
A Comparison of Two SystemC/TLM 
Semantics for Formal Verification

Olivier Ponsini
 

and
 

Claude Helmstetter
INRIA / VASY

http://www.inrialpes.fr/vasy

http://www.inrialpes.fr/vasy


MEMOCODE 2008 2

Outline

Transaction level modeling in SystemC
Verifying SystemC/TLM
The Lotos/CADP framework for semantics 
comparison
Conclusion



MEMOCODE 2008 3

Electronic design models

Physical chip Hardware
description (RTL)

Abstract model
(TLM)

...
D=read_block(A,S)
D=transform(D,P);
write_block(D,A);

...

Fast
Early available

Less accurate
No synthesis

but:

Accurate
Easy to debug

Too late
Very slow

but:

Accurate
Fast

Too late
Hard to debug

but:



MEMOCODE 2008 4

Untimed
 

transaction level models
Embedded software programmer’s view

Architecture: modules
Behavior: processes
Communication:

•

 

Transactions
 

(inter-modules)
•

 

Synchronizations
 

(inter-processes)

Untimed TLM model of computation
Concurrent execution of independent processes
System synchronization for causal dependencies

Reference model
Functional verification
Embedded software development
Co-simulation



MEMOCODE 2008 5

SystemC

A C++ library

Heterogeneous (hard/soft) system modeling
Module and port classes to describe architectures

Threads and events to describe behaviors

System simulation
A global nonpreemptive scheduler

A simulated time



MEMOCODE 2008 6

Outline

Transaction level modeling in SystemC
Verifying SystemC/TLM
The Lotos/CADP framework for semantics 
comparison
Conclusion



MEMOCODE 2008 7

Verifying SystemC/TLM models
Main TLM modeling challenge: find all the 
synchronizations needed between processes

Not the software sequential algorithms
But the interactions between components

Verification needs to explore
Data space and
Processes interleaving space

send

ack



MEMOCODE 2008 8

Semantics of SystemC/TLM

Usual approach for formal verification

No authoritative semantics
SystemC simulation semantics
Concurrent TLM semantics

translation
and

abstraction

formal model
(e.g. automata)

SystemC/TLM model

formal
verification

tool

properties



MEMOCODE 2008 9

Outline

Transaction level modeling in SystemC
Verifying SystemC/TLM
The Lotos/CADP framework for semantics 
comparison
Conclusion



MEMOCODE 2008 10

A uniform framework for comparison

Lotos
Process algebra
Formal semantics

•

 

Asynchronous concurrent processes
•

 

Synchronization and communication by rendezvous

CADP
µ-calculus model-checking
Equivalence checking
Compositional verification



MEMOCODE 2008 11

Motivating example 1

Incomplete synchronization between Source and 
Target processes: possible system deadlock

Source

p.sync();

p
Target

wait(e);
output("OK ")

sync() {
e.notify();

}

event e;



MEMOCODE 2008 12

SystemC
 

simulation semantics in Lotos

scheduler

elect ?x:Pid;
yield;

P
elect !P;
a; a’;
yield;

Q
elect !Q;
b; b’;
yield;

elect, yield

SC_MODULE(M) {
SC_HAS_PROCESS(M);
SC_CTOR(M) {
SC_THREAD(P);
SC_THREAD(Q);

}
void P() { a; a’

 
}

void Q() { b; b’

 
}

};

lotos process

synchronization

M

b

b'

b

b'

a

a

a'

a'



MEMOCODE 2008 13

Motivating example 2

In a concurrent implementation, “OK” and “KO” are 
both possible outputs
With SystemC simulation semantics, the possibly 
erroneous “KO” output is missed

Source Transmitter

wait(e);
p.sync();
output(‘O’)

p.sync();
sync() {
e.notify();

}

p

event e;

p

Target

wait(e);
output(‘K’)

sync() {
e.notify();
}

event e;



MEMOCODE 2008 14

Concurrent TLM semantics in Lotos

P
elect !P;
a; a’;
yield;

Q
elect !Q;
b; b’;
yield;

SC_MODULE(M) {
SC_HAS_PROCESS(M);
SC_CTOR(M) {
SC_THREAD(P);
SC_THREAD(Q);

}
void P() { a; a’

 
}

void Q() { b; b’

 
}

};

M

b

b'

b

b

b'

b'

a
a

a

a'

a'

a'



MEMOCODE 2008 15

Comparison benchmark

Source

p.sync();

p
Target

wait(e);
output(end)

sync() {
e.notify();
}

event e;

Transmitter
 

1

wait(e);
p.sync();
output(1)

sync() {
e.notify();

}

event e;

p

Transmitter
 

n

wait(e);
p.sync();
output(n)

sync() {
e.notify();

}

event e;



MEMOCODE 2008 16

Comparison of the two semantics

Qualitative

Concurrent TLM ⊃branching SystemC simulation

Concurrent TLM ⊄branching SystemC simulation
The concurrent TLM semantics generalizes the SystemC
simulation semantics

Quantitative
SystemC simulation generates bigger LTSs although they 
are strictly included in concurrent TLM models
Once minimized, interesting behaviors are indeed less 
numerous in SystemC simulation models 



MEMOCODE 2008 17

Conclusion

Existing SystemC/TLM formal semantics are difficult 
to compare
We used Lotos/CADP as a uniform framework to

Show concurrent TLM semantics generalizes SystemC
simulation semantics
Show concurrent TLM semantics scales as well as SystemC
simulation semantics
Evaluate the performance impact of several transaction 
encoding variants



MEMOCODE 2008 18

Perspectives

On-going work on an industrial case-study (approx. 

26 000 lines of code)

Automating the translation

Inverse translation: Lotos into SystemC/TLM



A Comparison of Two SystemC/TLM 
Semantics for Formal Verification

Olivier Ponsini
 

and
 

Claude Helmstetter
INRIA / VASY

http://www.inrialpes.fr/vasy

http://www.inrialpes.fr/vasy

	A Comparison of Two SystemC/TLM Semantics for Formal Verification
	Outline
	Electronic design models
	Untimed transaction level models
	SystemC
	Outline
	Verifying SystemC/TLM models
	Semantics of SystemC/TLM
	Outline
	A uniform framework for comparison
	Motivating example 1
	SystemC simulation semantics in Lotos
	Motivating example 2
	Concurrent TLM semantics in Lotos
	Comparison benchmark
	Comparison of the two semantics
	Conclusion
	Perspectives
	A Comparison of Two SystemC/TLM Semantics for Formal Verification

