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1 Introduction

The study of genetic regulatory networks, which underlie the functioning of liv-
ing organisms, has received a major impetus from the recent development of
high-throughput genomic techniques. This experimental progress calls for the
development of appropriate computer tools supporting the analysis of genetic
regulatory processes. We have developed a modeling and simulation method [5,
7], based on piecewise-linear differential equations, that is well-adapted to the
qualitative nature of most available biological data. The method has been im-
plemented in the tool Genetic Network Analyzer (Gna) [6], which produces a
graph of qualitative states and transitions between qualitative states. The graph
provides a discrete abstraction of the dynamics of the system.

A bottleneck in the application of the qualitative simulation method is the
analysis of the state transition graph, which is usually too large for visual in-
spection. In this paper, we propose a model-checking approach to perform this
task in a systematic and efficient way. Given that certain properties of biological
interest are of a branching nature (see, e.g., the bistability property in Section 3),
a branching-time temporal logic is necessary. Also, abstractions of state transi-
tion graphs can be performed more conveniently by using standard equivalence
relations defined on Labeled Transition Systems (Ltss) rather than by imple-
menting ad hoc reductions. Therefore, we developed a connection between the
qualitative simulator Gna and the widely-used Cadp verification toolbox [8],
which provides the required analysis functionalities on Ltss.

The connection is established as follows. Firstly, a dedicated translator con-
verts the state transition graph resulting from qualitative simulation into an Lts

suitable for automated verification. Then, after instantaneous states have been
abstracted away by means of branching bisimulation, various properties charac-
terizing the evolution of protein concentrations are checked by encoding them
in regular alternation-free µ-calculus. The diagnostics produced by the Cadp

model checker make it possible to establish a correspondence between verifica-
tion results and biological data, for instance by characterizing evolutions leading
to equilibrium states. We illustrate the combined use of qualitative simulation
and model checking by means of a simple, biologically-inspired example.



2 Qualitative Simulation of Genetic Regulatory Networks

We consider qualitative models of genetic regulatory networks, based on a class
of piecewise-linear differential equations originally proposed in mathemetical bi-
ology [10]. Given a qualitative model of a genetic regulatory network, the quali-
tative simulation method produces a graph of qualitative states and transitions
between qualitative states, qualitatively summarizing the dynamics of the sys-
tem [5, 7]. In the sequel, we present the method by means of an example.

Figure 1(a) represents a simple genetic regulatory network consisting of two
genes, a and b, and two proteins, A and B. When a gene is expressed, the cor-
responding protein is synthesized, which, in turn, can regulate the expression of
its own and the other gene. For example, when gene a is expressed, protein A
is synthesized and, depending on whether its concentration is above or below a
threshold, it may inhibit the expression of gene a and/or b. This network can be
described by means of the differential equations (1)-(2), where xa and xb denote
the concentration of proteins A and B, θ1
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addition, protein A is degraded at a rate proportional to its own concentration
(γa > 0). The parameter inequalities (3)-(4) constrain the parameter values.

ba

A
B

(a)
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Fig. 1. (a) Example of a genetic regulatory network of two genes, a and b. The no-
tation follows, in a somewhat simplified form, the graphical conventions proposed by
Kohn [11]. (b) Qualitative model, corresponding to the two-gene example, composed
of piecewise-linear differential equations (1)-(2) and parameter inequalities (3)-(4).

The phase space can be partitioned into (hyper)rectangular regions, called
flow domains, where the flow is qualitatively identical, that is, where the sign
of the derivatives is identical for all solutions (see Figure 2(a)). For example, in
flow domain D1 = [0, θ1

a[×[0, θ1

b
[, the expression s−(xa, θ2
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) evaluates

to 1 and equation (1) becomes ẋa = κa − γa xa. From the inequalities (3), it
follows that xa < θ1

a < κa/γa, so ẋa > 0. To each flow domain D corresponds a
qualitative state QS defined as the tuple 〈D, S〉, where the vector S represents
the derivative sign of solutions in D. A qualitative state QS = 〈D, S〉 is called
instantaneous, if all solutions traverse D instantaneously and persistent other-
wise. There is a transition from QS1 = 〈D1, S1〉 to QS2 = 〈D2, S2〉, if there



exists a solution reaching D2 from D1. The set of qualitative states and tran-
sitions between qualitative states together form the state transition graph. The
state transition graph corresponding to our two-gene example, represented in
figure 2(b), contains 18 persistent qualitative states, including two stable (QS 6,
QS22) and one unstable (QS12) qualitative equilibrium states.

So, using the simulation method sketched above, the qualitative behavior
emerging from genetic regulatory interactions can be predicted. These results
are obtained using a version of the Gna tool still under development [6]. The
publicly-available version of Gna (Gna 5.0) gives similar results, but uses a
slightly coarser partition of the phase space into domains, which makes the
interpretation of the properties associated to qualitative states less straightfor-
ward.
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Fig. 2. (a) Partition of the phase space into 33 flow domains. Flow domains may be of
dimension 2 (e.g., D1), 1 (e.g., D11) or 0 (e.g., D12). (b) State transition graph, cor-
responding to the two-gene example in figure 1(a). Filled and unfilled dots correspond
to instantaneous and persistent qualitative states, respectively. Qualitative equilibrium
states are circled in addition.

3 Transformation of Simulation Results into LTSs

First of all, it is necessary to translate the simulation result into a format suit-
able for verification. For this purpose, we developed a translator which takes as
input a state transition graph produced by qualitative simulation and produces
a corresponding Lts encoded in the Bcg (Binary Coded Graph) format used by
Cadp [8].

To each qualitative state corresponds a state with a self-transition (loop) in
the Lts. The label of this loop encodes all the properties of the corresponding
qualitative state: its name, the range and derivative sign of protein concentra-
tions, and additional properties specifying whether the state is instantaneous,
persistent, or a stable or unstable equilibrium. Each transition between qualita-
tive states is encoded in the Lts by an invisible transition (labeled by the action
“i”, noted τ in Ccs). Since state transition graphs produced by qualitative sim-
ulation of genetic regulatory networks may be disconnected, we create an initial
state which is linked to all other states in the Lts via special transitions.



Figure 3(a) shows the translation of the persistent qualitative state QS 1

associated to the flow domain D1. This qualitative state is encoded in the Lts by
a state with a loop labeled "PERS <[0,ta1[x[0,tb1[> A+ B+”. Three invisible
transitions originate from this state, linking it to the states corresponding to
QS3, QS 11, and QS12.

...

...

i ...

INIT <[0,ta1[x[0,tb1[>

...

< true* . "PSEQ <{ta2}x{0}> A= B=" > true

and

(b) (c)

(a)

< true* . "PSEQ <{0}x{tb2}> A= B=" > true

)

[ "INIT <[0,ta1[x[0,tb1[>" ]

Fig. 3. (a) Fragment of the Lts corresponding to the qualitative state QS1 and its
successors. “INST”, “PERS”, “PSEQ” and “PUEQ” denote qualitative states that are
instantaneous, persistent non equilibrium, persistent stable equilibrium, and persis-
tent unstable equilibrium, respectively. The derivative sign of each protein concentra-
tion is represented by ’=’, ’-’ and ’+’. (b) Bistability property formulated in regular
alternation-free µ-calculus. (c) Diagnostic produced by model-checking.

A simplified Lts can be obtained from the original Lts by abstracting away
the states corresponding to instantaneous qualitative states. By exploiting the
fact that in the qualitative model there are never two successive instantaneous
states, we can perform this simplification by hiding all labels corresponding to
instantaneous qualitative states in the original Lts and minimizing it modulo
branching bisimulation using the Bcg Min tool of Cadp. The dynamical prop-
erties of interest are preserved in the simplified Lts.

4 Verification using Temporal Logic

Once the Lts corresponding to the genetic regulatory network has been gener-
ated by using Gna together with the translator described in Section 3, we can
use the model checking technologies available in Cadp to analyze the behaviour
of the biological system. The methodology adopted consists of two steps:



– First, each desired property is expressed as a formula in regular alternation-
free µ-calculus [12], which is the input language of the Evaluator 3.0 model
checker of Cadp. This temporal logic is a good compromise between expres-
sive power (it subsumes Ctl and Pdl), user-friendliness (concise formula
descriptions due to regular expressions), and model-checking efficiency (al-
gorithms linear w.r.t. formula size and Lts size). Also, generic properties
can be encoded as macro definitions and grouped into reusable libraries.

– Second, each property is verified on the Lts using Evaluator 3.0, which
produces diagnostics (counterexamples and witnesses) illustrating its truth
value. The diagnostics obtained, represented as Ltss, can then be inspected
visually using the Bcg Edit graphical Lts editor of Cadp. Diagnostics can
also be replayed interactively in the Lts by means of the graphical simulator
Ocis of Cadp.

Figure 3 illustrates the verification of the bistability property on the Lts con-
structed from the genetic regulatory network given in Figure 1. This property
states that from an initial state QS1 in which both proteins A and B have low
concentrations (below θ1

a and θ1

b
), it is possible to reach two different stable

equilibrium states (QS22 and QS6) in which only one protein is present and at
a high concentration (at θ2

a and at θ2

b
, respectively). The diagnostic (witness)

exhibited by Evaluator 3.0 is a Lts subgraph containing the paths going from
the initial state to the two stable equilibrium states.

Other biologically interesting properties (e.g., reachability of certain equi-
librium states, existence of behaviours satisfying certain constraints on protein
concentrations) can be verified in a similar way.

5 Conclusion

Our approach for analyzing biological systems consists in connecting Gna, a
qualitative simulation tool well-adapted to the available information on genetic
regulatory networks, to the widely-used Cadp verification toolbox. By translat-
ing the state transition graph produced by Gna into a Lts, standard verification
technologies become available for analyzing the dynamics of the underlying ge-
netic regulatory network.

Checking properties of qualitative simulation results using temporal logic was
originally proposed by Shults and Kuipers [14]. Chabrier and Fages [4] and Peres
and Comet [13] have also addressed the formal analysis of genetic regulatory net-
works using model-checking approaches, but they use rather simple rule-based
and Boolean models, respectively. Like us, Alur et al. [1], Antoniotti et al. [2]
and Ghosh et al. [9] use hybrid models to analyze biological networks. However,
Alur et al. and Antoniotti et al. use numerical instead of qualitative models.
The most closely-related work is the symbolic reachability analysis of Ghosh et

al., but the authors ignore the problems related to discontinuities in the right-
hand side of the differential equations. Additionally, Gna has been tailored so as
to exploit the favorable mathematical properties of the piecewise-linear models,
which may make it better capable of analyzing large and complex genetic regu-
latory networks. In previous work, we used Ctl [3], as in [4] and [13], but the



use of the more expressive and convenient regular alternation-free µ-calculus, to-
gether with the diagnostic generation and interactive simulation facilities offered
by Cadp, makes it possible to easily express properties, interpret the results of
the analysis, and relate them to biological reality.
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