LaMl, Evry, France, September 2005

How Formal Methods Can Contribute to the
Formal Development of Web Services

Gwen Salatn, VASY, INRIA Rhéne-Alpes

joint work with Daniela Berardi, Lucas Bordeaux, Antonella Chirichiello,
Andrea Ferrara, Massimo Mecella, Marco Schaerf

o -

—p.1/3

An introductive example

o .

Organization of a trip (airplane tickets, room booking,
exhibitions, shows, etc) delegated to interacting WSs

internet _ _ P I N

-~ ~ -

Formal methods for web services

o .

» WSs are distributed processes which communicate
through the exchange of messages

» one central question is to make them working together
to perform a given task

» WSs and their interaction are best described using
behavioural description languages

» we privilege abstract and formal languages to use in a
second step existing verification tools

» several candidates, e.g. transition system models (LTS,
Mealy automata, Petri nets)

» we advocate the use of process algebra (PA) as

description means
| P -

.—p3/3

Overview of the approach

o .

abstract layer concrete layer
mapping
(N N
Process Algebra refinement >'2L: Executable Code
(CCS, CSP, LOTOS, o B (BPEL, JAVA..)
Promela, Pi—calculus...) & &
5 % +
+ -
: : s o
. , reverse engineering =0 ,
Editing and reasoning tools — ‘§ Development environment
(CWB-NC, CADP, SPIN ...) — (BPEL Process Manager,
J2EE, .NET...)
\, J \, J

—p.4/3

K

Outline

Describing WSs using PA

Automated reasoning on WSs

Application: negotiating WSs using LOTOS/CADP
Concluding remarks

.—p5/3

K

Outline

Describing WSs using PA

» What is a process algebra?

s Specifying web services as processes
» Composing web services

Automated reasoning on WSs
Application: negotiating WSs using LOTOS/CADP
Concluding remarks

.—p5/3

What is a process algebra? ~~ CCS
- -

» basic entities: input/output actions (request and ‘confirm)

s basic contructs:
. sequence a.P
s hondetermistic choice P+Q
. parallel composition Py ... |FP,
» restriction P\{ai,...,am}

» 7 for hidden actions, esp. result of a synchronization
s termination using 0 and recursive call P
» operational semantics: possible evolutions of a process

(b.0.0 + c.a.0)acON{a} & (a.0a'coN{a} 5 (cO\{a} S 0

o -

.—p.6/3

-

Specifying web services as processes

=

WSs are essentially processes

PAs are an unambiguous way to represent such
behaviours

processes can describe the body of WSs or their
interfaces

levels of abstraction to have a more faithful
representation of a service, e.g. data (LOTOS) or
mobility (w-calculus) (++ wrt Automata-based Models)

PAs are compositional notations, then adequate to
compose services (++)

description of real-size problems thanks to textual
notations (++)

-

.—p.7/3

Specifying web services as processes

-

several suppliers

Store

!

tau :;Suy.
nok?

\\\\Ss ok?

A classical example of communication between a store and

=

Supplier

request?

refuse!

Y accept!

Specifying web services as processes

o .

A classical example of communication between a store and
several suppliers

proc Store =

"buy. (ok.nil + nok.Store)
+ t.nil

proc Supplier =

request.
("refuse.Supplier + ’accept.Supplier)

o -

.—p.8/3

Composing WSs: choreography
- -

» choreography is the problem of guaranteeing that WSs
can interact properly

» this problem is especially tricky when independently
developed services are put together

s it typically involves situations where the design of
services is fixed and their implementation private

» then, services are viewed through their interfaces
(encoded using PA)

» automated tools are needed to perform compatibility
checks

—p.9/3

Composing WSs: choreography
-

.-~ & Supplier

-
s //
-
- -
- - //
- - P
- - _
- - P
- - P
- - P
- - P
- - _
- - P
-
P - Phd
- - -
-
- _ -
- _ -
- -
~‘buy” -
-
~ -
/\/\ Phd .
Store - refuse g Supplier
- ~
- t
~ > accep
~ h *
~
\\ ~ ~
~ ~ ~
~ ~ ~
~ \\ ~
~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ N
~ ~ N
~ ~ N
~ ~ N
~ ~
~ ~
~ ~

® cmission ~._ ¢ Supplier
O reception

.—p.10/3

Composing WSs: choreography
- -

Parallel compositions and restriction sets are used to
describe interactions between a store and several suppliers

*** synchronization set

set restSetC = { request, refuse, accept }

*** composition of 1 store and 3 suppliers
proc SystemC =
(
Store [request/buy, refuse/nok, accept/ok] |
Supplier | Supplier | Supplier
) \ restSetcC

.—p.10/3

Composing WSs: orchestration

o .

e orchestration aims at developing a new service using
existing ones

» the role of the new service (orchestrator) is to manage
some existing services by exchanging messages with
them

» abstract descriptions in PA can be used in two ways:

s during the design stage (abst. — conc.)
s for reverse engineering purposes (abst. «<— conc.)

s automated reasoning is useful to validate the
orchestrator service

—p.11/3

Composing WSs: orchestration

o .

For instance, iterating the request on both suppliers, and
terminating if a positive answer is received or both suppliers
reply negatively.

~

Supplier

\ J

()

Supplier

J

® emission
O reception

—p.12/3

Composing WSs: orchestration

proc Orchest = buy.Orchl

proc Orchl = 'regl. (accl.’ok.nil + refl.Orch2)
proc Orch2 = "reg2. (acc2.’ok.nil + ref2.’'nok.nil)
set restSetO = *** gsynchronization set

{buy, ok, nok, reqgql, reqg2, accl, acc2, refl, ref2}

*** we rename channels of the two suppliers
proc SystemO =
(
Store
Supplier [reqgl/request, refl/refuse, accl/accept]
Supplier [reg2/request, ref2/refuse, acc2/accept]
Orchest

|
|
|
L__) \ restSetO __J

.—p.13/3

K

Outline

Describing WSs using PA

Automated reasoning on WSs

Application: negotiating WSs using LOTOS/CADP
Concluding remarks

—p.14/3

Outline
L o

» Describing WSs using PA

» Automated Reasoning on WSs

s Verifying properties

» Verifying equivalences

» Verifying compatibility
s Application: negotiating WSs using LOTOS/CADP
s Concluding remarks

—p.14/3

Automated reasoning on web services

o .

» formally-grounded languages enable one to use
automated tools to check that a system matches its
requirements and works properly

» these tools can help

s checking that a service satisfies desirable properties
— e.g. the property that the system will never reach
some unexpected state

. checking that two processes are equivalent —
typically one abstract process expresses the
specification of the problem, while the other is a
composition of services as a possible solution

s checking compatibility of services then ensuring
L correct interactions J

.—p.15/3

Verifying properties
- o

» properties of interest in concurrent systems typically
iInvolve reasoning on the possible scenarii that the
system can go through

» established formalism for expressing such properties is
given by temporal logics
» the most noticeable classes of properties are:

. safety properties, which state that an undesirable
situation will never arise

s liveness properties, which state that something good
must happen

o -

.—p.16/3

Veritying equivalences

o .

» two processes are considered to be equivalent if they
are indistinguishable from the viewpoint of an external
observer

» trace equivalence: they produce the same set of traces

» oObservational equivalence is a more appropriate notion
of process equivalence

(A) d a (B) tau
a
> b . X b
b C b C C

s strong bisimulation too restrictive: strict matching of the

7 actions
-

—p17/3

When are two WSs compatible?

o .

s compatibility: ensuring that WSs will be able to interact
properly

» substitutability: replacing one WS by another without
introducing flaws

» It depends not only on static properties but also on their
dynamic behaviour (service interface)

» compatibility checking can be automated (CADP, SPIN)
if defined in a sufficient formal way

.—p.18/3

Compatibility 1: opposite behaviours
B o

Two services are compatible if they have opposite
behaviours (observational equivalence)

V {

©

reply! reply!

order? info?

order! reply?

O

Compatibility 2: unspecified receptions

o .

Two services are compatible if they have no unspecified
receptions

{

@ search?

order! ack? order? ack!

O O

Compatibility 3: one-path existence

o .

Two services are compatible if there is at least one
execution leading to a pair of final states

{

@ search?

order?

order! ack?

ack!

Q Q alarm!

K

Outline

Describing WSs using PA

Automated reasoning on WSs

Application: negotiating WSs using LOTOS/CADP
Concluding remarks

- p.22/3

LOTOS/CADP for Web Services
L o

» INn some cases, a less abstract level of description is
needed

s LOTOS and CADP to abstractly describe and reason on
WSs handling data

» negotiation is a typical example of services involving
data (prices, products, stocks)

» clients and providers have to reach an agreement
beneficial to all of them

» Involved aspects: variables, constraints, exchanged
iInformation, strategies

.- p.23/3

LOTOS in a nutshell
L o

s abstract data types: sorts, operations, generators,
axioms

-

LOTOS in a nutshell

type BasicNaturalNumber 1is

sorts Nat

opns 0 (*! constructor *)
Succ (*! constructor *)
+_ : Nat, Nat —> Nat
eqns
forall m, n : Nat

ofsort Nat
m + 0 = m;
m + Succ(n) =
endtype

Succ (m)

—> Nat

Nat —> Nat

. —p.24/3

LOTOS in a nutshell
L o

» abstract data types: sorts, operations, generators,
axioms

s basic LOTOS: gates, exit, g;B, [, B1l[g1, ---, gn]| B2

cc; exit
[]
(
bb; 1inter; exit
| [1nter] |

inter; aa; exit

. —p.24/3

LOTOS in a nutshell

abstract data types: sorts, operations, generators,
axioms

basic LOTOS: gates, exit, g;B, [, Bil[g1, .-, gn]| B2
full LOTOS: gV, g?X:S, [boolexp] — B
cc; exit
[]
(
bb; inter?y:Nat; ([y>2] —-> cc; exit)
| [1nter] |

inter!5; aa; exit

. —p.24/3

>

LOTOS in a nutshell
-

abstract data types: sorts, operations, generators,
axioms

basic LOTOS: gates, exit, g;B, [, Bil[g1, .-, gn]| B2
full LOTOS: g!V, g?X:S, [boolexp] — B
the CADP toolbox:

»

o

’ []

input notations (LOTOS, LTSs)

an open environment OPEN/CAESAR, In particular
EvALUATOR an on-the-fly model-checker

BisiMuLATOR: on-the-fly equivalence/preorder
checking

~ http://www.lnrialpes.fr/vasy/cadp/

-

. —p.24/3

Negotiation case: specification

=

Client Provider

AN N

request!ref

request?ref

.—p.25/3

-

Negotiation case: specification

process NegotiateC [order, refusal, commC, commP]

(curp: Nat, inv: Inv, computfct: Comp): exit (Bool) =
commP ?p:Nat; (* the provider proposes a value ¥*)
(

[conform(p, inv)] —-> order; exit (true) (* agreement *)

[]

[not (conform(p, 1inv))] —-> refusal;

)
[]
(

NegotiateC|[order, refusal, commC, commP]

(curp, inv, computfct)

(* the client proposes a value *)
[conform(curp, inv)] —-> commC!curp;
(
order; exit (true) (* agreement *)
[]
refusal; NegotiateC[...]

(compute (curp, computfct), inv, computfct)

=

.~ p.26/3

Negotiation case: verification

o .

» Vverification to ensure a correct processing of the
negotiation rounds

» simulation, absence of deadlocks, temporal properties
(eg. <true*."ORDER"> true)

Participants | States Trans. P1 P2 P3

(1c & 1p) | 32 47 3.84s | 2.15s 2.21s
(1c&7p) | 17,511 | 42,848 | 4.64s | 27.70s | 27.35s
(
(

1c & 10p) | 145,447 | 374,882 | 5.10s | 1326.94s | 1313.16s
2c & 4p) | 300,764 | 944,394 | 5.31s | 117.41s | 117.79s

o -

—p.27/3

-

Mapping LOTOS <—> BPEL

LOTOS

=

BPEL

gates + offers

message, portlype, operation,
partnerLinkType (WSDL),
and receive, reply, invoke (BPEL)

termination ’exit’

end of the main sequence

sequence ’;

sequence

choice]

pick and switch

parallel composition |[..]|

interacting WSs

recursive call

new instantiation or while

datatypes and operations

XML Schema, DBs, XPath, etc

guards

case Of switch

.- p.28/3

K

Outline

Describing WSs using PA

Automated reasoning on WSs

Application: negotiating WSs using LOTOS/CADP
Concluding remarks

.~ p.29/3

Concluding remarks

o .

s WSs are an emerging and promising area involving
important technological challenges

» PAs offer adequate notations and tools to describe,
compose and reason on WSs at an abstract level

Perspectives:

» service description: adequate level of description,
interface extraction, conformance

» composition of WSs: compatibility, automation,
adaptation

» systematic mapping between abstract and concrete

L description levels J

.—p.30/3

Main references

f(1) G. Salaun, L. Bordeaux and M. Schaerf. Describing andT
Reasoning on Web Services using Process Algebra.
Proc. of ICWS'04, IEEE CSP, p. 43—-51. Extended
version to appear in the [JBPIM journal.

(2) G. Saladn, A. Ferrara and A. Chirichiello. Negotiation

among Web Services using LOTOS/CADP. Proc. of
ECOWS’04, LNCS 3250, SV, p. 198-212.

(3) L. Bordeaux, G. Salaun, D. Berardi and M. Mecella.
When are two Web Services Compatible? Proc. of
TES'04, LNCS 3324, SV, p. 15-28.

(4) A. Chirichiello and G. Salaun. Encoding Abstract
Descriptions into Executable Web Services: Towards a
Formal Development. In Proc. of WI'05, IEEE CSP, p.

 457-463. -

.—p31/3

	{scriptsize LaMI, 'Evry, France, September 2005}
	An introductive example
	Formal methods for web services
	Overview of the approach
	Outline
	What is a process algebra? $leadsto $ CCS
	Specifying web services as processes
	Specifying web services as processes
	Composing WSs: choreography
	Composing WSs: choreography
	Composing WSs: orchestration
	Composing WSs: orchestration
	Composing WSs: orchestration
	Outline
	Automated reasoning on web services
	Verifying properties
	Verifying equivalences
	When are two WSs compatible?
	Compatibility 1: opposite behaviours
	Compatibility 2: unspecified receptions
	Compatibility 3: one-path existence
	Outline
	LOTOS/CADP for Web Services
	LOTOS in a nutshell
	Negotiation case: specification
	Negotiation case: specification
	Negotiation case: verification
	Mapping LOTOS <--> BPEL
	Outline
	Concluding remarks
	Main references

