Distributed On-the-Fly Equivalence Checking

Christophe Joubert and Radu Mateescu INRIA / VASY http://www.inrialpes.fr/vasy

Outline

- Equivalence checking as a Boolean Equation System (BES) resolution problem
- BES distributed resolution algorithm
- Implementation and experiments
- Conclusion and future work

- Equivalence checking as a Boolean Equation System (BES) resolution problem -

Equivalence checking using BES resolution

Equivalence relations in terms of BES

•
$$LTS_1 = (Q_1, A, T_1, q_{01}), LTS_2 = (Q_2, A, T_2, q_{02})$$

strong equivalence $\approx \subseteq Q_1 \times Q_2$ is the max relation s.t. $p \approx q$ iff

$$\forall a \in A, \forall p \xrightarrow{a} p' \in T_1, \exists q \xrightarrow{a} q' \in T_2, p' \approx q'$$

$$\land$$

$$\forall a \in A, \forall q \xrightarrow{a} q' \in T_2, \exists p \xrightarrow{a} p' \in T_1, p' \approx q'$$

- $LTS_1 \approx LTS_2$ iff $q_{01} \approx q_{02}$
- Principle: $p \approx q$ iff $X_{p,q}$ is true
- Translation in BES:

$$X_{p,q} =_{\nu} (\bigwedge_{p \to p'} \bigvee_{q \to q'} X_{p',q'}) \land (\bigwedge_{q \to q'} \bigvee_{p \to p'} X_{p',q'})$$

- Equivalence checking as a Boolean Equation System (BES) resolution problem -

BES / boolean graph sequential resolution BES boolean graph

$$\begin{cases} x_1 =_{v} x_2 \land x_5 \\ x_2 =_{v} x_3 \land x_4 \\ x_3 =_{v} x_1 \lor x_3 \\ x_4 =_{v} F \\ x_5 =_{v} x_2 \lor x_4 \lor x_6 \\ x_6 =_{v} x_5 \end{cases}$$

•Theory of boolean graphs [Andersen-Vergauwen-95][Vergauwen-Lewi-94] •CAESAR_SOLVE library [Mateescu-03]

BES / boolean graph distributed resolution

- Limitations of sequential resolution:
 - Memory (BES with more than 10⁸ variables to solve)
 - Time (traversals of very large BES)
- Reasons for distribution:
 - Regular problem prone to balanced distribution of task and data
 - Running faster with few memory used per machine

Distributed model

- Parallel architecture:
 - Distributed computers with own CPU and memory
 - NOW and cluster of PC
- Network:
 - Strongly connected topology
 - Loosely coupled
 - FIFO channels
- SPMD (Single Program Multiple Data) programming model:
 - Several processes performing the distributed BES resolution
 - 1 coordinator process (configuration, launching, collection of statistical data, termination detection)

DSOLVE algorithm

- Each process solves a subset of boolean variables determined by a static hash function
- Inputs:
 - Variable of interest x
 - Implicit boolean graph (V,E,L) (successor function)
 - Static hash function h (data partitioning)
 - Index of current process i ($i \in [0, P-1]$
- Steps:
 - BFS forward exploration of boolean graph (V,E,L) starting at $x \in V$
 - Backward propagation of stable (computed) variables
 - Distribution (communication) of variables to be solved or stabilized
 - Termination when x is stable or the entire boolean graph has been explored
- Outputs:
 - Boolean value of x
 - Diagnostic by keeping relevant successors

Communication primitives

- Problems:
 - Reducing memory consumption
 - Maximizing communication and computation overlapping
 - Avoiding busy waiting on emission failures
 - Preventing communication deadlocks

Solution:

- Asynchronous (overlapping of communication with computations)
- Both blocking and non-blocking communication (avoiding synchronization and busy waiting)
- Fine tuned loosely coupled distributed communication library (CAESAR_NETWORK)
 - UNIX sockets with bounded buffers
 - TCP/IP protocol

Complexity of the distributed resolution

For a boolean graph (V,E,L) and P running processes:

- -Worst case time complexity = O (|V|+|E|)
 - 2 intertwined graph traversals (forward and backward)
- -Worst case memory complexity = O (|V|+|E|)
 - Dependencies stored during graph exploration
- -Worst case message complexity = O (2.|E|.(P-1)/P)
 - 2 messages (expansion and stabilization) exchanged by edges
- Distributed termination detection = O (|E|)
 - Practically, only 0.01% of total exchanged messages used for termination detection (processes rarely inactive)

DSOLVE implementation

Distributed equivalence checking using DSOLVE

- Front-end (BISIMULATOR):
 - Called sequentially and independently on each worker
 - Encodes the equivalence relations as BES
 - Performs transitive closures on tautransitions for weak equivalences
- Back-end:
 - BES resolution
 - CAESAR_SOLVE
 - A1, ..., A4 (sequential)
 - DSOLVE (parallel)

Performance measures

- Benchmark:
 - 65 LTS taken from CADP demos and VLTS suite
 - From (9.10³ states, 2.10⁴ transitions) to (8.10⁶ states, 4.10⁷ transitions)
 - <u>http://www.inrialpes.fr/vasy/cadp</u>
- Parallel architecture:
 - 20 * Xeon 2.4 GHz + 1.5 GB of RAM + 80 GB + Gigabit network
 - Debian 2.4.26
 - OAR batch scheduler
- Experimentation:
 - Distributed BISIMULATOR (using DSOLVE) vs. sequential BISIMULATOR (using BFS resolution algorithm) for different equivalences
 - Worst-case: comparison of an LTS with its minimized version
 - Exclusion of system-dependent fixed costs (code loading, LTS copying, connection initialization)

vasy 157 297

Speedup - strong equivalence

- Best behavior among all equivalences (very few time spent in the front-end)
- Linear speedups
- BRPm3n30:
 - 332.53 s. in seq
 - 29.06 s. with 13 processors (speedup of 11.5)

Speedup - observational equivalence

- Large BES encoding
- Better for LTS with few tau-transitions or deterministic behavior
- Vasy_65_2621: Speedup of 7.86 with 13 processors
- Branching equivalence gives similar results

Speedup - tau*.a equivalence

- Worst behavior (extensive transitive closures on tau transitions in the front-end on each worker)
- Very small BES encoding for high % of tau transitions
- Vasy_8082_42933:
 Speedup of 8.22 with 13 processors
- Similar results for safety equivalence
- 3 factors:
 - Size of LTSs
 - % of Tau transitions
 - Degree of nondeterminism

Scalability - problem size / time

- BRP with packet length K ∈
 [4,35]:
 - Strong
 equivalence
 - Fixed p number
 of processors (p
 ∈ [3,20])

 Adapted to increases in problem size

Scalability - memory / # processes

- Main bottleneck for verification problems
 main motivation for distribution
- Memory equally divided amongst processes
 (hash tables and communication buffers)
- Small increases due to distributed resolution exploring more boolean variables (edges) than its sequential counterpart (bigger hash table)

Conclusion

- DSOLVE, a distributed algorithm for local resolution of BES
- A distributed version of BISIMULATOR and a distributed generation of diagnostic for equivalence checking
- Generic implementation running on widely-used looselycoupled parallel machines (clusters and NOW)
- Extensive set of experiments performed on large BES (VLTS benchmark suite)
 - Linear speedups (even superlinear for large BES with particular forms)
 - Scalability w.r.t. BES size and number of processors

Future work

- Verification:
 - Tau-confluence reduction [Pace-Lang-Mateescu-03]
 - Alternation-free mu-calculus model-checking [Mateescu-03]
 - Markovian bisimulation [Hermanns-Siegle-99]
- Potential applications:
 - Propositional Horn clauses resolution [Liu-Smolka-98]
 - Abstract interpretation [Chen-94]
 - Data flow analysis [Fecht-Seidl-96]

For more information ...

Christophe Joubert

Radu Mateescu

http://www.inrialpes.fr/vasy

