
Practical applications
of process calculi

in industrial projects
Hubert Garavel

INRIA Rhône-Alpes / VASY
http://www.inrialpes.fr/vasy



LIX colloquium 2

Research at INRIA / VASY
• Study of asynchronous concurrent systems
• Compilers for process calculi
• Model checking tools
• Software: CADP verification toolbox
• Industrial projects

– Airbus, Bull, CEA/Leti, ST Microelectronics

• SENVA team = CWI/SEN2 + VASY



LIX colloquium 3

A challenging question

… raised during a evaluation meeting in 
Grenoble (January 2006)

• Why using process calculi as programming
languages ? Process calculi are formalisms to 
study theoretical aspects of concurrency, not 
languages to be compiled



LIX colloquium 4

A recurrent debate

• Not only in computer science
• "Pure" mathematics

– Driven by abstract "beauty", not practical usefulness
– Example: Bourbaki group

• Applied mathematics
– Inspired from the modeling of real-world problems
– Example: Lions' school (INRIA, X, …)

• Both may coexist and strengthen each other
• Theory benefits from applications to establish its

relevance and identify new research directions



LIX colloquium 5

Towards "Applied concurrency"?
• From the beginning, concurrency theory has 

been rooted in concrete examples:
– 80's: scheduler example in Milner's book
– 80's: LOTOS standard to specify OSI protocols

• Some active teams in "applied concurrency"
– INRIA / VASY team
– CWI / SEN2 team (Jaco van de Pol)
– Eindhoven Univ. of Technology (Jan Friso Groote)
– Oxford Univ. / Formal Methods Europe
– etc.



LIX colloquium 6

Applied concurrency in action
• Find companies that need to design reliable

systems involving asychronous concurrency
– embedded software
– hardware architectures
– (more companies than research teams)

• Model these systems formally:
– Dutch style: "we model it for you"
– French style: "learn and model it yourself"

• Reuse models for verification, prototyping, 
testing, performance evaluation, etc.

• Get feedback for research on languages, 
algorithms, and tools



LIX colloquium 7

Permanent fight against complexity

• Complexity of industrial problems increases
(or do we model more details?)

• LOTOS examples handled by CADP:
– 80's :        < 100 lines
– 90's :      < 1,000 lines
– 2000's : < 10,000 lines

• Tool capabilities increase too
(probably not enough…)



Three issues faced
when applying process calculi

in industry



LIX colloquium 9

Issue #1: Lack of expressiveness
• Not so much an issue in practice…

• Standard process calculi (LOTOS, FDR2, 
mCRL) seem to be sufficient for many
problems

• So far, little demand for real-time and 
mobility extensions

• Stochastic extensions have a big potential:
Merging verification and performance 
evaluation would reduce costs significantly



LIX colloquium 10

Issue #2: Fragmentation

• Incompatible languages: LOTOS, mCRL, FDR2 
are similar and differ only by details

• Too many process calculi ⇒ confusion for 
industrial users. Which language to choose?

• Modelling is a service => proximity criterion
– UK companies use CSP
– Dutch companies use mCRL
– VASY partners use LOTOS, etc.



LIX colloquium 11

Issue #2: Remedies to fragmentation

• Source-to-source translators (VASY):
– FSP → LOTOS, CHP → LOTOS, FDR → LOTOS

• Software gateways (SENVA = SEN2 + VASY)
– mCRL compiler → CADP model-checkers
– LOTOS compiler → mCRL minimization tool

• On the long term, a unique language will
probably emerge (such as Java for object-
oriented languages)



LIX colloquium 12

Issue #3: Lack of user-friendliness
•A key issue in the "model it yourself" 

approach
•Economical factors to be considered:

– Modeling is a time consuming activity
– Not enough experts trained to formal methods
– Industry engineers know programming languages

not process calculi
– Process calculi have a steep learning curve
– They are too different from mainstream 
programming languages



LIX colloquium 13

Issue #3: Remedies
• To ease industrial adoption, we need better

languages than today
• Goals:

– Reduce learning time
– Allow faster modeling

• Ideas:
– In large specifications, 80% is standard sequential

code and 20% only relates to concurrency
– Merge process calculi with programming languages
– Do not let SOS rules dictate the shape of the language



LIX colloquium 14

A simple example

process SUM [GET, PUT] : exit :=
SUM2 [GET, PUT] (1, 0)
where

process SUM2 [GET, PUT] (I, N : nat) 
: exit :=

[N < 10] -> 
GET ?X:nat ;

SUM2 [GET, PUT] (I+1, N +X)
[]
[N = 10] -> 

PUT !N; 
exit

endproc
endproc

process SUM [GET, PUT]
var N, X : int
N := 0 ;
for I = 1 to 10 loop

GET ?X ;
N := N + X

end loop ;
PUT !N

end process

read 10 integers and output their sum
current:normally expected:



LIX colloquium 15

The E-LOTOS project (1992-2001)
• Enhanced-LOTOS = complete redesign of LOTOS

– data types
– imperative / functional style
– quantitative time
– modules

⇒ International standard ISO 15437:2001
• But:

– Probably too complex
– Too many SOS rules
– Never implemented entirely

• A interesting step towards better process calculi



Two new opportunities
in a fast evolving context



LIX colloquium 17

Opportunity #1 : Models everywhere
• New methodologies for software development
• MDA (Model Driven Architecture) / MDE (Model 

Driven Engineering)
• Emphasis on "models" (seen as first-class entities) 
• Familiar concepts:

– Models, as abstractions of real systems
– Transformation between models (refinement)
– Specification languages (often graphical)
– Custom languages ("domain specific")



LIX colloquium 18

Opportunity #1 : Models everywhere

• Limitations of MDA/MDE for concurrent 
systems:
– No formal language to describe concurrent 

behaviours
– Only architectural aspects are captured correctly
– Transformations are mostly syntax-driven

• Concurrency theory has much to teach:
– Proper description of behaviours
– Formal semantics (SOS rules, LTS model…)
– Link with verification and proof techniques 

(bisimulation, congruence, etc.)



LIX colloquium 19

Opportunity #2: Parallel machines everywhere

• Sequential processors have reached their limits
• No more MHz, but several cores (2, 4, 8, …) in the CPU
• Soon: Dual core (since 2005), multicore (in 2007) 
• Concurrency everywhere: from laptops to clusters/grids
• Advantages:

– Simultaneous execution of sofware complex applications
– Evolution from time-sharing to "true" multi-tasking

• A turning point in software development:
– Sequential applications won't run faster than today
– Only concurrent programs will benefit from new processors
– Software industry is not ready yet



Conclusion



LIX colloquium 21

A promising future

• The present context is ideal
• Concurrency everywhere:

– Hardware: new machines are parallel machines 
(multicore CPU, clusters, grids…)

– Software: must shift to concurrency to benefit from
new hardware capabilities

• Industry becomes aware: 
– Increasing need for hardware and software reliability
– Models (even non-formal) become standard practice

• "Applied concurrency" starts being effective



LIX colloquium 22

Concurrency theory has a role to play
• Improve dissemination of theoretical results

– (Try to) influence model-driven approaches
– (Try to) replace non-formal models by formal ones

• Provide "better" process calculi
– Industry needs simpler languages
– Avoid unecessary fragmentation
– Focus on user-friendliness, not simply expressiveness
– Merge process calculi into mainstream programming

languages

• Enhance verification tools
– Process calculi fit well with automated verification
– Major challenge: state explosion problem


