
1

Combining
functional verification

and
performance evaluation

using CADP
Hubert Garavel

INRIA / VASY (Grenoble, France)

joint work with
Holger Hermanns (Universität des Saarlandes)

and
Damien Bergamini, Moëz Cherif, Christophe Joubert (INRIA / VASY)

2

Motivations

3

Functional verification
• Properties characterize correct behaviours:

– Does the system function properly?
– Is the system safe? (safety properties)
– Can the system progress? (liveness properties)

• Well-known verification techniques:
– Model checking
– Equivalence checking
– Visual checking

4

Performance evaluation
• Functional verification does not answer to all

questions
• It does not answer to quantitative questions

such as:
– Is the system efficient? (performance estimation)
– Which probability for a failure? (dependability)

• Well-studied evaluation techniques, e.g.:
– Discrete-Time Markov Chains (DTMC): probabilistic
– Continuous-Time Markov Chains (CTMC): stochastic

5

Continuous Time Markov Chains (CTMCs)

• All times are exponentially distributed
• Sojourn time in states are memory-less

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PrPr(X (X >>t) = t) = ee--µµtt

µ

µ : rate (inverse of mean duration)

6

Advantages of CTMCs

•Well known class of stochastic processes

•Widely used in practice

•Best guess, if only mean values are known

•Efficient, numerically stable algorithms for
stationary and transient analysis

7

Isn't it too restrictive?
•• Absence of memory is rareAbsence of memory is rare!
• But superpositions of exponential phases can

approximate arbitrary distributions, still
within the CTMC framework

νν νν νν νν νν

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8

Yet, a more general model is needed

• Main limitation of CTMCs: transitions carry no
other information than rates (i.e., real numbers)

• This is sufficient for performance evaluation

• But this is not enough for
– compositional modelling
– functional verification

9

Why combining functional verification
and performance evaluation?

•Reason #1: Scientific challenge
– both fields are related
– similar models: state machines, Markov chains
– similar description languages:

(stochastic) Petri Nets
(stochastic) process algebras

– same issues: state explosion, compositionality

•Reason #2: Economy

10

Current situation

"real"
system
"real"

system

model 1
functional aspects

model 2
performance aspects

verification performance evaluation

11

Better situation

"real"
system
"real"

system

functional/performance
aspects

verification performance evaluation

common model

12

This would require…
1. A common modelling language

=> process algebras (>> Petri Nets)
=> LOTOS (international standard)

2. A common semantical framework

=> Interactive Markov Chains (IMCs)

3. Efficient software tools

=> CADP toolbox

13

LOTOS (ISO standard 8807)
• Language Of Temporal Ordering Specification
• A formal modelling language for asynchronous systems

• Two orthogonal sub-languages:
Data part: abstract data types (ActOne)
– Constructors and non-constructor operations
– Equations and pattern-matching
Behaviour part: process algebra (CCS, CSP, Circal)
– Concurrent processes (interleaving semantics)
– Message-passing communication (rendezvous)

http://www.inrialpes.fr/vasy/cadp/tutorial

14

Interactive Markov Chains (IMCs)

•Defined in H. Hermanns' PhD thesis
(LNCS 2428)

• It adds stochastic features to
process algebra, still providing:
– sufficient stochastic expressivity
– compatibility with process algebra theory
– useful compositionality results

It is not only Hermanns' answer, but really `the' answer
E. Brinksma, U. Herzog

15

An orthogonal extension of
– Labelled Transition Systems (LTS)
– Continuous Time Markov Chains (CTMC)

Interactive Markov Chains

LTS CTMC IMC

abc

def
ghi

jkl

mno

1.23

4.56

7.89

0.011.10

abc

def
ghi

jkl

mno

1.23

1.10

7.89

0.01

4.56

labels = typed data
(messages exchanged)

labels = real numbers
λ, µµ, νν

both types of labels

16

Remainder of the talk

• Motivations
• Tool support for IMCs within CADP
• CADP tools for generating Markov models
• CADP tools for reducing Markov models
• CADP tools for solving Markov models
• Application 1: the Hubble space telescope
• Application 2: the SCSI-2 bus arbiter
• Conclusion

17

Tool support for IMCs within CADP

18

What is CADP?
• "One of the leading verification toolboxes in academia"

H. Hermanns

• "Among the most popular non-US originating verification
tools"

R. Cleaveland, D. Pilaud, B. Steffen (May 2003)

• A few figures:
– license agreement signed by >300 institutions
– since Jan 1st 2003: CADP installed on > 730 machines
– 72 published case-studies with CADP
– 13 software tools connected to CADP

19

The CADP toolbox
• LOTOS compilers (Caesar and Caesar.adt)
• Simulation, rapid prototyping, test generation, etc.
• Explicit state verification:

– equivalence checking (bisimulation)
– model checking (modal mu-calculus)
– visual checking

• Generic software components (BCG, Open/Caesar)
• Advanced verification techniques:

– on the fly (boolean equation systems)
– compositional
– massively parallel

• Graphical user interface + scripting language (SVL)

20

A pragmatic approach for IMCs

• Reuse existing CADP tools as much as possible
• Decision 1: reuse the LOTOS compilers without

modification
• Decision 2: reuse the BCG format of CADP as the

unique format for
− Labelled Transition Systems
− Discrete Time Markov Chains
− Continuous Time Markov Chains
− Interactive Markov Chains
− mixed models

21

Markov models in BCG
• 5 possible types of transition labels

– ordinary "SEND !21 !true"
– probabilistic "prob 0.82"
– stochastic "rate 3.14"
– mixed probabilistic "SEND !21 !true ; prob 0.82"
– mixed stochastic "SEND !21 !true ; rate 3.14"

• also: timed labels (a different story)
– timed: "wait 10.2"
– mixed timed: "SEND !21 !true ; wait 10.2"

22

CADP tools for performance evaluation

BCG
LOTOS

Λi

Λi rate λ i

Determinator

CAESAR

BCG_LABELS

BCG_MIN

BCG_TRANSIENT

BCG_STEADY

ETMCC

REDUCTIONREDUCTION

SOLVERSSOLVERSGENERATIONGENERATION

MODEL CHECKERSMODEL CHECKERS

CAESAR.ADT

23

CADP tools for generating
Markov models

24

(Interactive) Markov Chains in LOTOS

• How to generate an extended BCG from LOTOS?

How to introduce rates in LOTOS descriptions?

• Two complementary approaches:
• Direct insertion
• Compositional insertion

25

Direct insertion
• Two types of ‘actions’ (gates) in the specification

— standard actions: SEND, RECV…
— Markov gates: LAMBDA, MU, NU…

• Insert Markov gates in the LOTOS specification
where Markov delays occur

• User-defined (and user-maintained) separation
between both types of gates

• No synchronization allowed on Markov gates

26

Inserting Markov gates

27

Direct insertion: Tool trajectory
LOTOS specification

with Markov gates
LAMBDA, MU, NU…

CAESAR and CAESAR.ADT

BCG graph (LTS) with
LAMBDA, MU, NU…

BCG_LABELS
(generalized renaming)

BCG graph with
rate/prob data

rename
LAMBDA -> rate 1.2
MU -> rate 2.3
NU -> rate 4.0

28

Direct insertion: A potential risk
• Inserting Markov delays requires knowledge

(at least, educated guesses) about:
– the right place to introduce Markov delays
– their numerical values

• Introducing Markov gates may corrupt the
original functional behaviour!

l

A

B

λ
PROBABLY WRONG!

A B

29

Direct insertion: Proof obligation
• either show that modified specification is branching

equivalent to original one, if Markov delays are
considered as internal (τ) steps

• or repeat model checking on both specifications

abc

def
ghi

jkl

mno

abc

def
ghi

jkl

mno

and satisfy the same formulasabc def

ghi

jkl

mno
λ

λ

abc def

ghi

jkl

mno
λ

λ ~hide λ in() b

30

Compositional insertion (1)
• Alternative approach to direct insertion

• Identify visible actions that
– are to be delayed, or
– initialize a delay, or
– may interrupt a delay

• Use the LOTOS 'constraint-oriented' style to
insert Markov delays between these actions

31

Compositional insertion (2)

• No proof obligation is needed (proven by
Holger Hermanns)

• Another example later (SCSI-2 bus arbiter)

1.23

4.56

7.89

0.011.10

A

B
abc

def
ghi

B

A |[A, B]|

32

Compositional insertion (3)
• An important constraint must be enforced:

synchronization is not allowed on Markov rates
• Why?
• LOTOS semantics :

"rate λ" || "rate λ" = "rate λ"
• Markov semantics :

"rate λ" || "rate λ" = "rate 2*λ"
• Solution: use different gate names (LAMBDA,

MU, NU…) to avoid unwanted synchronizations

33

CADP tools for reducing
Markov models

34

The BCG_MIN tool
• BCG_MIN: an efficient (property preserving) minimization tool
• Inputs:

– BCG graph and its type (LTS, IMC, DTMC, CTMC…)
– chosen equivalence for minimization

• Output:
– minimized BCG graph

• For standard LTS:
– implements strong bisimulation and branching bisimulation
– truly better than Aldebaran and fc2min
– up to 8 million states, 43 million transitions

• For probabilistic/stochastic LTS:
– implement strong and `branching' bisimulation minimization
– lumpability
– might translate an IMC into a MC by removing (some) nondeterminism

rate 1.3 rate 2.1 rate 3.4
BCG_MIN

35

The DETERMINATOR tool
• Role:

– On-the-fly generation of a MC starting from either a high level
description (e.g., LOTOS) or a low level model (BCG graph)

– applies local transformations to remove nondeterminism partially
– implements a determinacy check ("well specified" stochastic process)
– algorithm from [Ciardo-Zijal-96] [Deavours-Sanders-99]

• Input:
– on the fly graph (IMC, DTMC, CTMC…)
– based on CADP's Open/Caesar language-independent technology

• Output:
– BCG graph (possibly, same as input graph)

• DETERMINATOR before BCG_MIN => significant time savings

36

CADP tools for solving
Markov models

37

The BCG_STEADY tool
• Numerical solver for Markov chains
• Steady state analysis (equilibrium)
• Inputs:

– BCG graph with "action; rate r" labels
– no deadlock allowed

• Outputs:
– numerical data usable by Excel, Gnuplot…

• Method:
– BCG graph converted into a sparse matrix
– computation of a probabilistic vector solution
– iterative algorithm using Gauss-Seidel [Stewart94]









+−= ∑ ∑

< >

++

ij ij
ji

k
jji

k
j

ii

k
i aa

a ,
)(

,
)1(

,

)1(1 πππ

38

The BCG_TRANSIENT tool
• Numerical solver for Markov chains
• Transient analysis
• Inputs:

– BCG graph with "action; rate r" labels
– deadlocks permitted
– list of time instants

• Outputs:
– numerical data usable by Excel, Gnuplot…

• Method:
– BCG graph converted into a sparse matrix
– uniformisation method to compute Poisson probabilities
– Fox-Glynn algorithm [Stewart94]

t
ss

k

kn

k

n
etwithkntnntt

ss

ss
λλψπλψπλψπ

ε
−

+==

=







+= ∑∑)0;()(ˆ);()(ˆ);()(~

10

Ν∈
+

=+ n
n
tntntand ,
1

);()1;(λλψλψ

39

Application 1: The Hubble telescope

40

The ‘Hubble Space Telescope’

and its stabilising unit

41

A simple Markov model for the Hubble
• The Huble telescope has 6 gyroscopes
• As time passes, gyros may fail
• The average lifetime of gyros is 10 years (= 120 months)

λ = 12 months / 120 = 0.1
• Hubble falls into sleep if only two gyros are left
• Turning on sleep mode requires to halt all equipments,

which takes about 3.6 days (= 0.12 month)
µ = 12 months / 0.12 = 100

• When in sleep mode, a shuttle mission must be sent
to repair/reset Hubble, which takes about 2 months

ν =12 months / 2 = 6
• Without operational gyro, Hubble crashes

42

Compositional modelling of the Hubble

process HUBBLE [LAMBDA, MU, NU] : noexit :=
hide FAIL in

(
(
GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL] |||
GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL]
)

|[FAIL]|
CONTROLLER [FAIL, MU, NU] (6, false)
>> (* system reset *)
HUBBLE [LAMBDA, MU, NU]

)
endproc

GYRO GYRO GYRO GYRO GYRO GYRO

CONTROLLER

FAILFAIL FAILFAILFAILFAIL

system reset

LAMBDA

MU
NU

43

The GYRO process

process GYRO [LAMBDA, FAIL] : exit :=
(LAMBDA; FAIL; stop) [> exit

endproc

LAMBDA

exit (~system reset)

FAIL

exit

exit

44

The CONTROLLER process
process CONTROLLER [FAIL, MU, NU] (C : Nat, SLEEP : Bool) : exit :=

FAIL; (* Ah, a gyro failed. Let's count down. *)
CONTROLLER [FAIL, MU, NU] (C - 1, SLEEP)

[]
[(C < 3) and not (SLEEP)] ->

MU; (* Hubble starts tumbling. Time to turn on the sleep mode. *)
CONTROLLER [FAIL, MU, NU] (C, true)

[]
[SLEEP] ->

NU; (* Sleep mode is on. Waiting for the space mission to reset Hubble. *)
exit

[]
[C = 0] ->

i; (* No gyros left. Crash! *)
stop

endproc

45

Analysis trajectory for the Hubble
LOTOS specification
with Markov gates
LAMBDA, MU, NU

CAESAR and CAESAR.ADT

BCG graph (LTS) with
LAMBDA, MU, NU

BCG_LABELS
(generalized renaming)

BCG graph (IMC)
with rates and "i"

transitions

rename
"LAMBDA" -> "fail; rate 0.1"
"MU"->"suspend; rate 100"
"NU"->"repair; rate 6"

…

=

=

=
50 lines

877 states
3341 trans.

877 states
3341 trans.

46

… Analysis trajectory for the Hubble

numerical data
(probabilities)

Excel, gnuplot

…

BCG_TRANSIENT
(transient analysis)

BCG_MIN (stochastic
strong minimization)

BCG graph (IMC) with
rate and "i" transitions

BCG_MIN (stochastic
branching minimization)

BCG graph (CTMC
with labels)

=

=

38 states
67 trans.

9 states
12 trans.

47

Minimized IMCs for the Hubble

after stochastic strong minimization
(38 states, 67 transitions)

after stochastic branching minimization
(9 states, 12 transitions)

48

Visual verification of the final CTMC

56 4 23 1 crash

0.6 0.5 0.4 0.3 0.2 0.1

sleep sleep

0.2
0.1

100 100
6

6

SVL script for the Hubble
(* generate the LTS *)
"lts.bcg" = generation of "hubble.lotos";

(* turn the LTS into an IMC *)
"imc.bcg" = total rename

"NU" -> "repair; rate 6", (* to prepare a shuttle mission, for reset takes 1/2 a year *)
"MU" -> "suspend; rate 100", (* to suspend the scientific, progtam takes 1/100 of a year *)
"LAMBDA" -> "fail; rate 0.1" (* the average lifetime of a gyroscope is 10 years *)

in "lts.bcg";

(* turn the IMC into an CTMC *)
"ctmc.bcg" = branching stochastic reduction with bcg_min of "imc.bcg";

(* look for internal transitions: if absent, "ctmc.bcg" is a Markov chain *)
% bcg_info -hidden "ctmc.bcg"

(* analyse for various time points measured in years *)
% bcg_transient -thr hubble.thr "ctmc.bcg" .01 .1 1 10 100 1e3 1e4 1e5 1e6

Analysis of the Hubble using BCG_TRANSIENT

6.04E-272.43E-266.03E-271.00E+06

0.000312120.001259020.000311951.00E+05

0.05780580.2331750.05777391.00E+04

0.0975460.3934780.09749231.00E+03

0.1027860.4146150.102729100

0.1057250.4149470.10576110

0.003734190.5431380.002488721

4.34E-060.594035.45E-070.1

1.24E-090.59941.52E-110.01
"suspend""fail""repair"time

51

Application 2: The SCSI-2 bus arbiter

52

Case study
SCSI-2: Small Computer System Interface
• brought to our attention by Massimo Zendri

(Bull SA, Italy)
• designed to provide fast access to multiple

storage devices, via a shared bus
• up to 7 devices (disks) and 1 controller
• under study: SCSI-2 bus arbitration protocol
• ‘starvation problem’ discovered by Bull

engineers

53

The SCSI-2 architecture

Disk

CMD
ARB
REC

CMD
ARB
REC

Disk Disk

Controller

...

54

• Controller

– handles (OS level) requests

– passes read/write requests to
the designated disk (CMD)

– passes results back to the OS
(REC)

– provides flow control to prevent
disk flooding,

• Disks

– process incoming CMDs,

– send back results by REC,

• Disks and Controller share the
bus, but mutually exclusive bus
access is granted by a
distributed bus arbitration
mechanism.

SCSI-2 bus usage

CMD

REC

CMD

REC

Disk Disk Disk

Controller

...

55

SCSI 2 bus arbitration
• Prioritized, based on

static IDs on bus

• Realized through a
mesh of dedicated
wires

• Any bus access is
preceded by a scan
ensuring that no
higher priority device
requires the bus

CMD
ARB
REC

CMD
ARB
REC

...Disk Disk Disk

Controller

...

56

• The Bull engineers observed ‘starvation’ of
applications for some specific configurations,
depending on the position of the controller on the bus

• They observed that this problem was absent
if the controller was in the highest position,
and the OS was put on the lowest priority disk

• Model checking with CADP revealed the starvation
problem and its cause: a livelock preventing lower
priority disks to get the bus [Garavel & Mateescu]

• (Problem solved in SCSI-3 standard)

Starvation and how it was fixed

57

Specifying the SCSI-2 in LOTOS

• Capturing the SCSI-2 bus arbitration priority
mechanism (distributed, virtually synchronous)
is nontrivial

• Only process algebras with n-party rendezvous
(LOTOS, CSP) can do it properly

• Languages with only binary communication =>
combinatorial explosion

58

Specifying the SCSI-2 in LOTOS
• Use of a key LOTOS feature: value negotiation
• W: a tuple of 8 booleans (wires)
• Each process i states its own constraints:

– C_PASS (i) : Wi = 0
– C_WIN (i) : Wi = 1 and no j>i such that Wj = 1
– C_LOSS (i) : Wi = 1 and exists j>i such that Wj = 1

• Parallel composition of 8 processes =>
Intersection of the 8 corresponding constraints
(For details, see Garavel-Hermanns paper at FME'02)

59

Parallel composition of 7 disks
and 1 controller

8-party
rendezvous

60

The DISK process

‘pattern matcher’

an 8-tuple of bits

61

Direct insertion of Markov delays
Two Markov delays are inserted directly:
• λ: load (i.e., stress) of the controller
• µ: disk servicing time

CMD
ARB
REC

Disk Disk Disk

Controller
λ

µ µ µ

CMD
ARB
REC

62

The CONTROLLER process with a Markov delay

63

The DISK process with a Markov delay

64

Compositional insertion of Markov delays

• bus delay ν : to be inserted between any two
consecutive bus arbitrations ARB

ν
CMD
ARB
REC

Disk Disk Disk

Controller

CMD
ARB
REC

ν

ARB

ν ν ν ν ν

ARB

65

SVL script for the SCSI-2
"model_1.bcg" = branching reduction of

total rename "ARB !.*" -> ARB in
hide CMD, REC in

"SCSI.lotos" ;
"model_2.bcg" = generation of

hide all but LAMBDA, MU, NU in
("model_1.bcg" |[ARB]| "erlang.lotos":BUS1 [ARB, NU]) ;

% DISK_SPEED=400
% for BUS_SPEED in 400 4000 40000 (* from 2.5 ms down to 250 µs *)
% do

% for LOAD in 10 25 50 100 200 400 800 1600 (* from 100 ms down to 625 µs *)
% do

"model_3.bcg" = branching stochastic reduction of
total rename

"NU" -> "BUS; rate $BUS_SPEED",
"MU !$DISK_L" -> "DISK_L; rate $DISK_SPEED",
"MU !$DISK_M" -> "DISK_M; rate $DISK_SPEED",
"MU !$DISK_H" -> "DISK_H; rate $DISK_SPEED",
"LAMBDA !.*" -> "rate $LOAD"

in "model_2.bcg" ;
% bcg_steady -thr -append "$BUS_SPEED.thr" "model_3.bcg" LOAD=$LOAD

% done
% done

66

Influence of the controller position

Controller@

Controller@

Controller@

Controller@

67

Summary and findings

• The SCSI-2 was analyzed both for functional
and performance aspects

• The ‘Bull fix’ (putting the OS on the lowest
disk and put the controller in highest priority
position) is explained

• Performance study suggests a better solution:
put the controller in lowest priority position

68

Conclusion

69

Conclusion
• Three scientific goals:

– Combine functional verification and performance evaluation
– Broaden the CADP toolkit to performance analysis
– Tackle large models compositionally

• A pragmatic approach:
– use LOTOS "as is" (no syntax extension)
– reuse many existing CADP tools (caesar, bcg_labels, SVL)
– new tools: bcg_min, determinator, bcg_steady, bcg_transient

• Part of next version of CADP
http://www.inrialpes.fr/vasy/cadp

• Future work
– direct analysis of IMC
– model checking of Markov chains

70

Bibliography
• [CZ96] G. Ciardo et R. Zijal. Well-defined stochastic Petri nets. MASCOTS’96

• [DS99] D.D. Deavours et W.H. Sanders. An efficient well-specified check. PNPM’99

• [GH02] H. Garavel et H. Hermanns. On Combining Functional Verification and Performance
Evaluation using CADP. FME’02

• [GL01] H. Garavel et F. Lang. SVL: A Scripting Language for Compositional Verification.
FORTE/PSTV’01

• [Her98] H. Hermanns. Interactive Markov Chains and the Quest for Quantified Quality.

• [Her01] H. Hermanns. Construction and Verification of Performance and Reliability Models.
EATCS’01

• [HJ03] H. Hermanns et C. Joubert. A Set of Performance and Dependability Analysis
Components for CADP. TACAS’03

• [Kun86] K.S. Kundert. Sparse Matrix Techniques. CASD’86

• [Ste94] W.J. Stewart. Introduction to the numerical solution of Markov chains.

71

More information?

http://www.inrialpes.fr/vasy

http://depend.cs.uni-sb.de/

