Parallel State Space Construction
for Model-Checking

Hubert Garavel, Radu Mateescu, Irina Smarandache

INRIA Rhone-Alpes / VASY
655, avenue de [’Europe
F-38330 Montbonnot Saint Martin

%l INRIA

May 20, 2001

/Y



Motivations

e Industrial collaborations at INRIA/VASY

- Cache coherency protocols (Bull)
- Embedded applications on smart cards (CP8)
- Mobile Java agents (MGE-UPS)

e Type of problems
- Asynchronous, message-passing systems
- Complex data types

e Approach

- Use of process algebras: LOTOS, E-LOTOS
- Explicit-state space methods

— /



Motivations

e Model-checking : memory is the bottleneck

e a) Use more clever methods
- compositional, partial orders, symmetries

e b) Use more powerful machines
- "standard” PC : 1 GB RAM (2 GB max)
- "power” machine (mainframe, SMP, CC-NUMA)
=> very expensive
- many small machines:
= networks of workstations (NOW)

= clusters of PC
* meta-computing

S A SE—



Related work

e Low-level models (a lot)
- Petri nets
- stochastic Petri nets
- discrete-time Markov chains
- continuous-time Markov chains

e Higher-level languages (very few)

- Murphi (1)
- SPIN (1)



Definitions

e LTS (Labelled Transition System)
- S: set of states

- So: initial state
- A: set of actions
- T: transition relation

e Explicit LTS: entirely generated
o Implicit LTS: generated on demand ("on the fly")

S %/ S



The CADP toolbox

e« Compilers for LOTOS: CAESAR, CAESAR.ADT

e Language-independent tools:
- Simulators: OCIS, Xsimulator
- Model-checkers: Evaluator, XTL
- Bisimulation tools: Aldebaran, BCG_MIN (+ Fc2)
- Test generator: TGV

e Cross-tool functionalities:
- Explicit LTSs : BCG
- Implicit LTSs (on the fly): Open/Caesar
- Compositional verification: SVL
- Unified graphical-user interface: EUCALYPTUS

/Y



Open/Caesar

compilers QQALL/(FFT) (UMLAUT)

LOTOS
LTS in BCG format

language-dependent communicating LTSs
(untimed) KRONOS

Open/Caesar API

simulation
on the fly verification

language-independent LTS generation
tools test generation (TGV)

test execution (TorX)

— /




Goal of our work

Develop an Open/Caesar software component
for parallel state space construction, which can
be used for several languages.

caesar.open prog.lotos distributor M1 M2 M3 ...
uml.open prog.uml distributor M1 M2 M3 ...
if.open prog.if  distributor M1 M2 M3 ...

/Y



Tool architecture

" compiler
- i: -

\\:
s

S % L —

e




Phase 1 : DISTRIBUTOR

\

o oon o

s
=

partitioned LTS = (collection of BCG files) + global initial state

/Y

10



Distributed algorithm (1)

N machines numbered 0 ... N-1

e Static partition function h : S -> [0 ... N-1]

« Each machine computes/stores an LTS fragment:
-Si={sinS| h(s)=i}

stored in the local memory (Open/Caesar state table)
globally unique numbers: s in Si <=>n (s) mod N =i

-Ti={(s,a,s)inT | h(s') =i}
stored on the local disk (BCG file)

-Ai={ainA | exists (s, a,s')inTi}
In fact Si={sinS | h(s) =ior exists (s, a, s')inTi}

S A SE—

11



Distributed algorithm (2)

e Each machine M[i] receives triples of the form
(n: number, a: action, s: state vector)
such that h (s) =1

e M[i] inserts s in its local state table and gives
to s a unique number n (s)

e M[i] computes the successors (s, a’, s') of s
eIf h (s') =1thens is stored locally
else (n (s), a, s') is sent to M[h(s')]

A S

12




S A S

Termination detection

e Global termination <=>
all local computations are finished and
all communication channels are empty

e (Virtual) unidirectional ring between
machines
e Principles:

- the initiator machine checks for termination
everytime it finishes its local computations

- termination occurs when the total numbers of
sent and received messages are equal

13



S A SE—

Implementation

e Low-level communication primitives:
- TCP/IP sockets (MPI not necessary)
- Non-blocking SEND and RECEIVE primitives
- Deployment using rsh/rcp

e Several architectures supported:

- Debugging : 3 Sun workstations on Ethernet LAN

- Performance measurements : cluster of 10 Linux
PCs (450 MHz, 512 MB RAM) connected by SC
(Scalable Coherent Interface)

14



Communication buffers

Buffering messages improves performance
=> use as much buffering as possible

logical buffers

@
— @

physical buffer

/J —



Phase 2: BCG_MERGE

Effect : merging a
partitioned LTS into
a single LTS




Principles of BCG_MERGE

e Each fragment of a partionned LTS:
- 1S not a connected graph
- has sparse state numbers

0 ¢ | S O 2
3I\ 1 T
6 e

\.5

« BCG_MERGE
- ensures contiguous state numbers (for compaction)
- processes all fragments one by one (and only once)

W 17




Experiments: 3 case-studies

 Philips HAVi protocol [Judi Romijn]
1.04 Mstates (80 bytes), 3.37 Mtrans

e Token-ring leader election protocol
12.3 Mstates (6 bytes), 45.3 Mtrans

e SCSI-2 bus arbitration protocol

- 5 devices : 0.96 Mstates (13 bytes) 6.00 Mtrans
- 6 devices: 1.20 Mstates (15 bytes) 13.8 Mtrans

/ T




Results: speedup

e Parallelization gives an almost linear speedup

- GAIN: state tables are distributed => linear reduction in
searching/inserting states in tables (open hashing)

- GAIN: distributed computation of transition function
- LOSS: communication overhead, termination detection

e Expensive transition function => better speedup
e Measurements: Tn = gen. time with n machines

- HAVi: Tn=T1/ (0.3 N)
- Token-ring: Tn=T1/ (0.4 N)
- SCSI-2: Tn=T1/ N (ideal speedup)

A —

19



Results: load balancing

e Good load balancing =>
the N parts of the LTS have similar sizes =>
h : S ->0..N-1 distributes states uniformly

e Problems:

- the state set S is not known in advance
- the partition function is static
- language independence => no hint on state vectors

» Approach taken:
- assume that state vectors are distributed uniformly
- h (S) = (integer value of bit string S) modulo N

/i —



Conclusion

e Explicit-state generation/verification seems
appropriate for massively parallel computers

e Significant gains can be expected:
- memory: 1-2 orders of magnitude in state spaces
- time: linear speedups expected

e Our approach:

- parallel state-space construction, sequential
verification

- construction of the transition relation (LTS model)
- language neutral (Open/Caesar)
- architecture neutral (NOWSs, clusters of PCs)

A S

21



Future work

e Large-scale experiments:
- INRIA ’s cluster of 256 PCs (50-100 GB RAM)

e Distribute DISTRIBUTOR within CADP:

- support for dynamic data types (lists, trees...)
- full automation (deployment, merging)

- more parametrization (different RAM sizes...)
- separate algorithm from communication code
- on-line monitoring of LTS construction

o If needed, parallelize verification itself
- sequential algorithms working on partitioned LTS
- parallel algorithms working on the fly

A S

22



