
LaMI, Évry, France, September 2005

How Formal Methods Can Contribute to the
Formal Development of Web Services

Gwen Salaün, VASY, INRIA Rhône-Alpes

joint work with Daniela Berardi, Lucas Bordeaux, Antonella Chirichiello,
Andrea Ferrara, Massimo Mecella, Marco Schaerf

. – p.1/31

An introductive example

Organization of a trip (airplane tickets, room booking,
exhibitions, shows, etc) delegated to interacting WSs

ws

ws

ws

ws

ws

ws

ws

internet

request

. – p.2/31

Formal methods for web services

WSs are distributed processes which communicate
through the exchange of messages

one central question is to make them working together
to perform a given task

WSs and their interaction are best described using
behavioural description languages

we privilege abstract and formal languages to use in a
second step existing verification tools

several candidates, e.g. transition system models (LTS,
Mealy automata, Petri nets)

we advocate the use of process algebra (PA) as
description means

. – p.3/31

Overview of the approach

concrete layerabstract layer

++

J2EE, .NET...)
(BPEL Process Manager,

Development environment

(BPEL, JAVA...)

Executable Code

(CWB−NC, CADP, SPIN ...)
Editing and reasoning tools

Promela, Pi−calculus...)
(CCS, CSP, LOTOS,

Process Algebra refinement

mapping

reverse engineering in
te

rf
ac

e
(W

SD
L

, W
S−

C
D

L
...

)

. – p.4/31

Outline

Describing WSs using PA

Automated reasoning on WSs

Application: negotiating WSs using LOTOS/CADP

Concluding remarks

. – p.5/31

Outline

Describing WSs using PA
What is a process algebra?
Specifying web services as processes
Composing web services

Automated reasoning on WSs

Application: negotiating WSs using LOTOS/CADP

Concluding remarks

. – p.5/31

What is a process algebra? CCS

basic entities: input/output actions (request and ’confirm)

basic contructs:
sequence a.P

nondetermistic choice P+Q

parallel composition

��� �� � � � ���
restriction

� �� 	 ��
 � � �
 	� �

� for hidden actions, esp. result of a synchronization

termination using

�

and recursive call P

operational semantics: possible evolutions of a process

� ���� �� � ��� � �� � �� � �� �� � � �� � � �
! " � �� �� � �� �� � � �� � � � #! " � �� � � �� � � � $&% ! " �

. – p.6/31

Specifying web services as processes

WSs are essentially processes

PAs are an unambiguous way to represent such
behaviours

processes can describe the body of WSs or their
interfaces

levels of abstraction to have a more faithful
representation of a service, e.g. data (LOTOS) or
mobility ('-calculus) (++ wrt Automata-based Models)

PAs are compositional notations, then adequate to
compose services (++)

description of real-size problems thanks to textual
notations (++)

. – p.7/31

Specifying web services as processes

A classical example of communication between a store and
several suppliers

buy!
tau

Store

ok?

nok? request?

refuse! accept!

Supplier

. – p.8/31

Specifying web services as processes

A classical example of communication between a store and
several suppliers

proc Store =

’buy. (ok.nil + nok.Store)
+ t.nil

proc Supplier =

request.
(’refuse.Supplier + ’accept.Supplier)

. – p.8/31

Composing WSs: choreography

choreography is the problem of guaranteeing that WSs
can interact properly

this problem is especially tricky when independently
developed services are put together

it typically involves situations where the design of
services is fixed and their implementation private

then, services are viewed through their interfaces
(encoded using PA)

automated tools are needed to perform compatibility
checks

. – p.9/31

Composing WSs: choreography

Store

Supplier

Supplier

Supplier
reception
emission

buy
refuse
accept

. – p.10/31

Composing WSs: choreography

Parallel compositions and restriction sets are used to
describe interactions between a store and several suppliers

*** synchronization set

set restSetC =

(

request, refuse, accept

)

*** composition of 1 store and 3 suppliers

proc SystemC =

(

Store [request/buy, refuse/nok, accept/ok] |

Supplier | Supplier | Supplier

)

*

restSetC

. – p.10/31

Composing WSs: orchestration

orchestration aims at developing a new service using
existing ones

the role of the new service (orchestrator) is to manage
some existing services by exchanging messages with
them

abstract descriptions in PA can be used in two ways:
during the design stage (abst. + conc.)
for reverse engineering purposes (abst. , conc.)

automated reasoning is useful to validate the
orchestrator service

. – p.11/31

Composing WSs: orchestration

For instance, iterating the request on both suppliers, and
terminating if a positive answer is received or both suppliers
reply negatively.

nok
ok req2

req1
ref1
acc1

ref2
acc2

reception
emission

Store

Supplier

Supplier
buy

Orchest

. – p.12/31

Composing WSs: orchestration

proc Orchest = buy.Orch1

proc Orch1 = ’req1. (acc1.’ok.nil + ref1.Orch2)

proc Orch2 = ’req2. (acc2.’ok.nil + ref2.’nok.nil)

set restSetO = *** synchronization set

{buy, ok, nok, req1, req2, acc1, acc2, ref1, ref2}

*** we rename channels of the two suppliers

proc SystemO =

(

Store

| Supplier [req1/request, ref1/refuse, acc1/accept]

| Supplier [req2/request, ref2/refuse, acc2/accept]

| Orchest

) \ restSetO

. – p.13/31

Outline

Describing WSs using PA

Automated reasoning on WSs

Application: negotiating WSs using LOTOS/CADP

Concluding remarks

. – p.14/31

Outline

Describing WSs using PA

Automated Reasoning on WSs
Verifying properties
Verifying equivalences
Verifying compatibility

Application: negotiating WSs using LOTOS/CADP

Concluding remarks

. – p.14/31

Automated reasoning on web services

formally-grounded languages enable one to use
automated tools to check that a system matches its
requirements and works properly

these tools can help
checking that a service satisfies desirable properties
– e.g. the property that the system will never reach
some unexpected state

checking that two processes are equivalent –
typically one abstract process expresses the
specification of the problem, while the other is a
composition of services as a possible solution

checking compatibility of services then ensuring
correct interactions

. – p.15/31

Verifying properties

properties of interest in concurrent systems typically
involve reasoning on the possible scenarii that the
system can go through

established formalism for expressing such properties is
given by temporal logics

the most noticeable classes of properties are:
safety properties, which state that an undesirable
situation will never arise
liveness properties, which state that something good
must happen

. – p.16/31

Verifying equivalences

two processes are considered to be equivalent if they
are indistinguishable from the viewpoint of an external
observer

trace equivalence: they produce the same set of traces

observational equivalence is a more appropriate notion
of process equivalence

a a

b c

a

b c

tau(B)(A)

b
c

b c

strong bisimulation too restrictive: strict matching of the

� actions

. – p.17/31

When are two WSs compatible?

compatibility: ensuring that WSs will be able to interact
properly

substitutability: replacing one WS by another without
introducing flaws

it depends not only on static properties but also on their
dynamic behaviour (service interface)

compatibility checking can be automated (CADP, SPIN)
if defined in a sufficient formal way

. – p.18/31

Compatibility 1: opposite behaviours

Two services are compatible if they have opposite
behaviours (observational equivalence)

reply!reply!

info?order?reply?info!order!

. – p.19/31

Compatibility 2: unspecified receptions

Two services are compatible if they have no unspecified
receptions

ack!ack?

search?

order?order!

. – p.20/31

Compatibility 3: one-path existence

Two services are compatible if there is at least one
execution leading to a pair of final states

ack!

ack?

search?

order?

alarm!

order!

. – p.21/31

Outline

Describing WSs using PA

Automated reasoning on WSs

Application: negotiating WSs using LOTOS/CADP

Concluding remarks

. – p.22/31

LOTOS/CADP for Web Services

in some cases, a less abstract level of description is
needed

LOTOS and CADP to abstractly describe and reason on
WSs handling data

negotiation is a typical example of services involving
data (prices, products, stocks)

clients and providers have to reach an agreement
beneficial to all of them

involved aspects: variables, constraints, exchanged
information, strategies

. – p.23/31

LOTOS in a nutshell

abstract data types: sorts, operations, generators,
axioms

. – p.24/31

LOTOS in a nutshell

type BasicNaturalNumber is

sorts Nat

opns 0 (*! constructor *) : -> Nat

Succ (*! constructor *) : Nat -> Nat

+ : Nat, Nat -> Nat

eqns

forall m, n : Nat

ofsort Nat

m + 0 = m;

m + Succ(n) = Succ(m) + n;
endtype

. – p.24/31

LOTOS in a nutshell

abstract data types: sorts, operations, generators,
axioms

basic LOTOS: gates, exit, g;B, [],

- � �.0/ �
 � � �
 / � 1 � -�2

cc; exit

[]

(

bb; inter; exit

|[inter]|

inter; aa; exit

)

. – p.24/31

LOTOS in a nutshell

abstract data types: sorts, operations, generators,
axioms

basic LOTOS: gates, exit, g;B, [],

- � �.0/ �
 � � �
 / � 1 � -�2

full LOTOS: g!V, g?X:S, [boolexp] + B

cc; exit

[]

(

bb; inter?y:Nat; ([y>2] -> cc; exit)

|[inter]|

inter!5; aa; exit

)

. – p.24/31

LOTOS in a nutshell

abstract data types: sorts, operations, generators,
axioms

basic LOTOS: gates, exit, g;B, [],

- � �.0/ �
 � � �
 / � 1 � -�2

full LOTOS: g!V, g?X:S, [boolexp] + B
the CADP toolbox:

input notations (LOTOS, LTSs)
an open environment OPEN/CAESAR, in particular
EVALUATOR an on-the-fly model-checker
BISIMULATOR: on-the-fly equivalence/preorder
checking
... 3 http://www.inrialpes.fr/vasy/cadp/

. – p.24/31

Negotiation case: specification

request?ref

reply!b

commC?p

orderorder

commC!p

orderorder

commP?p commP!p

refusal refusal refusal refusal

Client Provider

reply?b

request!ref

. – p.25/31

Negotiation case: specification

process NegotiateC [order, refusal, commC, commP]

(curp: Nat, inv: Inv, computfct: Comp): exit(Bool) :=

commP?p:Nat; (* the provider proposes a value *)

(

[conform(p, inv)] -> order; exit(true) (* agreement *)

[]

[not(conform(p, inv))] -> refusal;

NegotiateC[order, refusal, commC, commP]

(curp, inv, computfct)

)

[] (* the client proposes a value *)

([conform(curp, inv)] -> commC!curp;

(

order; exit(true) (* agreement *)

[]

refusal; NegotiateC[...]

(compute(curp, computfct), inv, computfct)

)

) . – p.26/31

Negotiation case: verification

verification to ensure a correct processing of the
negotiation rounds

simulation, absence of deadlocks, temporal properties
(eg. <true*."ORDER"> true)

Participants States Trans. P1 P2 P3

(1c & 1p) 32 47 3.84s 2.15s 2.21s

(1c & 7p) 17,511 42,848 4.64s 27.70s 27.35s

(1c & 10p) 145,447 374,882 5.10s 1326.94s 1313.16s

(2c & 4p) 300,764 944,394 5.31s 117.41s 117.79s

. – p.27/31

Mapping LOTOS <–> BPEL

LOTOS BPEL

message, portType, operation,
gates + offers partnerLinkType (WSDL),

and receive, reply, invoke (BPEL)

termination ’exit’ end of the main sequence

sequence ’;’ sequence

choice ’[]’ pick and switch

parallel composition ’

�. � � 1 �
’ interacting WSs

recursive call new instantiation or while

datatypes and operations XML Schema, DBs, XPath, etc
guards case of switch

. – p.28/31

Outline

Describing WSs using PA

Automated reasoning on WSs

Application: negotiating WSs using LOTOS/CADP

Concluding remarks

. – p.29/31

Concluding remarks

WSs are an emerging and promising area involving
important technological challenges

PAs offer adequate notations and tools to describe,
compose and reason on WSs at an abstract level

Perspectives:

service description: adequate level of description,
interface extraction, conformance

composition of WSs: compatibility, automation,
adaptation

systematic mapping between abstract and concrete
description levels

. – p.30/31

Main references

(1) G. Salaün, L. Bordeaux and M. Schaerf. Describing and
Reasoning on Web Services using Process Algebra.
Proc. of ICWS’04, IEEE CSP, p. 43–51. Extended
version to appear in the IJBPIM journal.

(2) G. Salaün, A. Ferrara and A. Chirichiello. Negotiation
among Web Services using LOTOS/CADP. Proc. of
ECOWS’04, LNCS 3250, SV, p. 198–212.

(3) L. Bordeaux, G. Salaün, D. Berardi and M. Mecella.
When are two Web Services Compatible? Proc. of
TES’04, LNCS 3324, SV, p. 15–28.

(4) A. Chirichiello and G. Salaün. Encoding Abstract
Descriptions into Executable Web Services: Towards a
Formal Development. In Proc. of WI’05, IEEE CSP, p.
457–463.

. – p.31/31

	{scriptsize LaMI, 'Evry, France, September 2005}
	An introductive example
	Formal methods for web services
	Overview of the approach
	Outline
	What is a process algebra? $leadsto $ CCS
	Specifying web services as processes
	Specifying web services as processes
	Composing WSs: choreography
	Composing WSs: choreography
	Composing WSs: orchestration
	Composing WSs: orchestration
	Composing WSs: orchestration
	Outline
	Automated reasoning on web services
	Verifying properties
	Verifying equivalences
	When are two WSs compatible?
	Compatibility 1: opposite behaviours
	Compatibility 2: unspecified receptions
	Compatibility 3: one-path existence
	Outline
	LOTOS/CADP for Web Services
	LOTOS in a nutshell
	Negotiation case: specification
	Negotiation case: specification
	Negotiation case: verification
	Mapping LOTOS <--> BPEL
	Outline
	Concluding remarks
	Main references

