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Motivations
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Functional verification
• Properties characterize correct behaviours:

– Does the system function properly?
– Is the system safe? (safety properties)
– Can the system progress? (liveness properties)

• Well-known verification techniques:
– Model checking
– Equivalence checking
– Visual checking
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Performance evaluation
• Functional verification does not answer to all

questions
• It does not answer to quantitative questions

such as:
– Is the system efficient? (performance estimation)
– Which probability for a failure? (dependability)

• Well-studied evaluation techniques, e.g.:
– Discrete-Time Markov Chains (DTMC): probabilistic
– Continuous-Time Markov Chains (CTMC): stochastic
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Continuous Time Markov Chains (CTMCs)

• All times are exponentially distributed
• Sojourn time in states are memory-less
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Advantages of CTMCs

•Well known class of stochastic processes

•Widely used in practice

•Best guess, if only mean values are known

•Efficient, numerically stable algorithms for 
stationary and transient analysis
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Isn't it too restrictive?
•• Absence of memory is rareAbsence of memory is rare!
• But superpositions of exponential phases can 

approximate arbitrary distributions, still 
within the CTMC framework
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Yet, a more general model is needed

• Main limitation of CTMCs: transitions carry no
other information than rates (i.e., real numbers)

• This is sufficient for performance evaluation

• But this is not enough for
– compositional modelling
– functional verification
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Why combining functional verification
and performance evaluation?

•Reason #1: Scientific challenge
– both fields are related
– similar models: state machines, Markov chains
– similar description languages: 

(stochastic) Petri Nets
(stochastic) process algebras

– same issues: state explosion, compositionality

•Reason #2: Economy
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Current situation

"real" 
system
"real" 

system

model 1
functional aspects

model 2
performance aspects

verification performance evaluation
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Better situation

"real" 
system
"real" 

system

functional/performance
aspects

verification performance evaluation

common model
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This would require…
1. A common modelling language

=> process algebras (>> Petri Nets)
=> LOTOS (international standard)

2. A common semantical framework

=> Interactive Markov Chains (IMCs)

3. Efficient software tools

=> CADP toolbox
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LOTOS (ISO standard 8807)
• Language Of Temporal Ordering Specification
• A formal modelling language for asynchronous systems

• Two orthogonal sub-languages:
Data part: abstract data types (ActOne)
– Constructors and non-constructor operations
– Equations and pattern-matching
Behaviour part: process algebra (CCS, CSP, Circal)
– Concurrent processes (interleaving semantics)
– Message-passing communication (rendezvous)

http://www.inrialpes.fr/vasy/cadp/tutorial



14

Interactive Markov Chains (IMCs)

•Defined in H. Hermanns' PhD thesis 
(LNCS 2428)

• It adds stochastic features to 
process algebra, still providing:
– sufficient stochastic expressivity
– compatibility with process algebra theory
– useful compositionality results

It is not only Hermanns' answer, but really `the' answer
E. Brinksma, U. Herzog
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An orthogonal extension of 
– Labelled Transition Systems (LTS)
– Continuous Time Markov Chains (CTMC)

Interactive Markov Chains

LTS CTMC IMC
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def
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jkl

mno
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7.89

0.01

4.56

labels = typed data
(messages exchanged)

labels = real numbers
λ, µµ, νν

both types of labels
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Remainder of the talk

• Motivations
• Tool support for IMCs within CADP
• CADP tools for generating Markov models
• CADP tools for reducing Markov models
• CADP tools for solving Markov models
• Application 1: the Hubble space telescope
• Application 2: the SCSI-2 bus arbiter
• Conclusion
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Tool support for IMCs within CADP
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What is CADP?
• "One of the leading verification toolboxes in academia" 

H. Hermanns

• "Among the most popular non-US originating verification 
tools"

R. Cleaveland, D. Pilaud, B. Steffen (May 2003)

• A few figures:
– license agreement signed by >300 institutions
– since Jan 1st 2003: CADP installed on > 730 machines 
– 72 published case-studies with CADP
– 13 software tools connected to CADP
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The CADP toolbox
• LOTOS compilers (Caesar and Caesar.adt)
• Simulation, rapid prototyping, test generation, etc.
• Explicit state verification:

– equivalence checking (bisimulation)
– model checking (modal mu-calculus)
– visual checking

• Generic software components (BCG, Open/Caesar)
• Advanced verification techniques:

– on the fly (boolean equation systems)
– compositional
– massively parallel

• Graphical user interface + scripting language (SVL)
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A pragmatic approach for IMCs

• Reuse existing CADP tools as much as possible
• Decision 1: reuse the LOTOS compilers without 

modification
• Decision 2: reuse the BCG format of CADP as the 

unique format for
− Labelled Transition Systems
− Discrete Time Markov Chains
− Continuous Time Markov Chains
− Interactive Markov Chains
− mixed models
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Markov models in BCG
• 5 possible types of transition labels

– ordinary "SEND !21 !true"
– probabilistic "prob 0.82"
– stochastic "rate 3.14"
– mixed probabilistic "SEND !21 !true ; prob 0.82"
– mixed stochastic "SEND !21 !true ; rate 3.14"

• also: timed labels (a different story)
– timed: "wait 10.2"
– mixed timed: "SEND !21 !true ; wait 10.2"
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CADP tools for performance evaluation

BCG
LOTOS

Λi

Λi rate λ i

Determinator

CAESAR

BCG_LABELS

BCG_MIN

BCG_TRANSIENT

BCG_STEADY

ETMCC

REDUCTIONREDUCTION

SOLVERSSOLVERSGENERATIONGENERATION

MODEL CHECKERSMODEL CHECKERS

CAESAR.ADT
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CADP tools for generating
Markov models
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(Interactive) Markov Chains in LOTOS

• How to generate an extended BCG from LOTOS?

How to introduce rates in LOTOS descriptions?

• Two complementary approaches:
• Direct insertion
• Compositional insertion
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Direct insertion
• Two types of ‘actions’ (gates) in the specification

— standard actions:    SEND, RECV…
— Markov gates: LAMBDA, MU, NU…

• Insert Markov gates in the LOTOS specification 
where Markov delays occur

• User-defined (and user-maintained) separation 
between both types of gates

• No synchronization allowed on Markov gates
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Inserting Markov gates
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Direct insertion: Tool trajectory
LOTOS specification

with Markov gates
LAMBDA, MU, NU…

CAESAR and CAESAR.ADT 

BCG graph (LTS) with
LAMBDA, MU, NU…

BCG_LABELS
(generalized renaming)

BCG graph with
rate/prob data

rename
LAMBDA -> rate 1.2
MU -> rate 2.3
NU -> rate 4.0 
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Direct insertion: A potential risk
• Inserting Markov delays requires knowledge

(at least, educated guesses) about:
– the right place to introduce Markov delays
– their numerical values

• Introducing Markov gates may corrupt the
original functional behaviour!

l

A

B

λ
PROBABLY WRONG!

A B
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Direct insertion: Proof obligation
• either show that modified specification is branching 

equivalent to original one, if Markov delays are 
considered as internal (τ) steps

• or repeat model checking on both specifications

abc

def
ghi

jkl

mno

abc

def
ghi

jkl

mno

and satisfy the same formulasabc def

ghi

jkl

mno
λ

λ

abc def

ghi

jkl

mno
λ

λ ~hide λ in( ) b
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Compositional insertion (1)
• Alternative approach to direct insertion

• Identify visible actions that
– are to be delayed, or
– initialize a delay, or
– may interrupt a delay

• Use the LOTOS 'constraint-oriented' style to 
insert Markov delays  between these actions
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Compositional insertion (2)

• No proof obligation is needed (proven by 
Holger Hermanns)

• Another example later (SCSI-2 bus arbiter)

1.23

4.56

7.89

0.011.10

A

B
abc

def
ghi

B

A |[ A, B ]|
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Compositional insertion (3)
• An important constraint must be enforced: 

synchronization is not allowed on Markov rates
• Why?
• LOTOS semantics :

"rate λ" || "rate λ" = "rate λ"
• Markov semantics :

"rate λ" || "rate λ" = "rate 2*λ"
• Solution: use different gate names (LAMBDA, 

MU, NU…) to avoid unwanted synchronizations
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CADP tools for reducing
Markov models
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The BCG_MIN tool
• BCG_MIN: an efficient (property preserving) minimization tool
• Inputs:

– BCG graph and its type (LTS, IMC, DTMC, CTMC…)
– chosen equivalence for minimization

• Output:
– minimized BCG graph

• For standard LTS:
– implements strong bisimulation and branching bisimulation
– truly better than Aldebaran and fc2min
– up to 8 million states, 43 million transitions

• For probabilistic/stochastic LTS:
– implement strong and `branching' bisimulation minimization
– lumpability
– might translate an IMC into a MC by removing (some) nondeterminism

rate 1.3 rate 2.1 rate 3.4
BCG_MIN
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The DETERMINATOR tool
• Role:

– On-the-fly generation of a MC starting from either a high level 
description (e.g., LOTOS) or a low level model (BCG graph)

– applies local transformations to remove nondeterminism partially
– implements a determinacy check ("well specified" stochastic process)
– algorithm from [Ciardo-Zijal-96] [Deavours-Sanders-99]

• Input:
– on the fly graph (IMC, DTMC, CTMC…)
– based on CADP's Open/Caesar language-independent technology

• Output:
– BCG graph (possibly, same as input graph)

• DETERMINATOR before BCG_MIN => significant time savings
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CADP tools for solving
Markov models
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The BCG_STEADY tool
• Numerical solver for Markov chains
• Steady state analysis (equilibrium)
• Inputs: 

– BCG graph with "action; rate r" labels 
– no deadlock allowed

• Outputs: 
– numerical data usable by Excel, Gnuplot…

• Method: 
– BCG graph converted into a sparse matrix
– computation of a probabilistic vector solution
– iterative algorithm using Gauss-Seidel [Stewart94]
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The BCG_TRANSIENT tool
• Numerical solver for Markov chains
• Transient analysis
• Inputs:

– BCG graph with "action; rate r" labels 
– deadlocks permitted
– list of time instants

• Outputs:
– numerical data usable by Excel, Gnuplot…

• Method:
– BCG graph converted into a sparse matrix
– uniformisation method to compute Poisson probabilities
– Fox-Glynn algorithm [Stewart94]
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Application 1: The Hubble telescope
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The ‘Hubble Space Telescope’

and its stabilising unit
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A simple Markov model for the Hubble 
• The Huble telescope has 6 gyroscopes
• As time passes, gyros may fail
• The average lifetime of gyros is 10 years (= 120 months)

λ = 12 months / 120 = 0.1
• Hubble falls into sleep if only two gyros are left
• Turning on sleep mode requires to halt all equipments, 

which takes about 3.6 days (= 0.12 month)
µ = 12 months / 0.12 = 100

• When in sleep mode, a shuttle mission must be sent
to repair/reset Hubble, which takes about 2 months

ν =12 months / 2 = 6
• Without operational gyro, Hubble crashes
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Compositional modelling of the Hubble

process HUBBLE [LAMBDA, MU, NU] : noexit :=
hide FAIL in

(
(
GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL] |||
GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL] 
)

|[FAIL]|
CONTROLLER [FAIL, MU, NU] (6, false)
>> (* system reset *)
HUBBLE [LAMBDA, MU, NU]

)
endproc

GYRO GYRO GYRO GYRO GYRO GYRO

CONTROLLER

FAILFAIL FAILFAILFAILFAIL

system reset

LAMBDA

MU
NU
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The GYRO process

process GYRO [LAMBDA, FAIL] : exit :=
(LAMBDA; FAIL; stop) [> exit

endproc

LAMBDA

exit (~system reset)

FAIL

exit

exit
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The CONTROLLER process
process CONTROLLER [FAIL, MU, NU] (C : Nat, SLEEP : Bool) : exit :=

FAIL; (* Ah, a gyro failed. Let's count down. *)
CONTROLLER [FAIL, MU, NU] (C - 1, SLEEP)

[]
[(C < 3) and not (SLEEP)] ->

MU; (* Hubble starts tumbling. Time to turn on the sleep mode. *)
CONTROLLER [FAIL, MU, NU] (C, true)

[]
[SLEEP] ->

NU; (* Sleep mode is on. Waiting for the space mission to reset Hubble. *)
exit

[]
[C = 0] ->

i; (* No gyros left. Crash! *)
stop

endproc
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Analysis trajectory for the Hubble
LOTOS specification
with Markov gates
LAMBDA, MU, NU

CAESAR and CAESAR.ADT 

BCG graph (LTS) with
LAMBDA, MU, NU

BCG_LABELS
(generalized renaming)

BCG graph (IMC) 
with rates and "i" 

transitions

rename
"LAMBDA" -> "fail; rate 0.1"
"MU"->"suspend; rate 100"
"NU"->"repair; rate 6"

…

=

=

=
50 lines

877 states
3341 trans.

877 states
3341 trans.
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… Analysis trajectory for the Hubble

numerical data 
(probabilities)

Excel, gnuplot

…

BCG_TRANSIENT
(transient analysis)

BCG_MIN (stochastic
strong minimization)

BCG graph (IMC) with
rate and "i" transitions

BCG_MIN (stochastic
branching minimization)

BCG graph (CTMC
with labels)

=

=

38 states
67 trans.

9 states
12 trans.
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Minimized IMCs for the Hubble

after stochastic strong minimization
(38 states, 67 transitions)

after stochastic branching minimization
(9 states, 12 transitions)
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Visual verification of the final CTMC

56 4 23 1 crash

0.6 0.5 0.4 0.3 0.2 0.1

sleep sleep

0.2
0.1 

100 100  
6

6



SVL script for the Hubble
(* generate the LTS *)
"lts.bcg" = generation of "hubble.lotos";

(* turn the LTS into an IMC *)
"imc.bcg" =  total rename

"NU" -> "repair; rate 6",  (* to prepare a shuttle mission, for reset takes 1/2 a year *)
"MU" -> "suspend; rate 100",  (* to suspend the scientific, progtam takes 1/100 of a year *) 
"LAMBDA" -> "fail; rate 0.1"  (* the average lifetime of a gyroscope is 10 years *)

in "lts.bcg";

(* turn the IMC into an CTMC *)
"ctmc.bcg" = branching stochastic reduction with bcg_min of "imc.bcg";

(* look for internal transitions: if absent, "ctmc.bcg" is a Markov chain *)
% bcg_info -hidden "ctmc.bcg"

(* analyse for various time points measured in years *)
% bcg_transient -thr hubble.thr "ctmc.bcg" .01 .1 1 10 100 1e3 1e4 1e5 1e6



Analysis of the Hubble using BCG_TRANSIENT

6.04E-272.43E-266.03E-271.00E+06

0.000312120.001259020.000311951.00E+05

0.05780580.2331750.05777391.00E+04

0.0975460.3934780.09749231.00E+03

0.1027860.4146150.102729100

0.1057250.4149470.10576110

0.003734190.5431380.002488721

4.34E-060.594035.45E-070.1

1.24E-090.59941.52E-110.01
"suspend""fail""repair"time



51

Application 2: The SCSI-2 bus arbiter
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Case study
SCSI-2: Small Computer System Interface 
• brought to our attention by Massimo Zendri

(Bull SA, Italy)
• designed to provide fast access to multiple          

storage devices, via a shared bus
• up to 7 devices (disks) and 1 controller
• under study: SCSI-2 bus arbitration protocol
• ‘starvation problem’ discovered by Bull 

engineers



53

The SCSI-2 architecture

Disk

CMD
ARB
REC

CMD
ARB
REC

Disk Disk

Controller

...
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• Controller 

– handles (OS level) requests

– passes read/write requests to 
the designated disk (CMD)

– passes results back to the OS 
(REC)

– provides flow control to prevent 
disk flooding,

• Disks 

– process incoming CMDs, 

– send back results by REC,

• Disks and Controller share the 
bus, but mutually  exclusive bus 
access is granted by a 
distributed bus arbitration 
mechanism.

SCSI-2 bus usage

CMD

REC

CMD

REC

Disk Disk Disk

Controller

...
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SCSI 2 bus arbitration
• Prioritized, based on 

static IDs on bus

• Realized through a 
mesh of dedicated 
wires

• Any bus access is 
preceded by a scan 
ensuring that no 
higher priority device 
requires the bus

CMD
ARB
REC

CMD
ARB
REC

...Disk Disk Disk

Controller

...
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• The Bull engineers observed ‘starvation’ of 
applications for some specific configurations, 
depending on the position of the controller on the bus

• They observed that this problem was absent                  
if the controller was in the highest position,                  
and the OS was put on the lowest priority disk

• Model checking with CADP revealed the starvation 
problem and its cause: a livelock preventing lower 
priority disks to get the bus [Garavel & Mateescu] 

• (Problem solved in SCSI-3 standard)

Starvation and how it was fixed
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Specifying the SCSI-2 in LOTOS

• Capturing the SCSI-2 bus arbitration priority 
mechanism (distributed, virtually synchronous) 
is nontrivial

• Only process algebras with n-party rendezvous
(LOTOS, CSP) can do it properly

• Languages with only binary communication => 
combinatorial explosion
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Specifying the SCSI-2 in LOTOS
• Use of a key LOTOS feature: value negotiation
• W: a tuple of 8 booleans (wires)
• Each process i states its own constraints:

– C_PASS (i) : Wi = 0
– C_WIN (i) :  Wi = 1 and no j>i such that Wj = 1
– C_LOSS (i) : Wi = 1 and exists j>i such that Wj = 1

• Parallel composition of 8 processes =>
Intersection of the 8 corresponding constraints
(For details, see Garavel-Hermanns paper at FME'02)
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Parallel composition of 7 disks 
and 1 controller

8-party
rendezvous
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The DISK process

‘pattern matcher’

an 8-tuple of bits
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Direct insertion of Markov delays
Two Markov delays are inserted directly:
• λ: load (i.e., stress) of the controller
• µ: disk servicing time

CMD
ARB
REC

Disk Disk Disk

Controller
λ

µ µ µ

CMD
ARB
REC
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The CONTROLLER process with a Markov delay
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The DISK process with a Markov delay
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Compositional insertion of Markov delays

• bus delay ν : to be inserted between any two 
consecutive bus arbitrations ARB

ν
CMD
ARB
REC

Disk Disk Disk

Controller

CMD
ARB
REC

ν

ARB

ν ν ν ν ν

ARB
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SVL script for the SCSI-2
"model_1.bcg" = branching reduction of

total rename "ARB !.*" -> ARB  in
hide CMD, REC in

"SCSI.lotos" ;
"model_2.bcg" =  generation of

hide all but LAMBDA, MU, NU in
("model_1.bcg" |[ARB]| "erlang.lotos":BUS1 [ARB, NU]) ;

% DISK_SPEED=400
% for BUS_SPEED in 400 4000 40000  (* from 2.5 ms down to 250 µs *)
% do

% for LOAD in 10 25 50 100 200 400 800 1600  (* from 100 ms down to 625 µs *)
% do

"model_3.bcg" = branching stochastic reduction of
total rename

"NU" -> "BUS; rate $BUS_SPEED",
"MU !$DISK_L" -> "DISK_L; rate $DISK_SPEED",
"MU !$DISK_M" -> "DISK_M; rate $DISK_SPEED",
"MU !$DISK_H" -> "DISK_H; rate $DISK_SPEED",
"LAMBDA !.*" -> "rate $LOAD"

in "model_2.bcg" ;
% bcg_steady -thr -append "$BUS_SPEED.thr" "model_3.bcg" LOAD=$LOAD

% done
% done
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Influence of the controller position

Controller@

Controller@

Controller@

Controller@
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Summary and findings

• The SCSI-2 was analyzed both for functional 
and performance aspects

• The ‘Bull fix’ (putting the OS on the lowest 
disk and put the controller in highest priority 
position) is explained

• Performance study suggests a better solution: 
put the controller in lowest priority position
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Conclusion
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Conclusion
• Three scientific goals:

– Combine functional verification and performance evaluation
– Broaden the CADP toolkit to performance analysis
– Tackle large models compositionally

• A pragmatic approach:
– use LOTOS "as is" (no syntax extension)
– reuse many existing CADP tools (caesar, bcg_labels, SVL)
– new tools: bcg_min, determinator, bcg_steady, bcg_transient

• Part of next version of CADP
http://www.inrialpes.fr/vasy/cadp

• Future work
– direct analysis of  IMC
– model checking of Markov chains
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More information?

http://www.inrialpes.fr/vasy

http://depend.cs.uni-sb.de/


