
Model Checking and Performance
Evaluation with CADP

 Illustrated on Shared-Memory
 Mutual Exclusion Protocols

Radu

Mateescu

and Wendelin

Serwe

INRIA Grenoble

Rhône-Alpes / LIG / VASY
http://vasy.inria.fr

2SAFA 2011 - Sophia Antipolis - October 12

Overview

Mutual exclusion on shared-memory machines

Formal description of mutex

protocols in LNT

Functional analysis by model checking using MCL

Performance evaluation using IMCs

Conclusion and future work

3SAFA 2011 - Sophia Antipolis - October 12

Mutual exclusion on
 shared-memory machines

Long-standing problem in concurrent programming
 [Dijkstra-65]:

–

Protect a shared resource against concurrent
non-atomic accesses from competing processes

–

Processes communicate by atomic read/write
operations on shared variables

Mutual exclusion protocols:
–

Ensure that at most one process accesses the resource

–

Guarantee the progress of execution

Dozens of protocols proposed in the literature
 (see survey in [Anderson-Kim-Herman-03])

Performance assessment mainly by experimental measures
our goal: provide model-based quantitative analysis

4SAFA 2011 - Sophia Antipolis - October 12

Formal specification of
 mutual exclusion protocols

LNT (LOTOS NT) language:
–

Combines process algebraic and imperative programming features

–

User-friendly syntax and formal semantics
–

Accepted as input by the CADP verification toolbox

Specification of 27 mutex

protocols in LNT:
–

Burns&Lynch

[80], Craig and Landin&Hagersten

[93-94], Dekker

[68]

–

Dijkstra

[65], Peterson [81], Knuth [66], Lamport

[87]
–

Kessels

[82], Mellor-Crummey&Scott

[91], Szymanski [88]

–

black-white bakery protocol [Taubenfeld-04]
–

12 protocols generated automatically [Bar-David-Taubenfeld-03]

–

array-based queue lock [Anderson-90]
–

test-and-set (TAS), test/test-and-set (TTAS) protocols [Anderson-90]

–

1 trivial (incorrect) one-bit protocol for benchmarking purposes

Analysis using the CADP toolbox (http://cadp.inria.fr)

http://cadp.inria.fr/

5SAFA 2011 - Sophia Antipolis - October 12

Mutual exclusion protocols

Structure of a concurrent process P competing for
the access to the shared resource:

loop
non critical

section ; may loop forever

entry

section ; access shared variables
critical

section ; access resource

must terminate
exit

section access shared variables

end loop

6SAFA 2011 - Sophia Antipolis - October 12

Architecture for two processes
 (three shared variables)

P (0) P (1)

A (0)

A (1)

B

A A

AA

NCS NCS

CSCS

B B

. . .

7SAFA 2011 - Sophia Antipolis - October 12

Knuth’s protocol
 [Knuth-66]

Process Pj

loop
non critical section ;
loop

A[j] := 1 ;
await

B == j or A[k] == 0 ;

A[j] := 2 ;
if

A[k] != 2 then break

;

end loop

;
B := j ;
critical section ;
B := k ;
A[j]

:= 0

end loop

j ∈

{ 0, 1 }
other process:
k = 1 -

j

entry section

exit section

three shared
variables
A[0], A[1], B

8SAFA 2011 - Sophia Antipolis - October 12

LNT specification
 (architecture of the system)

par

A, B, CS, NCS in
par

A, B in

par
P [NCS, CS, A, B] (0 of Nat) || P [NCS, CS, A, B] (1 of Nat)

end par
||
par
A [A] (0 of Nat, 0 of Nat) || A [A] (1 of Nat, 0 of Nat)

||
B [B] (0 of Nat)

end par
end par

||
L [A, B, CS, NCS, MU]

end par

all shared variables
are initially 0

9SAFA 2011 - Sophia Antipolis - October 12

LNT
 specification
 (process Pj)

process

P [NCS:Pid, CS:Access, A, B:Operation] (j:Nat) is
var

k, a_k, b:Nat

in

k := 1 -

j;

loop
NCS (!j);
loop

L1 in

A (!Write, !j, !1 of Nat, !j);
loop

L2 in

B (!Read, ?b, !j); A (!Read, !k, ?a_k, !j);
if

(b == j) or (a_k

== 0) then break

L2 end if

end loop;
A (!Write, !j, !2 of Nat, !j);
A (!Read, !k, ?a_k, !j); if

a_k

!= 2 then break

L1 end if

end loop;
B (!Write, !j, !j);
CS (!Enter, !j); CS (!Leave, !j);
B (!Write, !k, !j);
A (!Write, !j, !0 of Nat, !j)

end loop
end var

end process

entry section

exit section

10SAFA 2011 - Sophia Antipolis - October 12

LNT specification
 (shared variables)

process

A [A:Operation]
(index, val:Nat) is

loop
select
A (!Read, !index, !val, ?any

Nat)

[]
A (!Write, !index, ?val, ?any

Nat)

end select
end loop

end process

process

B [B:Operation] (val:Nat) is
loop

select
B (!Read, !val, ?any

Nat)

[]
B (!Write, ?val, ?any

Nat)

end select
end loop

end process

index (0, 1) of the
two-cell array

11SAFA 2011 - Sophia Antipolis - October 12

LTS of Knuth’s protocol
192 states, 384 transitions

Labeled transition
 system

Tool support:
 LNT.OPEN

OPEN/CAESAR
 compliant compiler

 for LNT
Allows the on-the-fly

 exploration of the
 LTSs

corresponding

 to LNT specifications

12SAFA 2011 - Sophia Antipolis - October 12

Functional analysis by model checking

Formulate the essential properties of mutex
 protocols in an action-based setting:

–

Mutual exclusion

(safety)
–

Livelock

freedom

(liveness)

–

Starvation freedom

(fairness)
–

Degree of overtaking (fairness)

–

Independent progress (fairness)

Verify the properties on the LNT specifications:
–

Express properties in MCL

–

Use LNT.OPEN

and EVALUATOR 4.0
–

Interpret diagnostics

13SAFA 2011 - Sophia Antipolis - October 12

MCL (Model Checking Language)
 [Mateescu-Thivolle-08]

Extension of modal µ-calculus with:
–

Regular expressions over action sequences

 [Mateescu-Sighireanu-03]
–

Modalities that extract data values from LTS labels

–

Fixed point operators parameterized by data variables
–

Constructs inspired from programming languages

Tool support: EVALUATOR 4.0
–

On-the-fly verification of MCL formulas on LTSs

–

Diagnostic generation (examples and counterexamples)
–

Reusable libraries of derived operators (CTL, ACTL, ...)
and property patterns [Dwyer-et-al-99]

14SAFA 2011 - Sophia Antipolis - October 12

Mutual exclusion
 (safety)

Two processes can never execute simultaneously
their critical sections.

[true* .
{

CS !"ENTER" ?j:Nat

} .

(not {

CS !"LEAVE" !j })* .
{

CS !"ENTER" ?k:Nat

where

k <>

j }

] false

.
CS !”ENTER”

!j CS !”ENTER”

!k

not CS !”LEAVE”

!j

fully parametric

 MCL formula
(depends only on
information present
on LTS transitions)

15SAFA 2011 - Sophia Antipolis - October 12

Livelock

freedom
 (first formulation –

2 processes)

Each time a process is in its entry section, then some
 process will eventually enter its critical section.

[true* . {

NCS ?j:Nat

} .
(not { ?any ?"READ"|"WRITE" ... !j })* .
{ ?any ?"READ"|"WRITE" ... !j }

] mu

X . (< true > true

and
[not {

CS !"ENTER" ?any }]

X)

this formula fails on all mutex protocols!

16SAFA 2011 - Sophia Antipolis - October 12

Livelock

freedom –

LTS view
 (first formulation –

2 processes)

.
NCS !j V !”OP”

!j

. . .

not CS !”ENTER”

... CS !”ENTER”

...

. . .
. . .

[true* . {

NCS ?j:Nat

} . (not { ?any ?“R”|”W”

... !j })* . { ?any !“R”|”W”

... !j }]

mu

X

.

< true > true

[not {

CS !"ENTER" ?any }]

X

CS !”ENTER”

... CS !”ENTER”

...

. . .

CS !”ENTER”

... CS !”ENTER”

...

17SAFA 2011 - Sophia Antipolis - October 12

Livelock

freedom
 (first formulation)

Counterexample
 for Knuth’s

 protocol:

loop
non critical section ;
loop
A[0] := 1 ;
await

B == 0 or A[1] == 0 ;

A[0] := 2 ;
if

A[1] != 2 then break

;

end loop

;
B := 0 ;
critical section ;
B := 1 ; A[0]

:= 0

end loop P0

loop
non critical section ;
loop
A[1] := 1 ;
await

B == 1 or A[0] == 0 ;

A[1] := 2 ;
if

A[0] != 2 then break

;

end loop

;
B := 1 ;
critical section ;
B := 0 ; A[1]

:= 0

end loop P1

18SAFA 2011 - Sophia Antipolis - October 12

Livelock

freedom
 (second formulation –

2 processes [BDT-03])

There is no cycle in which each process executes an
instruction but no one enters its critical section.
[true* . {

NCS ?j:Nat

} .

(not { ?any ?"READ"|"WRITE" ... !j })* .
{ ?any ?"READ"|"WRITE" ... !j }

] not < (not {

CS ... })* .
{ ?G:String

... ?k:Nat

where

G <> "CS" } .

(not {

CS ... })* .
{ ?G:String

... !1 -

k where

G <> "CS" }

> @ holds on all mutex protocols

19SAFA 2011 - Sophia Antipolis - October 12

Livelock

freedom –

LTS view
 (negation of second formulation –

2 processes)

.
NCS !j V !”OP”

!j

not CS ...

. . .

. . .

. . .
V !”OP”

!0

. . .

. . .
V !”OP”

!1

not CS ...

unfair cycle
not
CS ...

20SAFA 2011 - Sophia Antipolis - October 12

Livelock

freedom
 (second formulation –

n

processes)

There is no cycle in which each process executes an
instruction but no one enters its critical section.
[true* . {

NCS ?j:Nat

} .

(not { ?any ?"READ"|"WRITE" ... !j })* .
{ ?any ?"READ"|"WRITE" ... !j }

] not < for j:Nat

from 0

to n −

1

do
(not { CS

... })* .

{ ?G:String

... !j

where G <> "CS" }
end for

> @ holds on all mutex protocols

complex cycle
containing a set of
events (generalized
Büchi

automaton)

21SAFA 2011 - Sophia Antipolis - October 12

Starvation freedom
 (fairness –

2 processes)

Each time a process is in its entry section, then that
 process will eventually enter its critical section.

[true* . {

NCS ?j:Nat

} .
(not { ?any ?"READ"|"WRITE" ... !j })* .
{ ?any ?"READ"|"WRITE" ... !j }

] not < (not { CS

... !j

})* . { ?G:String

... ?k:Nat
where (G

<> "CS") or (k

<> j) } .

(not { CS

... !j

})* . { ?G:String

... !1 –

k
where (G

<> "CS") or ((1 -

k) <> j) }

> @ holds on some mutex protocols

22SAFA 2011 - Sophia Antipolis - October 12

Starvation
 witness

Protocol
 3b_p2

 [BDT-03]
P0

overtakes
 P1

indefinitely

23SAFA 2011 - Sophia Antipolis - October 12

Bounded overtaking
 (fairness)

How many times a process Pi

can be overtook by
another process Pj

in accessing the critical section?
< true* . {

NCS !i } .

(not { ?any ?"READ"|"WRITE" ... !i })* .
{ ?any ?"READ"|"WRITE" ... !i } .
((not {

CS ?any !i })* .

{ ?G:String

... !i where

G <>

"CS" } .
(not {

CS ?any !i })* . {

CS !"ENTER" !j }

) { overtaking_times

}
> true

Pj

overtakes Piregular formula with counting:
overtaking degree of Pi

by Pj

24SAFA 2011 - Sophia Antipolis - October 12

Witness of maximum overtaking

Knuth’s protocol for two processes
 (at most 1 overtake of P1

by P0

):

25SAFA 2011 - Sophia Antipolis - October 12

Witness of maximum overtaking
Dekker’s

protocol for two processes

 (at most 4 overtakes of P1

by P0

):

26SAFA 2011 - Sophia Antipolis - October 12

Independent progress
 [Dijkstra-65]

If a process stops in its non

critical section, the other
processes can still access their critical sections.

forall

j:Nat

among {

0 ...

1 } .
[true*] (

< {

NCS !1 -

j } > true
implies
< { ... !j }* . {

CS !"ENTER" !j } .

{ ... !j }* . {

CS !"LEAVE" !j }
> @

)

Pk

stops at the beginning
of its entry section

holds on all mutex protocols,
but should be checked separately

27SAFA 2011 - Sophia Antipolis - October 12

Trivial one-bit protocol

27

livelock

of P0

when P1

stops
in its non
critical section

satisfies mutual exclusion
and starvation freedom,
but not independent progress

loop
non critical section ;
await

B == j ;

critical section ;
B := k

end loop Pj

28SAFA 2011 - Sophia Antipolis - October 12

Livelock

upon crash
 (outside the non critical sections)

Livelock

of each process when the other one
“has decided to stop”

in its entry section

(Knuth’s protocol):

independent progress
cannot be relaxed

29SAFA 2011 - Sophia Antipolis - October 12

Model checking summary (2 processes)

30SAFA 2011 - Sophia Antipolis - October 12

Model checking summary (2 processes)

31SAFA 2011 - Sophia Antipolis - October 12

Model checking summary (3 processes)

32SAFA 2011 - Sophia Antipolis - October 12

Performance evaluation using IMCs

A single model for both
 functional verification

+ performance evaluation
Enrich LNT model with (exponential) delays
–

constraint-oriented style: composition with a process L

–

each action corresponds to the begin of a delay
–

process L enforces alternation of delays and actions

Compute steady-state probabilities on the
underlying continuous time Markov chain (CTMC)
Tool support by CADP
–

BCG_MIN: minimization

–

BCG_STEADY: computation of steady-state probabilities
–

CUNCTATOR: on-the-fly steady-state simulation

33SAFA 2011 - Sophia Antipolis - October 12

LNT specification
 (auxiliary process for delay insertion)

process

L [A, B: Operation, CS: Access, NCS: Pid, MU: Latency] is
var

index, pid:Nat, sig:Signal

in

loop
select

A (!Read, ?index, ?any Nat, ?pid); MU (!Read, !index, !pid)
[]

A (!Write, ?index, ?any Nat, ?pid); MU (!Write, !index, !pid)

[]

B (!Read, ?any Nat, ?pid); MU (!Read, !pid)
[]

B (!Write, ?any Nat, ?pid); MU (!Write, !pid)

[]

CS (?sig, ?pid); if

sig

== Enter then

MU (!sig, !pid)

end if
[]

NCS (?pid); MU (!Work, !pid)

end select
end loop

end var
end process

34SAFA 2011 - Sophia Antipolis - October 12

Continuous-Time Markov Chains
(CTMCs) in the BCG format

Syntax of actions (transition labels):
–

Stochastic transitions “rate %f”

–

Labeled stochastic transition “action; rate %f”
–

Internal transition “i”

Terminology for states:
–

Stable

state (without i-successors)

–

Unstable

state (with some i-successors)
–

Nondeterministic

state (with at least two i-successors)

strictly positive
floating-point
number

character string
without ‘;’

35SAFA 2011 - Sophia Antipolis - October 12

Example of CTMC

Mutual exclusion
 protocol with three

 shared variables

CTMC contains only
 read accesses to

 shared variables

36SAFA 2011 - Sophia Antipolis - October 12

Dealing with nondeterminism

Numerous nondeterministic (2-branch) choices due
to concurrent accesses of P0

, P1

to shared variables
Work-around: model a fair scheduler

replacing an

equiprobable

probabilistic choice
Performance evaluation approach:
–

hide accesses to shared variables

–

minimize for stochastic branching bisimulation
–

rename remaining “i”-transitions into “prob

0.5”

yields a “continuous-time probabilistic Markov chain”
a graph with stochastic and probabilistic transitions

–

compute steady-state throughputs using BCG_STEADY

(on
constructed graphs) or CUNCTATOR

(on the fly)

37SAFA 2011 - Sophia Antipolis - October 12

Performance experiments

Goal: detect tendencies, no absolute values
Throughput of the critical section:
–

relative (one process only)

–

cumulative (sum of both processes)

Common rate parameters:
–

read access:

3000 (global memory), 150000 (local cache)

–

write/fetch&store/compare&swap

access:
2000 (global memory), 135000 (local cache)

–

critical section: 100

Varying rate for the non-critical section(s)

38SAFA 2011 - Sophia Antipolis - October 12

Global throughput without caching
 (2 processes)

39SAFA 2011 - Sophia Antipolis - October 12

Global throughput with caching
 (2 processes)

40SAFA 2011 - Sophia Antipolis - October 12

Global throughput with caching
 (2 processes, very short critical section)

41SAFA 2011 - Sophia Antipolis - October 12

Global throughput for
 symmetric protocols

 (2 processes)

42SAFA 2011 - Sophia Antipolis - October 12

Global throughput for
 asymmetric protocols
 (2 processes)

43SAFA 2011 - Sophia Antipolis - October 12

Throughput of process P0

for
 asymmetric protocols

 (2 processes)

44SAFA 2011 - Sophia Antipolis - October 12

Global throughput
 with/without caching

 (3 processes, CS twice as fast as NCS)

45SAFA 2011 - Sophia Antipolis - October 12

Global throughput
 with/without caching

 (4 processes, CS twice as fast as NCS)

46SAFA 2011 - Sophia Antipolis - October 12

Global throughput
 (increasing number of processes)

Scalable procotols Unscalable

procotols

47SAFA 2011 - Sophia Antipolis - October 12

Conclusion and future work

Formal analysis and performance evaluation of
mutual exclusion protocols on a single model
Automated analysis using CADP (LNT, MCL, SVL)
(More?) proper handling of nondeterminism

Extend performance study to
–

Determine variable placement

frequent accesses should be local, not remote
–

Analyze performance w.r.t. degree of contention

 (e.g., Lamport’s

fast mutex

protocol)

	Model Checking and Performance Evaluation with CADP�Illustrated on Shared-Memory�Mutual Exclusion Protocols
	Overview
	Mutual exclusion on�shared-memory machines
	Formal specification of�mutual exclusion protocols
	Mutual exclusion protocols
	Architecture for two processes�(three shared variables)
	Knuth’s protocol�[Knuth-66]
	LNT specification�(architecture of the system)
	LNT�specification�(process Pj)
	LNT specification�(shared variables)
	Labeled transition�system
	Functional analysis by model checking
	MCL (Model Checking Language)�[Mateescu-Thivolle-08]
	Mutual exclusion�(safety)
	Livelock freedom�(first formulation – 2 processes)
	Livelock freedom – LTS view�(first formulation – 2 processes)
	Livelock freedom�(first formulation)
	Livelock freedom�(second formulation – 2 processes [BDT-03])
	Livelock freedom – LTS view�(negation of second formulation – 2 processes)
	Livelock freedom�(second formulation – n processes)
	Starvation freedom�(fairness – 2 processes)
	Starvation�witness
	Bounded overtaking�(fairness)
	Witness of maximum overtaking
	Witness of maximum overtaking�
	Independent progress�[Dijkstra-65]
	Trivial one-bit protocol�
	Livelock upon crash�(outside the non critical sections)
	Model checking summary (2 processes)�
	Model checking summary (2 processes)�
	Model checking summary (3 processes)�
	Performance evaluation using IMCs
	LNT specification�(auxiliary process for delay insertion)
	Continuous-Time Markov Chains (CTMCs) in the BCG format
	Example of CTMC
	Dealing with nondeterminism
	Performance experiments
	Global throughput without caching�(2 processes)
	Global throughput with caching�(2 processes)
	Global throughput with caching�(2 processes, very short critical section)
	Global throughput for�symmetric protocols�(2 processes)
	Global throughput for�asymmetric protocols�(2 processes)
	Throughput of process P0 for�asymmetric protocols�(2 processes)
	Global throughput�with/without caching�(3 processes, CS twice as fast as NCS)
	Global throughput�with/without caching�(4 processes, CS twice as fast as NCS)
	Global throughput�(increasing number of processes)
	Conclusion and future work

