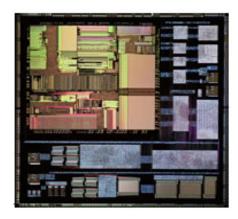
A Comparison of Two SystemC/TLM Semantics for Formal Verification

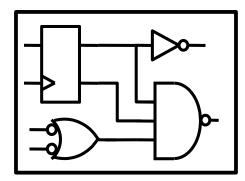
Olivier Ponsini and Claude Helmstetter INRIA / VASY http://www.inrialpes.fr/vasy


Outline

- > Transaction level modeling in SystemC
- Verifying SystemC/TLM
- The Lotos/CADP framework for semantics comparison
- Conclusion

Electronic design models

Physical chip

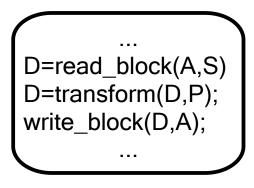


- Accurate
- Fast

but:

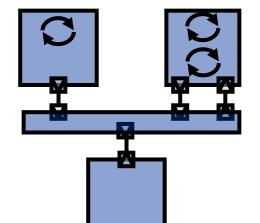
- Too late
- Hard to debug

Hardware description (RTL)


- Accurate
- Easy to debug

but:

- Too late
- Very slow


Abstract model (TLM)

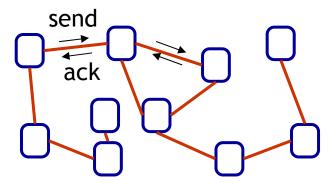
- Fast
- Early available but:
 - Less accurate
 - No synthesis

Untimed transaction level models

- Embedded software programmer's view
 - Architecture: modules
 - Behavior: processes
 - Communication:
 - Transactions (inter-modules)
 - Synchronizations (inter-processes)
- > Untimed TLM model of computation
 - Concurrent execution of independent processes
 - System synchronization for causal dependencies
- Reference model
 - Functional verification
 - Embedded software development
 - Co-simulation

SystemC

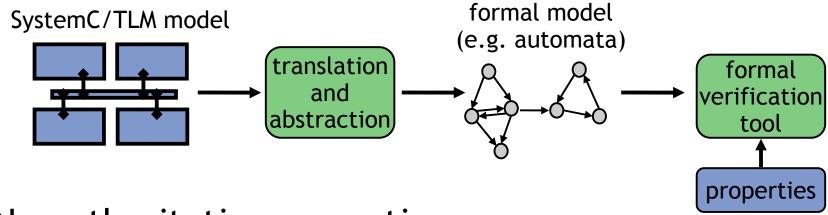
- ► A C++ library
- >Heterogeneous (hard/soft) system modeling
 - Module and port classes to describe architectures
 - Threads and events to describe behaviors
- > System simulation
 - A global nonpreemptive scheduler
 - A simulated time


Outline

- > Transaction level modeling in SystemC
- Verifying SystemC/TLM
- The Lotos/CADP framework for semantics comparison
- Conclusion

Verifying SystemC/TLM models

- Main TLM modeling challenge: find all the synchronizations needed between processes
 - Not the software sequential algorithms
 - But the interactions between components



- Verification needs to explore
 - Data space and
 - Processes interleaving space

Semantics of SystemC/TLM

> Usual approach for formal verification

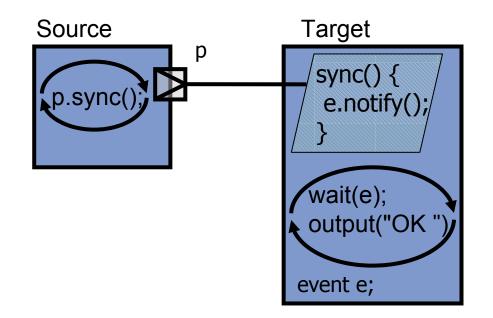
- No authoritative semantics
 - SystemC simulation semantics
 - Concurrent TLM semantics

Outline

- > Transaction level modeling in SystemC
- Verifying SystemC/TLM
- The Lotos/CADP framework for semantics comparison
- Conclusion

A uniform framework for comparison

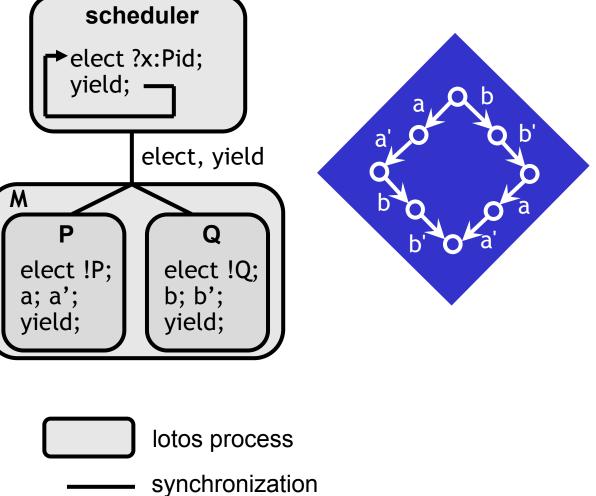
Lotos


- Process algebra
- Formal semantics
 - Asynchronous concurrent processes
 - Synchronization and communication by *rendezvous*

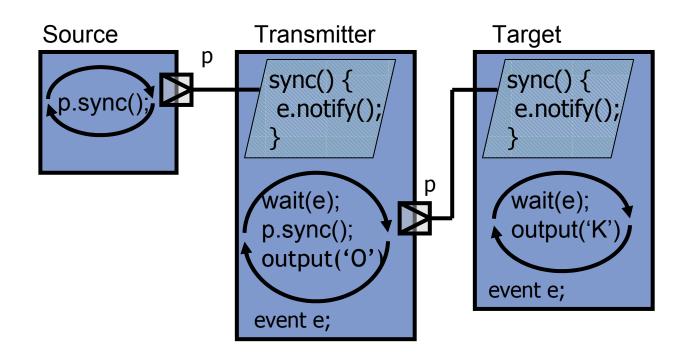
CADP

- µ-calculus model-checking
- Equivalence checking
- Compositional verification

Motivating example 1



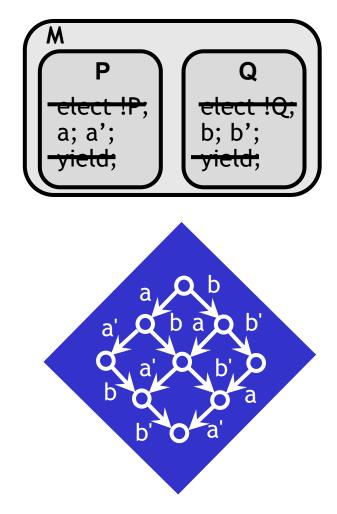
Incomplete synchronization between Source and Target processes: possible system deadlock



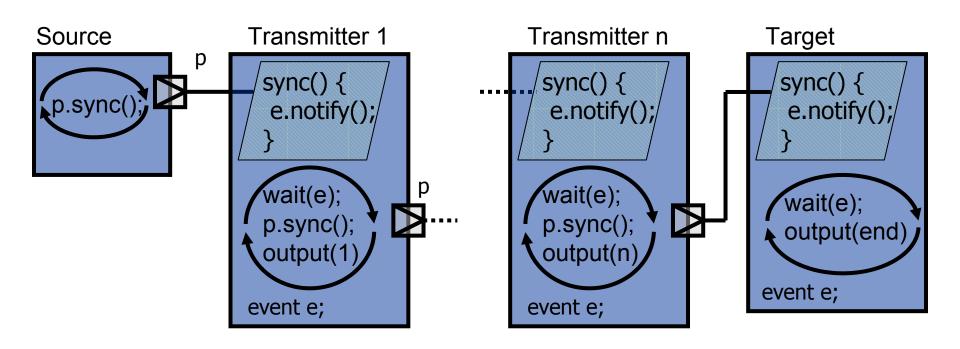
SystemC simulation semantics in Lotos

```
SC_MODULE(M) {
    SC_HAS_PROCESS(M);
    SC_CTOR(M) {
        SC_THREAD(P);
        SC_THREAD(Q);
    }
    void P() { a; a' }
    void Q() { b; b' }
};
```


Motivating example 2



- In a concurrent implementation, "OK" and "KO" are both possible outputs
- With SystemC simulation semantics, the possibly erroneous "KO" output is missed


Concurrent TLM semantics in Lotos

```
SC_MODULE(M) {
    SC_HAS_PROCESS(M);
    SC_CTOR(M) {
        SC_THREAD(P);
        SC_THREAD(Q);
    }
    void P() { a; a' }
    void Q() { b; b' }
};
```


Comparison benchmark

Comparison of the two semantics

Qualitative

- Concurrent TLM ⊃_{branching} SystemC simulation
- Concurrent TLM ⊄_{branching} SystemC simulation
- The concurrent TLM semantics generalizes the SystemC simulation semantics

Quantitative

- SystemC simulation generates bigger LTSs although they are strictly included in concurrent TLM models
- Once minimized, interesting behaviors are indeed less numerous in SystemC simulation models

Conclusion

- Existing SystemC/TLM formal semantics are difficult to compare
- > We used Lotos/CADP as a uniform framework to
 - Show concurrent TLM semantics generalizes SystemC simulation semantics
 - Show concurrent TLM semantics scales as well as SystemC simulation semantics
 - Evaluate the performance impact of several transaction encoding variants

Perspectives

- > On-going work on an industrial case-study (approx.
 26 000 lines of code)
- > Automating the translation
- Inverse translation: Lotos into SystemC/TLM

A Comparison of Two SystemC/TLM Semantics for Formal Verification

Olivier Ponsini and Claude Helmstetter INRIA / VASY http://www.inrialpes.fr/vasy

