
Compi ation and Verification
of LOTOS Specifications

Hubert Garavel

Centre d'Ett1des Rhone-Alpes
VERILOG

Grenoble, France

Joseph Sifakis

Laboratoire de Genie Informatique
Institut I.M.A.G.
Grenoble, France

Motivation

Verification: comparison of a LOTOS program against requirements.

Two approaches:

• theorem proving: (Boyer-Moore, LcF, ...)

• model checking:

-step 1: translation LOTOS --7 finite state model (graph)

- step 2: verification of requirements on the model

translation

graph

decision method decision method

yes/no yes/no

1

Theorem Proving vs. Model Checking 2

II theorem proving I model checking I
analysis level source-level graph-level

symbolic evaluation yes no
full automation no yes

generality yes no
efficiency no yes

Model checking is less general but more efficient

c· { a requirement R
Iven a LOTOS specification represented by a graph G

theorem proving model checking

R undecidable theoretically impossible theoretically impossible
R decidable theoretically possible

theoretically impossible
G infinite practically not efficient

[R decidable]
theoretically possible

G finite practically impossible
practically not efficient IGI > 106- 107 states

[R decidable]
theoretically possible

G finite possible and efficient
practically not efficient IGI < 106- 107 states

Compilation vs. Interpretation 3

• verification by model checking

• problem: efficient translation LOTOS ---+ graph

• two solutions:

-interpretation scheme (LOTOS simulators)
direct implementation of LoTOS dynamic semantics rules

-compilation scheme (CJESAR)

implementation of an Extended Petri Net semantics

interpretation scheme CJESAR compilation scheme

direct translation stepwise translation
LOTOS ---+ graph LOTOS ---+ ••• ---+ ••• ---+ graph

no intermediate form
two intermediate forms:

SuBLOTOS and networks
only a run-time phase compile-time and run-time phases

computations performed computations performed
several times, at each step only once, _at compile-time

states == LOTOS terms states == compact bit strings
====? high cost in memory (position of control + values of variables)

transitions ~ term rewriting transitions ~ Petri Net rules
====? high cost in time (use of a static control skeleton)

CJESAR: Principles ·of Functioning 4

..

analysis

.
expansion

compile-time

generation

network optimisation

..

simulation run-time

..

graph

Static Control Const,raints

Restriction to a subset of LOTOS

• recursion is not allowed on the left or right side of " I [...] I "
process P [...]

Ill P [... J
endproc

• recursion is not allo-vved on the left side of "> >" or "[>"

Also:

• process instantiation -vvith identical gate parameters:

P [... , G, ... , G, ...] (...)

is handled differently than in the ISO semantics of LOTOS

• abstract data types must be implemented by concrete types

Reasons

In this subset of LOTOS:

• all specifications have a finite state control skeleton

• expressiveness is still sufficient for protocols

A good solution to the expressivenes·s vs. efficiency problem.

5

Expansion: from Lotos to SubLotos 6

SuB LOTOS= subset of LOTOS obtained by syntactic transformations

• elimination of LOTOS "macroi'-operators: >>,exit, choice, par

hide 8 in
(8 IV. stop

exit (V) >> accept X:S B . ' lll
I [8] I
8 ?X:S; B)

choice G ln [G1, G2] [] p [G] p [G1] [] p [G2]

par G lll [G1, G2] I I i p [G] p [G1] I I I p [G2]

• recursion development to have "constanti' gates

process P [G1, G2]
G1; P [G2, G1]

endproc

process P [G1, G2] ...
G1; G2; P [G1, G2]

endproc

• renaming of gates, variables and processes

Static control constraints ===:::? SuBLOTOS is an imperative language.

I LOTOS

dynamic architecture
• dynamic creation/ deletion of processes

. • dynan1ic creation/ deletion of gates
• dynamic creation/ deletion of variables
• gates -vvith "variable" value

functional features
• dynamic constants
• single assignment
• local scope

I SuBLOTOS (and net-vvorks)

static architecture
• static set of processes
• static set of gates
• static set of variables
• gates with "constant" value

imperative features
• static variables
• multiple assignment
• global scope

The Network Model
The Control Part

• a set of places

• a set of transitions, with the following attributes

- a set of input places

- a set of output places

- a gate (visible, "1", or "c")

- a list of offers (" ! V" or "?X : S")

7

• a hierarchical refinement into units (seqt1ential behaviors)
r---,

1-------------.J 1-------------.J

I
I
I
I
I
I

1-------------.J
1--.J

The Data Part
• a set of variables

• actions attached to transitions:

-assignments: X :==X+ 1

-conditions: when X> 0

-iterations: for X among BOOL

The Network Model

Operational semantics

• translation network ----7 graph

• state = (marking, context)

- marking == set of n1arked places (control part)

- context == values of variables (data part)

• transition relation: state1 gat~ffers state2

- -vvrt to markings: Petri Net rules

- wrt to contexts: execution of the action

Example:

G !X
when X <10; Y: X+l

({Qb ... Qm}, {X= O, Y = 0}) QJ9 ({Q~, ... Q~}, {X= 0, Y = 1})

8

The Network Model

E- transitions
• representation of instantaneous silent events

• compositional construction of the network

• semantics:

{
closure algorithm (rv automata theory)
+ atomicity rule

Example:

A; stop [] (B ; stop I I I C; stop)

A

c

9

Generation: frolll SubLotos to Network 10

stop

[VQ] -> Bo

let Xo : So= Va in Bo

G 0 l···On
when Vo

E

when Vo

E

Xo:=Vo

Generation: frolll SubLotos to Network 11

choice X 0 :So [] Bo

hide Go, ... Gn in Bo

p [...] (V)

where
process P [...] (X: 5)

Bo
endproc

L------------.J

£

X:=V

£

for Xo among So

L.-------------' +merging

Generation: from SubLotos to Network 12

Parallel composition: rules for transition merging

• value matching: 0 1 == ! 1li and 0 2 == ! V2

• value passing: 01 == ? XI: sl and 02 == ! V2

Optimization: Reductions of Networks 13

Reducing networks improves the efficiency of the simulation phase.

A set of optimizing transformations:

• based on static analysis techniques

• preserving strong equivalence

• fast and effective

Optimization of the control part
• based on (local) Petri Net analysis techniques

- removing non reacl1able places/transitions

-removing non productive places/transitions

- removing places Q' such that (:3Q) Q marked ¢:::::? Q' marked

-eliminating many £-transitions

Optimization of the data part
• based on (global) data-flow analysis techniques

- removi11g variables never used

-removing assignments of the form X :==X

- removing variables X' such that (:3X) X == X'

- discovering variables vvith constant values

- evaluating constant boolean guards

Simulation: from Network to Graph 14

• breadtl1-first graph exploration (rv marking grapl1 construction)

- all encou11tered states are stored in a table

- all edges are written on a file

• LOTOS abstract data types are implemented by C concrete types

• three successive steps:

1. construction of a C program (simulator)

2. compilation of this progra1n

3. exec11tion of this program

network

simulator construction

compilation

execution

graph

Conclusion

A new approach for compiling and verifying LOTOS

Initial goal: verification by 1nodel checking of LOTOS specifications.

Derived goal: efficient translation of LOTOS progra1ns into graphs.

Tl1e proposed co1npilation 1nethod:

• accepts a large subset of LOTOS

• uses Petri Nets (extended with data) as an intermediate form

• could be easily adapted for:

- interactive simulation

- test generation

- seqtlential code generation

A tool for LOTOS: CJESAR

• full i111ple1nentation of tl1e translation method
(25 000 lines of C code, SYNTAX compiler-generator)

• graphs tlp to 800 000 states and 3 500 000 edges

• 40-540 states per second (on a SUN4 with 8 l\!Ibytes)

15

• connectio11 with 7 verification tools: ALDEBARAN. PIPN. AUTO
I I

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

