Combining
functional verification
and
performance evaluation
using CADP

Hubert Garavel
INRIA / VASY (Grenoble, France)

joint work with
Holger Hermanns (Universitat des Saarlandes)
and
Damien Bergamini, Mo€z Cherif, Christophe Joubert (INRIA / VASY)

=% UNIVERSITAT
DES
Y SAARLANDES

Motivations

Functional verification

e Properties characterize correct behaviours:
- Does the system function properly?
- Is the system safe? (safety properties)
- Can the system progress? (liveness properties)

« Well-known verification techniques:
- Model checking
- Equivalence checking
- Visual checking

SN % SEN——

Performance evaluation

e Functional verification does not answer to all
questions

e |t does not answer to quantitative questions
such as:

- Is the system efficient? (performance estimation)
- Which probability for a failure? (dependability)

« Well-studied evaluation techniques, e.g.:
- Discrete-Time Markov Chains (DTMC): probabilistic
- Continuous-Time Markov Chains (CTMC): stochastic

S % S

Continuous Time Markov Chains (CTMCs)

e All times are exponentially distributed
e Sojourn time in states are memory-less

1
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

0

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ?i?

U

H

Pr(X >t) = e"ut

: rate (inverse of mean duration)

/i |

Advantages of CTMCs

e Well known class of stochastic processes
e Widely used in practice

e Best guess, if only mean values are known

e Efficient, numerically stable algorithms for
stationary and transient analysis

S % SE——

Isn't it too restrictive?

e Absence of memory is rare!

e But superpositions of exponential phases can
approximate arbitrary distributions, still
within the CTMC framework

1
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

0
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
0,9
0,8
0,7
0,6
0,5
0,4
0.3
0,2
0,1

0

Yet, a more general model is needed

e Main limitation of CTMCs: transitions carry no
other information than rates (i.e., real numbers)

e This is sufficient for performance evaluation

e But this is not enough for
- compositional modelling
- functional verification

/i

Why combining functional verification
and performance evaluation?

e Reason #1: Scientific challenge
- both fields are related
- similar models: state machines, Markov chains

- similar description languages:
= (stochastic) Petri Nets
= (stochastic) process algebras

- same issues: state explosion, compositionality
e Reason #2: Economy

/i

Current situation

“real”
system

verification

performance evaluation

10

Better situation

common | model

functional/pe

aspec

verification performance evaluation

/i

11

1.

2.

This would require...

A common modelling language

=> process algebras (>> Petri Nets)
=> LOTOS (international standard)

A common semantical framework

=> |[nteractive Markov Chains (IMCs)

. Efficient software tools

=> CADP toolbox
/i

12

LOTOS (ISO standard 8807)

e Language Of Temporal Ordering Specification
e A formal modelling language for asynchronous systems

e Two orthogonal sub-languages:
Data part: abstract data types (ActOne)
- Constructors and non-constructor operations
- Equations and pattern-matching
Behaviour part: process algebra (CCS, CSP, Circal)
- Concurrent processes (interleaving semantics)
- Message-passing communication (rendezvous)

http://www.inrialpes.fr/vasy/cadp/tutorial

/i |

Interactive Markov Chains (IMCs)

e Defined in H. Hermanns' PhD thesis
(LNCS 2428) I

e [t adds stochastic features to _ Markos Chain
process algebra, still providing:
- sufficient stochastic expressivity
- compatibility with process algebra theory
- useful compositionality results

It is not only Hermanns' answer, but really the' answer
E. Brinksma, U. Herzog

/i |

Interactive Markov Chains

An orthogonal extension of
- Labelled Transition Systems (LTS)
- Continuous Time Markov Chains (CTMC)

=

7.89

| cT™C | | IMC |
labels = typed data labels = real numbers both types of labels
(messages exchanged))\, M,V

/i L —

Remainder of the talk

e Motivations

e Tool support for IMCs within CADP

e CADP tools for generating Markov models
e CADP tools for reducing Markov models

e CADP tools for solving Markov models

e Application 1: the Hubble space telescope
» Application 2: the SCSI-2 bus arbiter

» Conclusion

_ /i . —

Tool support for IMCs within CADP

17

What is CADP?

* "One of the leading verification toolboxes in academia”
H. Hermanns

e "Among the most popular non-US originating verification
tools”
R. Cleaveland, D. Pilaud, B. Steffen (May 2003)

e A few figures:
- license agreement signed by >300 institutions
- since Jan 15t2003: CADP installed on > 730 machines
- 72 published case-studies with CADP
- 13 software tools connected to CADP

—_ /i L —

The CADP toolbox

e LOTOS compilers (Caesar and Caesar.adt)
e Simulation, rapid prototyping, test generation, etc.
e Explicit state verification:
- equivalence checking (bisimulation)
- model checking (modal mu-calculus)
- visual checking
e Generic software components (BCG, Open/Caesar)

e Advanced verification techniques:
- on the fly (boolean equation systems)
- compositional
- massively parallel
e Graphical user interface + scripting language (SVL)

/i |

A pragmatic approach for IMCs

Reuse existing CADP tools as much as possible

Decision 1: reuse the LOTOS compilers without
modification

Decision 2: reuse the BCG format of CADP as the
unique format for

- Labelled Transition Systems

- Discrete Time Markov Chains

- Continuous Time Markov Chains
- Interactive Markov Chains

- mixed models

/i L —

Markov models in BCG

e 5 possible types of transition labels

- ordinary "SEND 121 !true”
- probabilistic " "
- stochastic “rate 3.14"

- mixed probabilistic "SEND !21 !true ;

- mixed stochastic "SEND 121 !true ; rate 3.14

e also: timed labels (a different story)
- timed: "wait 10.2"

- mixed timed: "SEND !21 !true ; wait 10.2"

/i

21

CADP tools for performance evaluation

REDUCTION
BCG_MIN

GENERATION Determinator

CAESAR I ‘%!

CAESAR.ADT ‘

LOTOS

A

BCG_LABELS

[memmxi

MODEL CHECKERS

22

CADP tools for generating
Markov models

23

(Interactive) Markov Chains in LOTOS

« How to generate an extended BCG from LOTOQOS?
=

How to introduce rates in LOTOS descriptions?
« Two complementary approaches:

e Direct insertion
e Compositional insertion

/i

24

Direct insertion

e Two types of ‘actions’ (gates) in the specification
— standard actions: SEND, RECV...
— Markov gates: LAMBDA, MU, NU...

e Insert Markov gates in the LOTOS specification
where Markov delays occur

o User-defined (and user-maintained) separation
between both types of gates

e No synchronization allowed on Markov gates

/i | —

Inserting Markov gates

process DISK [ARB, CMD, REC(:::)(N:NUH, L:NAT, READY:BOOL) :noexit :=
CMD !N;
DISK [ARB, CMD, REC, MU] (N, L+1, READY)
[]
ARB ?W:WIRE [not (READY) and C_PASS (W, N)I1;
DISK [ARB, CMD, REC, MU] (N, L, READY)
it
[not (READY) and (L > 0)] ->
(* Markov delay inserted here *)
DISK [ARB, CMD, REC, MU] (N, L-1, true)
[]
ARB 7?W:WIRE [READY and C_LOSS (W, N)];
DISK [ARB, CMD, REC, MU] (N, L, READY)

[]
ARB ?W:WIRE [READY and C_WIN (W, N)];
REC !N;
DISK [ARB, CMD, REC, MU] (N, L, false)
endproc

S % S

Direct insertion: Tool trajectory

LOTOS specification
with Markov gates
LAMBDA, MU, NU...

T

CAESAR and CAESAR.ADT

v

CG graph (LTS) with
LAMBDA, MU, NU...

v

BCG_LABELS
(generalized renaming)

|(_

v

BCG graph with
rate/prob data

—_ /i

rename

LAMBDA -> rate 1.2

MU -> rate 2.3
NU -> rate 4.0

7

27

Direct insertion: A potential risk

e Inserting Markov delays requires knowledge
(at least, educated guesses) about:

- the right place to introduce Markov delays
- their numerical values

e Introducing Markov gates may corrupt the
original functional behaviour!

A B A A
/\ :> /Q\ PROBABLY WRONG!
O O O N‘O

—_ /i -

Direct insertion: Proof obligation

e either show that modified specification is branching
equivalent to original one, if Markov delays are
considered as internal (1) steps

29

Compositional insertion (1)

 Alternative approach to direct insertion

o Identify visible actions that
- are to be delayed, or
- initialize a delay, or
- may interrupt a delay

e Use the LOTOS ‘constraint-oriented’ style to
insert Markov delays between these actions

—_ /i |

Compositional insertion (2)

e No proof obligation is needed (proven by
Holger Hermanns)

e Another example later (SCSI-2 bus arbiter)

—_ /i L

Compositional insertion (3)

e An important constraint must be enforced:
synchronization is not allowed on Markov rates

e Why?
e LOTOS semantics :
‘rate A" || "rate A" = "rate A"
e« Markov semantics :
"rate A" | | "rate A" = "rate 2*\"

e Solution: use different gate names (LAMBDA,
MU, NU...) to avoid unwanted synchronizations

/i L —

CADP tools for reducing
Markov models

33

The BCG MIN tool

BCG_MIN: an efficient (property preserving) minimization tool
Inputs:
- BCG graph and its type (LTS, IMC, DTMC, CTMC...)
- chosen equivalence for minimization
Output:
- minimized BCG graph
For standard LTS:
- implements strong bisimulation and branching bisimulation
- truly better than Aldebaran and fc2Zmin
- up to 8 million states, 43 million transitions
For probabilistic/stochastic LTS:
- implement strong and "branching' bisimulation minimization
- lumpability
- might translate an IMC into a MC by removing (some) nondeterminism

BCG_MIN
rate 1.3 rate 2.1 —— rate 3.4

—_ /i L —

The DETERMINATOR tool

e Role:

- On-the-fly generation of a MC starting from either a high level
description (e.g., LOTOS) or a low level model (BCG graph)

- applies local transformations to remove nondeterminism partially
- implements a determinacy check (“well specified” stochastic process)
- algorithm from [Ciardo-Zijal-96] [Deavours-Sanders-99]

e Input:
- on the fly graph (IMC, DTMC, CTMC...)
- based on CADP's Open/Caesar language-independent technology

e OQutput:
- BCG graph (possibly, same as input graph)

« DETERMINATOR before BCG_MIN => significant time savings

/i - —

CADP tools for solving
Markov models

36

The BCG STEADY tool

e Numerical solver for Markov chains
e Steady state analysis (equilibrium)
e Inputs:
- BCG graph with "action; rate r" labels
- no deadlock allowed
o Outputs:
- numerical data usable by Excel, Gnuplot...
e Method:

- BCG graph converted into a sparse matrix
- computation of a probabilistic vector solution
- jterative algorithm using Gauss-Seidel [Stewart94]

(k+1) — _ (k+1) (k)
1T, = (Z mya; Z mra;

Aii \ Jj<i j>i

—_ /i

37

The BCG TRANSIENT tool

e Numerical solver for Markov chains
e Transient analysis
e |Inputs:
- BCG graph with "action; rate r" labels
- deadlocks permitted
- list of time instants
e QOutputs:
- numerical data usable by Excel, Gnuplot...

e Method:
- BCG graph converted into a sparse matrix
- uniformisation method to compute Poisson probabilities
- Fox-Glynn algorithm [Stewart94]

(1) = Y ¢ (Atsm)) +[Zgw(ﬁt;n)jﬁ(kss) with @(A0)=e™
) o and l,U(/]t;n+1):w(/]t;n)i,nDN
n+l

—_ /i |

Application 1: The Hubble telescope

39

The 'Hubble Space Telescope’

A simple Markov model for the Hubble

e The Huble telescope has 6 gyroscopes
e As time passes, gyros may fail

e The average lifetime of gyros is 10 years (= 120 months)
A =12 months / 120 = 0.1

e Hubble falls into sleep if only two gyros are left

e Turning on sleep mode requires to halt all equipments,
which takes about 3.6 days (= 0.12 month)
=12 months / 0.12 = 100

« When in sleep mode, a shuttle mission must be sent
to repair/reset Hubble, which takes about 2 months
v=12months / 2 =6

e Without operational gyro, Hubble crashes

/i |

Compositional modelling of the Hubble

GYRO LAMBDA
FAIL FAIL
CONTROLLER o
NU

system reset |

process HUBBLE [LAMBDA, MU, NU] : noexit :=
hide FAIL in

(

(
GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL] | | | GYRO [LAMBDA, FAIL] || |

GYRO [LAMBDA, FAIL] | | | GYRO [LAMBDA, FAIL] | | | GYRO [LAMBDA, FAIL]

)
|[FAIL]|

CONTROLLER [FAIL, MU, NU] (6, false)
>> (* system reset *)
HUBBLE [LAMBDA, MU, NU]

)

endproc

—_ /i |

The GYRO process

exit (~system reset)

LAMBDA

FAIL

process GYRO [LAMBDA, FAIL] : exit :=
(LAMBDA; FAIL; stop) [> exit
endproc

/i

43

The CONTROLLER process

process CONTROLLER [FAIL, MU, NU] (C : Nat, SLEEP : Bool) : exit :=
FAIL; (* Ah, a gyro failed. Let's count down. *)
CONTROLLER [FAIL, MU, NU] (C - 1, SLEEP)
[]
[(C < 3) and not (SLEEP)] ->
MU; (* Hubble starts tumbling. Time to turn on the sleep mode. *)
CONTROLLER [FAIL, MU, NU] (C, true)
[]
[SLEEP] ->
NU; (* Sleep mode is on. Waiting for the space mission to reset Hubble. *)
exit
[]
[C=0]->
i; (* No gyros left. Crash! *)
stop
endproc

44

Analysis trajectory for the Hubble

LOTOS specification
with Markov gates
LAMBDA, MU, NU
\2

CAESAR and CAESAR.ADT

v

BCG graph (LTS) with
LAMBDA, MU, NU

rename V

"LAMBDA" -> "fail; rate 0.1" BCG_LABELS
"MU"->"suspend; rate 100" (generalized renaming)

"NU"->"repair; rate 6" Vo

BCG graph (IMC)
with rates and "i"
transitions

50 lines

877 states
3341 trans.

877 states
3341 trans.

45

... Analysis trajectory for the Hubble
¥
BCG_MIN (stochastic
strong mim’mization)

BCG graph IMC) with _ 38 states
rate and "' tranSItlons 67 trans.
BCG_MIN (stochastic
branching mim’mization)
9 states
12 trans.

BCG graph CTMC =
with labels
BCG_TRANSIENT numerical data
(transient analysis) (probabilities)

Excel, gnuplot

— /i e

Minimized IMCs for the Hubble

e CB\‘ B i
‘}-. et

rate 0 suspend ; rale

epair]rate; 5. 000000 fatofer A0 suspend; rate

fail; rate-B-200000
0o.oo00o00

suspend ; rake

susfend; rate 100000000

fail; rate-87200000
ail; rate f1.300000 T fail: rate 7200000 i Fail; rate-£77 0OOO0
e e e rate 0.400000
rate 6200000
fail; rate-8300000 T fail; ratgb i fail; rate £1.100000
@ (=) (=) st ¢ fococo
fail; rate P.400000 + fail; rate P.300000 fail; rate 11200000

rate 0600000

fail; rate-tid fail; rate 300000

. 400000

fail: rate

fail: rate: .500G00

fail; ram-8.600000 e

after stochastic strong minimization after stochastic branching minimization
(38 states, 67 transitions) (9 states, 12 transitions)

—_— /i | —

Visual verification of the final CTMC

SVL script for the Hubble

(* generate the LTS *)
“lts.bcg” = generation of "hubble.lotos";

(* turn the LTS into an IMC *)

"imc.bcg” = total rename
"NU" -> "repair; rate 6", (* to prepare a shuttle mission, for reset takes 1/2 a year *)
"MU" -> "suspend; rate 100", (* to suspend the scientific, progtam takes 1/100 of a year *)
"LAMBDA" -> "fail; rate 0.1" (* the average lifetime of a gyroscope is 10 years *)

in "lts.bcg”;

(* turn the IMC into an CTMC *¥)
“ctmc.bcg” = branching stochastic reduction with bcg_min of “imc.bcg";

(* look for internal transitions: if absent, "ctmc.bcg” is a Markov chain *)
% bcg_info -hidden "ctmc.bcg”

(* analyse for various time points measured in years *)
% bcg_transient -thr hubble.thr “ctmc.bcg” .01 .11 10 100 1e3 1e4 1e5 1eb

S % S

Analysis of the Hubble using BCG_TRANSIENT

time "repair” "fail" "suspend”
0.01 1.52E-11 0.5994 1.24E-09
0.1 5.45E-07 0.59403 4.34E-06
1| 0.00248872 0.543138 | 0.00373419
10 0.105761 0.414947 0.105725
100 0.102729 0.414615 0.102786
1.00E+03 0.0974923 0.393478 0.097546
1.00E+04 0.0577739 0.233175 0.0578058
1.00E+05 | 0.00031195 | 0.00125902 | 0.00031212
1.00E+06 6.03E-27 2.43E-26 6.04E-27

|

Throughput

1,20E-01
1.00E-01
d.00E-02
6,00E-02
4,00E-02
2.00E-02
0,00E+00

hubble suspend

—+— "suspend”

O P B

N R L I < A
& F
BRSO RS A

Time (year)

Application 2: The SCSI-2 bus arbiter

51

Case study

SCSI-2: Small Computer System Interface

e brought to our attention by Massimo Zendri
(Bull SA, ltaly)

e designed to provide fast access to multiple
storage devices, via a shared bus

e Up to 7 devices (disks) and 1 controller
o under study: SCSI-2 bus arbitration protocol

e ‘starvation problem’ discovered by Bull
engineers

—_ /i =

The SCSI-2 architecture

—{ Controller

S—

[m}m@‘um
F}I}ﬂﬂ!}é‘lllll
P}ﬂﬂ(}l}é‘lllll

SCSI-2 bus usage

o Controller

handles (OS level) requests

passes read/write requests to
the desighated disk (CMD)

passes results back to the OS
(REC)

- provides flow control to prevent Controller
disk flooding,
o Disks CMD , — CMD
- process incoming CMDs, REC — REC

- send back results by REC,

o Disks and Controller share the
bus, but mutually exclusive bus
access is granted by a
distributed bus arbitration
mechanism.

=5
1
/i

SCSI 2 bus arbitration

e Prioritized, based on
static IDs on bus

e Realized through a —
mesh of dedicated —_ Controller
wires _ _
CMD 7~ - I - - l//"}jﬂ[i’\é\g
, R L] ! TSI rec
e Any bus access is IAVZATLY, AT

preceded by a scan
ensuring that no
higher priority device

. | Disk_
requires the bus %
/i

[mm}wgguu L
‘ P}I}ﬂﬂ&é‘llll

55

Starvation and how it was fixed

e The Bull engineers observed ‘starvation’ of
applications for some specific configurations,
depending on the position of the controller on the bus

e They observed that this problem was absent
if the controller was in the highest position,
and the OS was put on the lowest priority disk

e Model checking with CADP revealed the starvation
problem and its cause: a livelock preventing lower
priority disks to get the bus [Garavel & Mateescu]

e (Problem solved in SCSI-3 standard)

—_ /i L —

Specifying the SCSI-2 in LOTOS

e Capturing the SCSI-2 bus arbitration priority
mechanism (distributed, virtually synchronous)
is nontrivial

e Only process algebras with n-party rendezvous
(LOTOS, CSP) can do it properly

e Languages with only binary communication =>
combinatorial explosion

_ /i L —

Specifying the SCSI-2 in LOTOS

e Use of a key LOTOS feature: value negotiation
« W: a tuple of 8 booleans (wires)
e Each process i states its own constraints:
-C_PASS (i) : Wi=0
- C_WIN (i) : Wi = 1and no j>i such that Wj = 1
- C_LOSS (i) : Wi = 1 and exists j>i such that Wj = 1

 Parallel composition of 8 processes =>
Intersection of the 8 corresponding constraints

(For details, see Garavel-Hermanns paper at FME'02)

—_ /i =

Parallel composition of 7 disks
and 1 controller

(

DISK [ARB, CMD, REC, MU] (0, 0, false)
st~ | [ARB] |
DISK [ARB, CMD, REC, MU] (1, 0, false)
8-party ‘S® | [ARB] |
rendezvous e
st | [ARB] |

DISK [ARB, CMD, REC, MU] (6, 0, false)

)

S | [ARB, CMD, REC]|

CONTROLLER [ARB, CMD, REC, LAMBDA] (7, 7, ZERO)

S % —

—_ /i L —

The DISK process

process DISK [ARB, CMD, REC, MU] (N:NUM, L:NAT, READY:BOOL) :noexit :

CMD !N;

DISK [ARB, CMD, REC, MU] (N, L+1, READY)
L]
ARB 7W:WIRE [not (READY) and C_PASS (W, N)];
¢E [ARB, CMD, REC, o], (§BT. READY)

@C" xcne’

[not (REA%% > 0)] ->

MU (* uarkﬁv delay inserted here ¥)

DISK LARB, CMD, REC, MU] (N, L-1, true)

L]
ARB 7W:WIRE [READY and C_LOSS (W, N)I;

DISK [ARB, CMD, REC, MU] (N, L, READY)

[]
ARB ?W:WIRE [READY and C_WIN (W, N)I1;
REC !'N;
DISK [ARB, CMD, REC, MU] (N, L, false)
endproc

Direct insertion of Markov delays

Two Markov delays are inserted directly:

e \: load (i.e., stress) of the controller
o U: disk servicing time

<«

\\ é — Corrrtoller

CMD & ¢— CMD
ARB - ARB
REC — T T 7 REC

4

ﬂﬂ?ﬁ\ﬁ‘nn
-

61

The CONTROLLER process with a Markov delay

process CONTROLLER [ARB, CMD, REC,LAMBDA]) (NC:NUM, PENDING:NUM,
T:TABLE) : noexit :=
ARB 7W:WIRE [(PENDING == NC) and C_PASS (W, NC)];
CONTROLLER [ARB, CMD, REC, LAMBDA] (NC, PENDING, T)
[]
(
choice N:NUM T[]
[(PENDING == NC) and (N <> NC)] ->
[VAL
LAMBDA

'N;

)

L]
ARB 7W:WIRE [(PENDING <> NC) and C_LDSS (W, HNC)];

CONTROLLER [ARB, CMD, REC, LAMBDA] (NC, PENDING, T)

[]
ARB 7W:WIRE [(PENDING <> NC) and C_WIN (W, NC)I;
CMD !PENDING:
CONTROLLER [ARB, CMD, REC, LAMBDA] (NC, NC, INCR (T, PENDING))
L]

REC 7N:NUM [N <> NCI;
CONTROLLER [ARB, CMD, REC, LAMBDA] (NC, PENDING, DECR (T, N))
endproc

_ /i L —

The DISK process with a Markov delay

process DISK [ARB, CMD, REC@(N:NUH, L:NAT, READY:BOOL) :noexit :=
CMD !N;
DISK [ARB, CMD, REC, MU] (N, L+1, READY)
[]
ARB 7W:WIRE [not (READY) and C_PASS (W, N)J];
DISK [ARB, CMD, REC, MU] (N, L, READY)
i)
[not (READY) and (L > 0)] ->
(* Markov delay inserted here *)
DISK [ARB, CMD, REC, MU] (N, L-1, true)
[]
ARB 7?W:WIRE [READY and C_L0OSS (W, N)];
DISK [ARB, CMD, REC, MU] (N, L, READY)

(]
ARB 7W:WIRE [READY and C_WIN (W, N)];
REC !N;
DISK [ARB, CMD, REC, MU] (N, L, false)
endproc

S % —

Compositional insertion of Markov delays

e bus delay v : to be inserted between any two
consecutive bus arbitrations ARB

process BUS [ARB, NU]:noexit := : Controller
ARB; NU; BUS [ARB, NU] <§f
endproc |

cmD | . . CMD

ARB ARB _ ARB

CQ)(' REC _] _ REC
%

process BUS_5 [ARB, NU]:noexit :=
ARB; NU; NU; NU; NU; NU; BUS_5 [ARB, NU]
endproc

'\

P]{}I]ﬂ{}é‘llll

ARB

E——0——O——0—0—Oe
—_— /i

Wﬂﬂﬂ{}@‘uu
[m}um@‘uu

SVL script for the SCSI-2

"model_1.bcg" = branching reduction of
total rename "ARB !.*" -> ARB in
hide CMD, REC in
"SCSl.lotos" ;
"model_2.bcg" = generation of
hide all but LAMBDA, MU, NU in
("model_1.bcg" |[ARB]| "erlang.lotos":BUS1 [ARB, NU]) ;
% DISK_SPEED=400
% for BUS_SPEED in 400 4000 40000 (* from 2.5 ms down to 250 ps *)
% do
% for LOAD in 10 25 50 100 200 400 800 1600 (* from 100 ms down to 625 ps *)
% do
"model_3.bcg" = branching stochastic reduction of
total rename
"NU" -> "BUS; rate SBUS_SPEED",
"MU !SDISK_L" -> "DISK_L; rate SDISK_SPEED",
"MU !SDISK_M" -> "DISK_M; rate SDISK_SPEED",
"MU !SDISK_H" -> "DISK_H; rate SDISK_SPEED",
"LAMBDA !.*" -> "rate SLOAD"
in "model_2.bcg" ;
% bcg_steady -thr -append "SBUS_SPEED.thr" "model_3.bcg" LOAD=SLOAD
% done
% done

— 7l

65

Influence of the controller position

high priority disk low priority disk
throughput

150,00 |- ~

|
=
=
=i
—

140.00 - 7
12000 e
120.00 |- CeﬂTrofler@ B:HH@B:H - g
110.00 ’ - N
100.00 s - |
90.00 + B]
80,00 |-

TO.00 -

- Controller@ |OW -

&0.00 -

50,00 -

A0.00 -

30.00 -

20,00 -

10.00 -

i Con‘rr'oller@ Bﬂﬂ@ﬂﬂ_

.00 - ~ -

1 | | 1 | | I | | | | | lambra
0.00 106,00 200,00 300.00 400.00 500,00 600 000 100,00 200,00 300,00 00,00 00,00 &0, 00 TO0.00

Summary and findings

e The SCSI-2 was analyzed both for functional
and performance aspects

e The ‘Bull fix’ (putting the OS on the lowest
disk and put the controller in highest priority
position) is explained

e Performance study suggests a better solution:
put the controller in lowest priority position

—_ /i o

Conclusion

68

Conclusion
e Three scientific goals:
- Combine functional verification and performance evaluation

- Broaden the CADP toolkit to performance analysis
- Tackle large models compositionally

e A pragmatic approach:
- use LOTOS "as is” (no syntax extension)

- reuse many existing CADP tools (caesar, bcg_labels, SVL)
- new tools: bcg_min, determinator, bcg_steady, bcg_transient
e Part of next version of CADP

http://www. inrial pes.fr/vasy/cadp

e Future work

- direct analysis of IMC
- model checking of Markov chains

/i =

[CZ96] G. Ciardo et R. Zijal. Well-defined stochastic Petri nets. MASCOTS’96

[DS99] D.D. Deavours et W.H. Sanders. An efficient well-specified check. PNPM’99

L_GHOZ] H. Garavel et H. Hermanns. On Combining Functional Verification and Performance
valuation using CADP. FME’02

GLO1] H. Garavel et F. Lang. SVL: A Scripting Language for Compositional Verification.
LORTI!/PSTV’O1 s pting guage P f

[Her98] H. Hermanns. Interactive Markov Chains and the Quest for Quantified Quality.

EE%);]OI{I Hermanns. Construction and Verification of Performance and Reliability Models.

EHJO3] H. Hermanns et C. Joubert. A Set of Performance and Dependability Analysis
omponents for CADP. TACAS’03

[Kun86] K.S. Kundert. Sparse Matrix Techniques. CASD’86

[Ste94] W.J. Stewart. Introduction to the numerical solution of Markov chains.

/i L

More information?

http://www.inrialpes.fr/vasy

http://depend.cs.uni-sb.de/

/i

71

