTOS (1/2)

e CHP has hardware-oriented data types
- bit arrays
- machine words, etc.
« CHP has an imperative syntax:
- variable assignment
- symmetric sequential composition
- loop statement

« CHP has two different parallel operators:
- collateral composition (inside processes)
- parallel composition to combine processes

— @

56

CHP vs LOTOS (2/2)

e Main difference: interprocess communications

- CHP communication reflect the low-level aspects of
hardware implementation

- communication channels are shared variables
- rendezvous is achieved using special protocols

e In CHP, communication is:
- oriented (an emitter and a receiver)
- dissymetric (an active side and a passive side)
- not atomic (it may takes several steps)

 CHP has a specific "probe"” operator:

- before rendezvous, the receiver can check the value
that the emitter is ready to send

— @ =

Translator from CHP to LOTOS

.....] N simplified ”

I ; ; 23V representatio

CHP _ intermediate op“m\l P code LOTOS
arsm representation gene-

N channel ration

profiles

V-

e chp2lotos: 19,300 lines of code

e code specialization for different kinds of
probes (reduction up to a factor of 156)

e validated on 500 CHP specifications
/4 —

Application to asychronous circuits

e Three case-studies
(joint work between

VASY and CEA-LETI) ==

e DES (Data Encryption
Standard) chip

« ANOC (Asynchronous
Network on Chip)

communication node =

e FAUST network on chip

— @

gptl

m| Shift
Data

m
mValidl
oo | -
Route
Flit
mDestl m

™
Gathg; s

ANOC node input controller
(complex arrangement of
14 asynchronous processes)

959

Attempt #4: From FSP to LOTOS

Work inspired by this book:
Jeff Magee and Jeff Kramer (Imperial College)
Concurrency: State Models and Java Programs
Wiley, 2006

FSP: a simple, popular process algebra
- concise, expressive, user-friendly

- supported by the LTSA too (animation and LTL
property checking)

Joint work undertaken to connect FSP and CADP,
so as to verify larger FSP models

— / —

Translation from FSP to LOTOS

e Some features of FSP are missing in LOTOS:
- priority operator
- label renaming

e Fortunately, these features are handled by
the EXP.OPEN and SVL tools of CADP

e S0, an FSP specification can be translated
into a set of LOTOS, EXP, SVL files

10,500 lines of FSP produce
72,000 (. LOTOS, 8,000 L. EXP, 2,000 L. SVL

/ —

Translator from FSP to LOTOS

o fsp2lotos: 25,500 lines of code

 Validated on 574 FSP specifications
(the LTSs produced by LTSA and CADP are

checked to be strongly equivalent)

o fsp2lotos will be shipped with the next
version of CADP

E— / —

Enhancements to LOTOS

e 1988: Ed Brinksma’s PhD thesis on Extended LOTQOS

e 1993-2001: ISO project to standardize an enhanced
version of LOTOS

e Initial goal: a simple revision of LOTOS

e Final result: E-LOTOS

- complete rewrite of LOTOS
- abstract data types replaced by functional types

- process operators replaced by equivalent functional /
imperative constructs

- new features: time, exceptions, modules

— / —

E-LOTOS: A mitigated result

e Positive aspects of E-LOTOS:
- better than LOTOS in most respects
- simpler syntax (away from the "algebraic” mania)

- formal semantics (timed LTS, SOS rules)
- industrial users tend to prefer E-LOTOS to LOTOS

e Negative aspects of E-LOTOS:

- semantics too complex, irregular at places
- lack of funding for E-LOTOS
- never implemented entirely

— / —

LOTOS NT

e A "reasonable subset” of E-LOTOS proposed by
the VASY team (1995-now)

e Main idea: getting closer to programming
languages, still retaining the formal aspects

e Three parts:
- types
- functions
- Processes

e Language uniformity: functions are a
particular case of processes

e (no support for time at the moment)

/ —

LOTOS NT types

e Inductives types:

- set of constructors with named typed
parameters

- special cases: enumerated types, records,
unions, lists, trees, etc.

- shorthand notations for lists and sets

e Notations for constants:
- natural numbers: 123, OxAD, 00746, Ob1011
- integer numbers: -421, -0OxFD, -0076, -0b110
- characters: 'a’, ‘0, \n", \\', \"

e Standard functions ("==", "<=", "<" ">="_">" " field
selectors and updaters) are defined automatically

— / —

Sample LOTOS NT types

type DAY is (* enumerated type *)
MON, TUE, WED, THU, FRI, SAT, SUN
with "==" "<=" "< US="0 0T
end type
type DATE is (* record type *)
DATE (D : DAY, N : NAT, M : NAT, Y : NAT)
with "get”, "set”
(* for selectors X.D, ... and updaters X.{D => E}*)
end type
type NAT_LIST is (* inductive type *)
NIL,
CONS (HEAD : NAT, TAIL : NAT_LIST)
end type

— @ =

LOTOS NT functions

e Three kinds of parameters: “in" (call by value), "out”
and "inout” (call by reference)

e Function overloading allowed

e Functions defined using standard algorithmic
statements:

- Local variable declarations and assignments
- Sequential composition

- Breakable loops

- If-then-else conditionals

- Case statements

- (Uncatchable) exceptions

e Type checking and variable initialization analysis
ensure a clean imperative style

/ —

Sample LOTOS NT functions (1/2)

function GET_HEAD (L : NAT_LIST) : NAT
raises EMPTY_LIST : NONE is

case L in
var HEAD : NAT in
NIL -> raise EMPTY_LIST
| CONS (HEAD, any NAT_LIST) -> return HEAD
end case
end function

—— /i E—

Sample LOTOS NT functions (2/2)

function COUNT (L : NAT_LIST, out EVENS, out ODDS : NAT) : NAT is
EVENS := 0; ODDS := 0;
loop SCAN_L in
case L in
var HEAD : NAT, TAIL : NAT_LIST in
NIL -> break SCAN_L
| CONS (HEAD, TAIL) ->
if IS_EVEN (HEAD)
then EVENS := EVENS + 1
else ODDS := ODDS + 1
end if;
L := TAIL
end case
end loop;
return ODDS + EVENS
end function

LOTOS NT processes

e Processes are a superset of functions:
- variable assignment
- if-then-else, case, loops, etc.
- symmetric sequential composition (as in ACP)
e Additional operators:
- action
- choice
- parallel composition
- gate hiding, etc.
e A safer language than LOTOS:
- bracketed syntax

- typed channels (overloading allowed)
- static semantics constraints (variable initialization, etc.)

— @ =

Sample LOTOS NT process

channel C is
(N : Nat)
end channel
process ELEVATOR [CALL, GO, UP, DOWN: C] (CURRENT, TARGET: FLR) is
loop
if TARGET > CURRENT then
CURRENT := CURRENT + 1; UP (CURRENT)
elsif TARGET < CURRENT then
CURRENT := CURRENT - 1; DOWN (CURRENT)
else (* TARGET == CURRENT *)
select
CALL (?TARGET)
[]
GO (?TARGET)
end select
end if
end loop
end process

e @ =

Attempt #5: TRAIAN and LNT2LOTOS

e TRAIAN (1996-now):
- a LOTOS NT — C compiler
- so far, only LOTOS NT data types are compiled

- intensively used to build VASY compilers
- http://www.inrialpes.fr/vasy/traian

e« LNT2LOTOS (2005-now):
- a LOTOS NT — LOTOS translator
- translation for types and functions finished
- translation for processes being implemented
- currently 22,300 lines of code
- already in use by Bull

/ —

Summary

e Translations that do not work:

- mCRL to LOTOS
- CSPm to LOTOS

e Translations that work:
- CHP to LOTOS
- FSP to LOTOS
- LOTOS NT to LOTOS

e Translations under study:
- System C/TLM to LOTOS

— @

74

Concluding remarks

Conclusion

 Diversity of formal methods: a fact
plenty of reasons for it

e Integration of formal methods:
- economically suitable
- scientifically interesting

3 different approaches used for CADP:
- integration at a low-level: semantic models
» BCG, XTL, Open/Caesar, BES, PBES

- integration at a high level: user-interfaces
» graphical user interfaces, script languages

- integration at a high level: languages
= translation of CHP, FSP, LOTOS NT to LOTOS

— @

76

More information...

http://vasy.inrialpes.fr

77

