MEMOCODE 2009

Verification of an Industrial SystemC/TLM
Model Using LOTOS and CADP

Hubert Garavel, Claude Helmstetter, Olivier Ponsini,

and Wendelin Serwe
INRIA / VASY

%I INRIA

RHOSME-ALPES

July 13th, 2009 C.Helmstetter (INRIA) ;‘J MEMOCODE'09 1

Transaction Level Modeling (TLM)

> Abstraction level for hardware modeling aiming at
- Early availability
= Fast simulation
> 2 main sub-levels:
- Loosely Timed (TLM-LT) and Approximately Timed (TLM-AT)

> Applications:

- Functional verification

- Software development

- Performance analysis (using TLM-AT)

- Golden model for hardware verification

> No replacement for low level descriptions (e.g., RTL)
- No automatic synthesis

July 13th, 2009 C.Helmstetter (INRIA) ! (MEMOCODE'09

Validation at the transaction level

» OSClI's SystemC simulator allows fast simulations

- But some features are lacking

- Cannot simulate all possible behaviors (no interactive scheduler)
- No coverage guarantee
- No backtracking

- Cannot check complex properties

> CADP: Construction and Analysis of Distributed Processes
- Provides: model checking, interactive simulation, ...
- Based on explicit state manipulation

« Entry points: LOTOS (process algebra) or LTS (explicit graph)

July 13th, 2009 C.Helmstetter (INRIA) ! (MEMOCODE'09

Previous work(1/2)

SystemC/TLM ‘m

LOTOS - MDRADD

model \y_/

> Translation rules (+benchmar
- FM'08, O.Ponsini & W.Serwe

model Rk

Ks) described In:

- MEMOCODE'08, C.Helmstetter & O.Ponsini

> Many others similar translations

= To synchronous automata (LusSy v1: M.Moy, F.Maraninchi, ...)

- Automatic translation

- Connected to SMV, NBAC, SCADE prover
- To Promela/SPIN (C.Traulsen, J.Cornet, ...)
- To Petri nets, to Finite State Machines, to Kripke structures, ...

July 13th, 2009 C.Helmstetter (INRIA) ! (MEMOCODE'09

Previous work: experiments (2/2)

» Academic benchmarks
- At most a few hundreds lines of code
= Using LusSy and SMV (2005): up to 13 processes
= Using Promela/SPIN (2007): up to 17 processes
= Using Lotos/CADP (2008): up to 21 processes

> Few realistic case studies

- “EASY platform™ (7 modules, 8 processes, 3500 lines of code)
- LusSy succeeded to translate this TL model to the SMV input language
- But SMV failed to prove any property, and to find any bug

> Alm of this paper: a real case study

July 13th, 2009 C.Helmstetter (INRIA) ! (MEMOCODE'09

The BDisp

» Hardware component designed by STMicroelectronics
- Computes video streams

= 6 Instructions queues with configurable priorities
- 2 composition queues : real-time jobs (the result is immediately displayed)
- 4 application queues : non real-time jobs (the result is stored)

- Connected to
- CPU + embedded software
- VTG (video test generator): sends an interruption on every new screen line

> The BDisp SystemC/TLM model

= one SystemC thread
+ one thread in the CPU, and one thread In the VTG

- Contains fixed durations
- About 26,000 lines of code

| [
July 13th, 2009 C.Helmstetter (INRIA) ;‘l MEMOCODE'09 6

Objectives

> Develop a LOTOS model of the BDisp

» Check whether CADP can

= Prove correctness properties
- Help to find errors

> We address the control part of the BDisp
- Mainly: arbitration of the instruction queues
- Complete removal of the graphical operations

> Abstraction of the timing annotations

= Does the correctness of the BDisp SystemC/TLM model depend on
the fixed durations

| [
July 13th, 2009 C.Helmstetter (INRIA) ;‘l MEMOCODE'09 7

Outline

> Introduction

» Overview of the BDisp LOTOS model
> Abstractions and optimizations

> Experimental results

» Conclusion and future work

July 13th, 2009 C.Helmstetter (INRIA) ‘ MEMOCODE'09

Translating the BDisp into LOTOS

> A complete translation would require too much work
> Different handling of different parts of the code

» Communication code
- Concerns: transactions, SystemC events, shared variables
- Translated to LOTOS according to systematic rules [FM’08]

> Local computations

= Concerns: sequential control, data manipulations, ...
- The LOTOS model imports C++ code of the original model

- BDisp access: execution of the corresponding C++ code

- Write functions to store and compare the state of the C++ types

July 13th, 2009 C.Helmstetter (INRIA) ! l MEMOCODE'09

July 13th, 2009

Architecture of the LOTOS model

C++

Functions
extracted
from the

BDisp
SC/TLM

C.Helmstetter (INRIA) ;‘l MEMOCODE'09

10

Compact representation in C

of the BDisp state
> BDisp: C++ class describing the BDisp (provided by STM)

= This class Is memory consuming: ~40 kilobytes
- Cannot be modified without modifying all the C++ code
= No copy, no hash, and no comparison functions

> C State: C type to store efficiently a BDisp state

- Store only relevant data
(e.g., parameters for graphical operations are not stored)

= 2 conversion functions
- LOTOS (C) to SystemC (C++)
- SystemC (C++) to LOTOS (C)

- Copy and comparison using memcpy () and memcmp ()

July 13th, 2009 C.Helmstetter (INRIA) ! l MEMOCODE'09 11

Interface between TLM and LOTQOS

> LOTOS code

let new state:Lotos state = compute X(old state)

> Interface code
C state compute X(C state state) {

1. Expand the C state to a C++ state (~original class)

2. Call the corresponding C++ method
3. Convert the C++ state to the C compact representation

)
» C++ code extracted from the SystemC/TLM model
Contains a method void BDisp: :compute X () {..}

When a communication is encountered (e.g., transactions), we
split the method in smaller methods without SystemC/TLM code

July 13th, 2009 C.Helmstetter (INRIA) !‘l MEMOCODE'09 12

Outline

> Introduction

» Overview of the BDisp LOTOS model
> Abstractions and optimizations

> Experimental results

» Conclusion and future work

July 13th, 2009 C.Helmstetter (INRIA) ‘ MEMOCODE'09

13

Abstractions reducing the graph size

> Goal: validate BDisp synchronization issues

> Focus on the control part

= Instruction node: we keep only informations related to
arbitration

> Instruction queues
= Instruction nodes are generated when read by the BDisp
(instead of generated when written by the CPU)
= S0 at most one instruction node per gqueue is stored at a time

C — 7 E———
July 13th, 2009 C.Helmstetter (INRIA) ‘(MEMOCODE'09 14

Reduction of the state size
without loss of information

> BDisp state size reduced to 52 bytes

- Some ‘int’ variables replaced by ‘bool’ (sc signal<ints> simulates
faster than sc_signal<bool> due to template specialization)

- Use of bit fields
- Removal of padding bytes

> The whole system state was still larger than 1000 bytes
- Reduced to 104 bytes after changing how the BDisp Is accessed

T ([
July 13th, 2009 C.Helmstetter (INRIA) ;‘ MEMOCODE'09 15

Accessing the BDisp state: 15t version

» Usual solution for shared variables: sending the state

READ ??a:T;

let b:T = modify(a) in
let c:Bool = test(b) in
WRITE !b;

process User [READ,WRITE, .. |

> Problem:

process Var [READ,WRITE]
(state:T): noexit :=

WRITE ?new:T;Var[...] (new)
[]
READ !state; Var[...] (new)

endproc

- Each process contains one local variable of type T
= A state of the BDisp LOTOS model contained 17 copies of the

BDisp state

July 13th, 2009 C. Helmstetter (INRIA)

! l MEMOCODE'09

16

Accessing the BDisp state: 2"d version

» Second solution: sending the operations

process Var [EXEC, RETURN]
(state:T): noexit :=
op EXEC !modify opcode;

process User [EXEC, RETURN, . |

| V4 dif tat
EXEC !modify opcode; " ?T[medityistatel)
EiigRgtstgopiédei - EXEC !test opcode;
?c:Bool; BOOLl | RETURN !test (state) ;
Var[...] (state)

[]

» Only one variable of type T for the whole system

> Problem: the number of transitions may increase
- Solution: merge operations (modify_and_test _opcode)

ﬁ E———
July 13th, 2009 C.Helmstetter (INRIA) ‘l MEMOCODE'09 17

Outline

> Introduction

» Overview of the BDisp LOTOS model
> Abstractions and optimizations

> Experimental results

» Conclusion and future work

July 13th, 2009 C.Helmstetter (INRIA) ‘ MEMOCODE'09

18

Translation results

> We developed a LOTOS model of the BDisp
= Less than 2 months of work
= 1000 lines of LOTOS
= 2500 lines of C/C++ written manually

= 5500 lines of C++ code reused (among 26,000 lines)
- Some changes to separate local computations and commnunication code
- Minor change to make the BDisp C++ code compatible with 64 bit machines

T [
July 13th, 2009 C.Helmstetter (INRIA) ;‘(MEMOCODE'09 19

First verification results

> Interactive simulation with backtracking

» Generation of the full labeled transition system (LTS)
= Not possible using less than 16 GB of RAM
- Up to 155,000,000 states and 371,000,000 transitions

> On-the-fly reduction did not help (reductor tool of CADP)

» Compositional verification cannot be applied
- The SystemC/TLM description is too monolithic

B |
July 13th, 2009 C.Helmstetter (INRIA) ;‘l MEMOCODE'09 20

Verification scenarios

> Verification scenarios and property checking

“verification scenario’: restriction of some inputs to concentrate
on something useful (e.g., trigger two queues, then stop one)

= 10 verification scenarios and 5 correctness properties
- Possible to generate and reduce the LTS of the scenarios

> Property checking returned one unexpected result:
= one property was wrong on the untimed version,
but correct one the original timed version

= Can be replayed on the original SystemC/TLM model

- Requires an interactive SystemC scheduler (SCRV)
- Requires to remove some “wait(duration)” statements

July 13th, 2009 C.Helmstetter (INRIA) ! l MEMOCODE'09 21

Conclusion

> Possible to use CADP tools on the BDisp, which is an
Industrial case study

> Too large state space to be generated completely

» Successful verification of scenarios representing each a
large set of behaviors

» Found a synchronization error in the untimed version of
the BDisp model

» Started discussion with STMicroelectronics about a new
case study (replacement of the BDisp in new SoCs)

] [
July 13th, 2009 C.Helmstetter (INRIA) ;‘l MEMOCODE'09

22

Reducing the translation effort

> Still much manual work to connect SystemC/TLM with
CADP

> What could be automated, using a C++ frontend:

- The generation of the LOTOS code corresponding to the
communications

- Systematic rules have been described In previous papers

- The compact C representation and the interface code

- Reducing the state size may require static analysis or human help to bound
Integer variables

> However, 1t seems difficult to automate the abstractions

B |
July 13th, 2009 C.Helmstetter (INRIA) ;‘l MEMOCODE'09 23

