
1

Parallel State Space Construction
for Model-Checking

Hubert Garavel, Radu Mateescu, Irina Smarandache
INRIA Rhône-Alpes / VASY
655, avenue de l’Europe

F-38330 Montbonnot Saint Martin

May 20, 2001

2

Motivations
• Industrial collaborations at INRIA/VASY

– Cache coherency protocols (Bull)
– Embedded applications on smart cards (CP8)
– Mobile Java agents (MGE-UPS)

• Type of problems
– Asynchronous, message-passing systems
– Complex data types

• Approach
– Use of process algebras: LOTOS, E-LOTOS
– Explicit-state space methods

3

Motivations
• Model-checking : memory is the bottleneck
• a) Use more clever methods

– compositional, partial orders, symmetries

• b) Use more powerful machines
– "standard" PC : 1 GB RAM (2 GB max)
– "power" machine (mainframe, SMP, CC-NUMA)

=> very expensive
– many small machines:

networks of workstations (NOW)
clusters of PC
meta-computing

4

Related work
• Low-level models (a lot)

– Petri nets
– stochastic Petri nets
– discrete-time Markov chains
– continuous-time Markov chains

• Higher-level languages (very few)

– Murphi (1)
– SPIN (1)

5

Definitions

• LTS (Labelled Transition System)
– S: set of states

– s0: initial state
– A: set of actions
– T: transition relation

• Explicit LTS: entirely generated

• Implicit LTS: generated on demand ("on the fly")

6

The CADP toolbox
• Compilers for LOTOS: CAESAR, CAESAR.ADT

• Language-independent tools:
– Simulators: OCIS, Xsimulator
– Model-checkers: Evaluator, XTL
– Bisimulation tools: Aldebaran, BCG_MIN (+ Fc2)
– Test generator: TGV

• Cross-tool functionalities:
– Explicit LTSs : BCG
– Implicit LTSs (on the fly): Open/Caesar
– Compositional verification: SVL
– Unified graphical-user interface: EUCALYPTUS

7

Open/Caesar

Open/Caesar API

LTS generation

simulation
on the fly verification

language-dependent
compilers

test generation (TGV)
test execution (TorX)

LOTOS
LTS in BCG format
communicating LTSs

(untimed) KRONOS

UML/RT (UMLAUT)
SDL (IF)

language-independent
tools

8

Goal of our work

Develop an Open/Caesar software component
for parallel state space construction, which can
be used for several languages.

caesar.open prog.lotos distributor M1 M2 M3 …
uml.open prog.uml distributor M1 M2 M3 …
if.open prog.if distributor M1 M2 M3 ...

9

Tool architecture
source program

compiler

Open/Caesar API

...

BCG #0 BCG #1 BCG #2 BCG #N-1

BCG_MERGE

...

complete BCG

DISTRIBUTOR
@machine 0

DISTRIBUTOR
@machine 1

DISTRIBUTOR
@machine 2

DISTRIBUTOR
@mach. N-1

10

Phase 1 : DISTRIBUTOR

Open/Caesar API

...

BCG #0 BCG #1 BCG #2 BCG #N-1...

DISTRIBUTOR
@machine 0

DISTRIBUTOR
@machine 1

DISTRIBUTOR
@machine 2

DISTRIBUTOR
@mach. N-1

partitioned LTS = (collection of BCG files) + global initial state

11

Distributed algorithm (1)
• N machines numbered 0 … N-1
• Static partition function h : S -> [0 ... N-1]
• Each machine computes/stores an LTS fragment:

– Si = { s in S | h (s) = i }
stored in the local memory (Open/Caesar state table)
globally unique numbers: s in Si <=> n (s) mod N = i

– Ti = { (s, a, s') in T | h (s') = i }
stored on the local disk (BCG file)

– Ai = { a in A | exists (s, a, s') in Ti }
In fact Si = { s in S | h (s) = i or exists (s, a, s') in Ti }

12

Distributed algorithm (2)

• Each machine M[i] receives triples of the form
(n: number, a: action, s: state vector)

such that h (s) = i

• M[i] inserts s in its local state table and gives
to s a unique number n (s)

• M[i] computes the successors (s, a', s') of s

• If h (s') = i then s' is stored locally
else (n (s), a', s') is sent to M[h(s')]

13

Termination detection
• Global termination <=>

all local computations are finished and
all communication channels are empty

• (Virtual) unidirectional ring between
machines

• Principles:
– the initiator machine checks for termination

everytime it finishes its local computations
– termination occurs when the total numbers of

sent and received messages are equal

14

Implementation
• Low-level communication primitives:

– TCP/IP sockets (MPI not necessary)
– Non-blocking SEND and RECEIVE primitives
– Deployment using rsh/rcp

• Several architectures supported:
– Debugging : 3 Sun workstations on Ethernet LAN
– Performance measurements : cluster of 10 Linux

PCs (450 MHz, 512 MB RAM) connected by SCI
(Scalable Coherent Interface)

15

Communication buffers
Buffering messages improves performance
=> use as much buffering as possible

machine

physical buffer

...

...

...

...

logical buffers

machine

machine

machine

16

Phase 2: BCG_MERGE

...

BCG #0 BCG #1 BCG #2 BCG #N-1

BCG_MERGE

...

complete BCG

DISTRIBUTOR
@machine 0

DISTRIBUTOR
@machine 1

DISTRIBUTOR
@machine 2

DISTRIBUTOR
@mach. N-1

Effect : merging a
partitioned LTS into
a single LTS

17

Principles of BCG_MERGE
• Each fragment of a partionned LTS:

– is not a connected graph
– has sparse state numbers

0
3
6

1

8

2
5

• BCG_MERGE
– ensures contiguous state numbers (for compaction)
– processes all fragments one by one (and only once)

18

Experiments: 3 case-studies

• Philips HAVi protocol [Judi Romijn]
1.04 Mstates (80 bytes), 3.37 Mtrans

• Token-ring leader election protocol

12.3 Mstates (6 bytes), 45.3 Mtrans

• SCSI-2 bus arbitration protocol
– 5 devices : 0.96 Mstates (13 bytes) 6.00 Mtrans
– 6 devices: 1.20 Mstates (15 bytes) 13.8 Mtrans

19

Results: speedup
• Parallelization gives an almost linear speedup

– GAIN: state tables are distributed => linear reduction in
searching/inserting states in tables (open hashing)

– GAIN: distributed computation of transition function
– LOSS: communication overhead, termination detection

• Expensive transition function => better speedup
• Measurements: Tn = gen. time with n machines

– HAVi: Tn = T1 / (0.3 N)
– Token-ring: Tn = T1 / (0.4 N)
– SCSI-2: Tn = T1 / N (ideal speedup)

20

Results: load balancing
• Good load balancing =>

the N parts of the LTS have similar sizes =>
h : S -> 0…N-1 distributes states uniformly

• Problems:
– the state set S is not known in advance
– the partition function is static
– language independence => no hint on state vectors

• Approach taken:
– assume that state vectors are distributed uniformly
– h (S) = (integer value of bit string S) modulo N

21

Conclusion
• Explicit-state generation/verification seems

appropriate for massively parallel computers
• Significant gains can be expected:

– memory: 1-2 orders of magnitude in state spaces
– time: linear speedups expected

• Our approach:
– parallel state-space construction, sequential

verification
– construction of the transition relation (LTS model)
– language neutral (Open/Caesar)
– architecture neutral (NOWs, clusters of PCs)

22

Future work
• Large-scale experiments:

– INRIA ’s cluster of 256 PCs (50-100 GB RAM)

• Distribute DISTRIBUTOR within CADP:
– support for dynamic data types (lists, trees…)
– full automation (deployment, merging)
– more parametrization (different RAM sizes…)
– separate algorithm from communication code
– on-line monitoring of LTS construction

• If needed, parallelize verification itself
– sequential algorithms working on partitioned LTS
– parallel algorithms working on the fly

