
Encoding Abstract Descriptions into Executable
Web Services: Towards a Formal Development

Antonella Chirichiello1 and Gwen Salaün2

1DIS - Università di Roma “La Sapienza”, Italy
Email: chirichiello@dis.uniroma1.it

2INRIA Rhône-Alpes, France
Email: Gwen.Salaun@inrialpes.fr

Abstract. It is now widely accepted that formal methods are helpful for
many issues raised in the web services area. In this report, we advocate
the use of process algebra as a first step in the design and development of
executable web services. From such formal descriptions, reasoning tools
can be used to validate their correct execution. We define some guidelines
to encode abstract specifications of services-to-be written using these
calculi into executable web services. As a back-end language, we consider
the standard orchestration language BPEL. We illustrate our approach
through the development of an e-business application.

1 Introduction

Web services (WSs) are network-based software components deployed
and then accessed through the internet using standard interface descrip-
tion languages and uniform communication protocols. Each service solves
a precise task, and may communicate with other services by exchang-
ing messages. Several XML-based standardized technologies have already
been proposed to support WSs development: WSDL interfaces abstractly
describe messages to be exchanged, SOAP is a protocol for exchanging
structured information, UDDI is a repository to publish and discover
WSs, BPEL4WS (BPEL for short) is a notation for describing executable
business processes. The definition and deployment of WSs raise many is-
sues which are part of on-going research. An important problem is the
way to properly develop new services interacting with available ones.

Formal methods provide an adequate framework (many specification
languages and reasoning tools) to describe WSs at an abstract level and
then to tackle interesting issues, in particular their (automatic) compo-
sition or correct development. Different proposals have emerged recently
to abstractly describe WSs and cope with these questions, most of which
are grounded on transition system models (Labelled Transition Systems,

4

Mealy automata, Petri nets, etc) [2, 15, 22, 13, 17]. However, very few ap-
proaches have been proposed to help the design and then development
of WSs, especially from this kind of abstract descriptions (as done in the
classical software engineering life cycle to develop software systems).

In this report, we advocate the use of process algebra (PA) [3] (e.g.
CCS, π-calculus, LOTOS, Promela) as a starting point to develop WSs.
As claimed in a previous work [25], PA is a simple, abstract and formally-
defined notation to describe the exchange of messages between WSs, and
to reason on the specified systems. Compared to the automata-based
approaches, its main benefits are its expressiveness, its compositionality
(allowing for the definition of more complex behaviours from simple ones)
property, and its ability to describe real-size problems thanks to textual
notations.

Central to our approach is the definition of a mapping between ab-
stract processes and executable services (implementations and their asso-
ciated interfaces) as sketched in Figure 1. The use of PA for development
purposes may be considered in two ways: (i) refinement means specifying
abstractly the new service and its interactions with the other partici-
pants, and then encoding it using an executable language, (ii) reverse
engineering means extracting an abstract representation from the service
implementation (accordingly the developer implements directly the ser-
vice using an executable language) to validate its behaviour with respect
to its mates. In both situations, we assume that the existing WSs (com-
pared to the one(s) under development) have behavioural interfaces from
which abstract descriptions can be obtained (prospective hypothesis par-
ticularly with regards to the current WSDL technology, see WS-CDL [29]
as an example of proposal in this direction). The restriction of the ser-
vice visibility to their public interfaces is a common situation in software
engineering due to the black-box feature of components. Orchestration is
a specific case of service development which aims at solving more com-
plex tasks by developing a new service (often called orchestrator) using
existing services by exchanging messages with them.

This report focuses on the refinement from PA to executable code. In
this case, PAs are especially worthy as a first description step because
they enable us to analyse the problem at hand, to clarify some points,
and to sketch a (first) solution using an abstract language (then dealing
only with essential concerns). Therefore, from such a formal description
of one or more services-to-be, reasoning tools can be used to validate their
correct execution and, if necessary, to verify and ensure relevant temporal
properties such as safety and liveness ones.

5

++

J2EE, .NET...)

(BPEL Process Manager,

Development environment

(BPEL, JAVA...)

Executable Code

(CWB−NC, CADP, SPIN...)

Editing and reasoning tools

Promela, Pi−calculus...)

(CCS, CSP, LOTOS,

Process Algebra
refinement

mapping
abstract layer

reverse engineering

concrete layer

(W
S

D
L

,
W

S
−

C
D

L
..

.)

in
te

rf
a
ce

Fig. 1. Overview of our approach

Regarding the WS(s) to be concretely implemented (compared to the
other ones which are viewed as behavioural interfaces), we concentrate
ourselves, at the concrete level, on WSDL interfaces and BPEL services.
We chose these technologies because they are well-known standards of
widespread use and because BPEL is process-oriented therefore making
the encoding tractable. Depending on the expressiveness of the process
algebra used in the initial step, we can obtain either running BPEL code
or just skeletons of code to be complemented. We stress that a formal
refinement is not achieved yet since BPEL does not have a widely accepted
formal semantics.

The organization of this report is as follows. We start in Section 2
with a short introduction of process algebra. For the sake of space, we
do not introduce BPEL in this report, and the reader may refer to [1]
for such a presentation. Section 3 defines guidelines formalising the en-
coding of process algebra into BPEL. Section 4 describes an example of
e-business application in which all the steps advocated in our approach
are successively coped with: analysis, formal description, reasoning, en-
coding of processes in BPEL services. Section 5 presents related work and
compares our contribution to it. We draw up some concluding remarks in
Section 6.

2 Introduction to Process Algebra

A PA [3] is a simple and formal language useful to specify dynamic be-
haviours (sequentiality, concurrency, parallelism, etc). Processes defined
using them may communicate together by exchanging messages. Many
process calculi (CCS [20], Timed CSP [27], LOTOS [4], π-calculus [23],
Promela [14], etc) and accompanying tools exist, which offer a wide panel
of expressiveness to deal with valuable issues in the WSs area (e.g. ab-
stract description, composition, formal reasoning). In this section, our

6

goal is not to introduce a precise algebra, but to present the common
constructs appearing in most of them.

Actions and interactions. The basis concept to build dynamic be-
haviours (or processes) is the so-called action (also called event, channel,
gate or name in other formalisms). Actions are either emissions or recep-
tions, denoted respectively OACT (Output ACTions) and IACT (Input
ACTions) in the sequel. Two (or more) processes can evolve in parallel
and synchronize themselves when they are ready to evolve along the same
action name; the basic matching is one sender and one receiver. Differ-
ent communication models may be considered involving variants such as
asynchronous vs synchronous communication, or binary vs n-ary commu-
nication.

Behavioural constructs. First of all, a termination END indicates
the end of a behaviour. An hidden or internal action INT may be used
to make abstract some possible pieces of behaviours corresponding to
internal evolutions. The hide HID operator is sometimes used to make
explicit the hiding of some actions to the environment of the process. The
usual three main constructs are the sequence SEQ proposing the execu-
tion of an action followed by a behaviour, the nondeterministic choice
CH between two behaviours which can be fired (sometimes, internal and
external choices are used to distinguish the source of the choice), and
the parallel composition PAR (and all its underlying variants like full
synchronization or interleaving) meaning parallel evolution and synchro-
nization among several processes. Many dynamic operators may be used
and appear in some other calculi: interruption, sequential composition,
or compensation and exception handling for constructs more related to
WSs issues [5].

Data descriptions. Data DD are not always described within PA
(this is not the case in basic CCS, for instance). Different levels of rep-
resentation exist, for example in Promela, basic datatypes (e.g. integers,
boolean) may be handled and one advanced construct (array) is available.
A more expressive calculus is LOTOS which allows the representation of
expressive data using algebraic specifications [7].

Data terms appear at different locations within dynamic behaviours.
First, processes may be parameterized by a (optional) list of formal pa-
rameters (local variable declaration V D). Actions may be extended with
value passing to exchange values: an emission OACT may carry possible
data terms, while a reception IACT may be parameterized with vari-

7

ables. A behaviour may be preceded by a guard GRD, and is therefore
executed only if the guard condition is true.

Processes. A process is composed of an identifier ID, a (optional) list
of all the actions AD it involves, a (optional) list of its local parameters
V D, and its behaviour BHV . The process body is built using the be-
havioural constructs described above, and in this way more complicated
behaviours can be built from basic ones because PAs are compositional
languages. The identifier is useful to refer to the behaviour of the pro-
cess, and particularly to instantiate it and to call it recursively. Note that
recursive calls may be used to update local variables.

Semantics and tools. These calculi are formalised either axiomati-
cally with algebraic laws which can be used to verify term equivalences,
operationally using a semantics based on Labelled Transition Systems, or
denotationally defining the meaning of basic entities (and of their com-
position) using functions. These formalisms are most of the time tool-
equipped, enabling one to simulate possible evolutions of processes, to
generate test sequences, to check properties (e.g. to ensure that a bad
situation never happens), to minimize behaviours, to verify equivalences,
etc. CADP1, CWB-NC2, SPIN3 are examples of such verification tools.

In this report, we illustrate the writing of service specification using
the LOTOS calculus. To make easier the reading of the forthcoming pieces
of specification, we give in Table 1 the correspondence between the PA
abstract operators mentioned above and the ones used in LOTOS.

3 From Process Algebra to BPEL

In this section, we define guidelines to enable developers to write out
easily advanced skeletons of BPEL code from abstract and validated de-
scriptions of the service(s)-to-be. The presentation of this section follows
the structure of the introduction to PA done in Section 2. For each PA
element (actions, interactions, dynamic operators, data descriptions, pro-
cesses), we describe how it can be encoded in BPEL and we illustrate
with pieces of XML code. Here, we refer to PA and its underlying con-
structs in a general way, even though we illustrate with pieces of LOTOS
specification. Many simple examples of such encodings (with the com-
prehensive LOTOS and BPEL code) are available on-line at this URL:
1 http://www.inrialpes.fr/vasy/cadp/
2 http://www.cs.sunysb.edu/∼cwb/
3 http://spinroot.com/spin/whatispin.html

8

Abstract constructs LOTOS constructs

OACT act!v (* emission of value v *)
IACT act?x : t (* reception in var. x of type t *)
END exit

INT τ
SEQ act;B
CH B1[]B2 (* B1 and B2 synchronize on *)
PAR B1|[sync-actions]|B2 (* sync. actions *)
HID hide a1, ..., an in B
DD algebraic specifications
GRD [bool-exp] → B
ID,AD,V D,BHV P[action-list](var-list):= B

Table 1. Correspondence between abstract and LOTOS constructs

http://www.dis.uniroma1.it/∼chiri/DEVofWS. A more comprehensive exam-
ple will be introduced in Section 4 to show how to use these guidelines to
develop concrete e-business services.

3.1 Actions and interactions

The basis piece of behaviour in PA, the so-called action, is translated in
WSDL using messages which are completely characterized by the mes-
sage, portType, operation and partnerLinkType tags. As an example, these
elements are set adequately below in order to encode abstract (resp. input
and output) actions request and result.

<message name="requestMessage">

<part name="request" type="xsd:int"/>

</message>

<message name="resultMessage">

<part name="result" type="xsd:int"/>

</message>

...

<portType name="requestResultPortType">

<operation name="requestResultOperation">

<input message="tns:requestMessage"/>

<output message="tns:resultMessage"/>

</operation>

</portType>

...

<plnk:partnerLinkType

name="requestResultPartnerLinkType">

<plnk:role name="requestResultAdder">

<plnk:portType

name="tns:requestResultPortType"/>

9

</plnk:role>

<plnk:role name="requestResultRequester">

<plnk:portType

name="tns:requestResultPortType"/>

</plnk:role>

</plnk:partnerLinkType>

An abstract reception is expressed in BPEL using the receive activity
or the pick activity with one onMessage tag.

request?x:Nat

(PA / LOTOS)
↓

(BPEL)
<receive partnerLink="Requester"

portType="tns:requestPortType"

operation="requestOperation"

variable="x"/>

On the other side, an abstract emission is written in BPEL using the
asynchronous or one-way invoke activity.

request!x

↓
<invoke partnerLink="Adder"

portType="tns:requestPortType"

operation="requestOperation"

inputVariable="x"/>

At the abstract level, an emission followed immediately by a reception
may be encoded using the BPEL synchronous or two-way invoke activity,
performing two interactions (sending a request and receiving a response).
On the opposite side, the complementary reception/emission is written
out using a receive activity (or a pick activity with one onMessage tag)
followed by a reply one. As an example, we can imagine that such a
communication on one side

request!x; result?y:Nat

↓
<invoke partnerLink="Adder"

portType="tns:requestResultPortType"

operation="requestResultOperation"

inputVariable="x"

outputVariable="y"/>

10

can be composed with a service doing on the other side

request?x:Nat; result!x+z

↓
<receive partnerLink="Requester"

portType="tns:requestResultPortType"

operation="requestResultOperation"

variable="x"/>

...
<reply partnerLink="Requester"

portType="tns:requestResultPortType"

operation="requestResultOperation"

variable="y"/>

with the same name of port type and operation. We emphasize that
the abstract term x+z does not appear in the BPEL code, because it was
replaced by the variable y denoting the result of the term, and which has
to be assigned beforehand to y using an assign tag (see Section 3.3).

As far as the number of participants to a communication is concerned,
let us remark that binary interactions are encoded straightforwardly in
BPEL (due to its peer-to-peer interaction foundation) whereas multi-
party communications are expressed in BPEL decomposing it in as many
needed two-party communications.

3.2 Behavioural constructs

In this part, we explain how the usual constructs belonging to all the
existing process algebra (sequence, termination, hidden action, choice,
parallel composition) are encoded in BPEL. The sequence SEQ matches
the sequence activity. The abstract termination END corresponds to the
end of the main sequence in BPEL.

request!x; result?y:Nat; exit

↓
<sequence>

<invoke ... />

<sequence/>

An hidden action INT is translated in BPEL as a local evolution of
a WS which is not visible from an external point of view. Accordingly, it
corresponds to one (or more) assign statement. It may also correspond to
a communication of the web service at hand with another party but not

11

visible from outside. The HID construct making hidden actions explicit
in PA is mapped in BPEL as the hiding of each concerned action (possibly
involved in a communication with other partners, then not visible from
outside).

The choice CH (possibly multiple) is translated using either the switch
activity, defining an ordered list of case or the pick one, defining a set of
activities fired by a message reception. Branches of a choice CH involve
emissions and receptions, possibly preceded by guards.

In case of a choice among emissions, nondeterminism existing at the
abstract level has to be removed. If guards are present, the encoding is
straightforward using as many case tags as needed, and the otherwise tag
may be used to translate mutually exclusive conditions. Without guards,
determinism may be introduced in two ways: (i) adding a pick activity
and then defining different messages whose arrival indicates the behaviour
to be fired, (ii) using a switch activity defining case conditions involving
for instance values provided beforehand, each condition firing a possible
emission.

A choice among receptions without guards is straightforwardly trans-
lated with a pick : whenever a message comes, it is received on the correct
port. In presence of guards, the translation is trickier because a pick ac-
tivity cannot be introduced within a case one (a BPEL limit). However,
it can be achieved reversing the reception and the guard evaluation. The
result in BPEL for each branch is a pick with an onMessage tag preced-
ing a switch activity used to test the condition and then to execute the
behaviour if the guard is true.

A choice involving emissions and receptions (without guards) is trans-
lated in BPEL using a pick with one onMessage tag for each branch
appearing at the abstract level. In case of an emission, it should be deter-
minized beforehand (as explained in the case involving only emissions),
and in case of reception it corresponds to a message coming from a part-
ner. In presence of guards, we can reuse translation rules mentioned be-
fore: using a switch for an emission, using a pick and then a switch for a
reception.

We give in Table 2 the correspondence between LOTOS constructs
and skeletons of BPEL code, for three of all possible cases (combination
of choice, emissions/receptions and guards) at the PA level. Comprehen-
sive BPEL code for these cases and the missing ones can be consulted
on line4. The proposed encoding makes it possible to obtain running
BPEL processes from abstract specifications. Even if tricks and choice
4 http://www.dis.uniroma1.it/∼chiri/DEVofWS

12

implementations are needed, due to the limits of BPEL as executable
language (especially the way interactions among processes are managed,
or activities combined), our guidelines make it easier such forthcoming
translations.

The parallel composition PAR is used in two different cases: (i) it de-
scribes a composition of interacting services; (ii) it may be used internally
to a service to represent two pieces of behaviour which has to be carried
out in different threads with possible interactions. In both cases, each
operand of the parallel composition is encoded as one BPEL WS mean-
ing that for the case (ii), the architecture of the whole is not preserved.
However, it is not a problem because WSs are defined in a compositional
way, and such auxiliary WSs can be hidden from an external (or user)
point of view, or not if one wants to make them reusable.

Finally, we note that many additional behavioural constructs exist
among all the existing PA, which would be used and encoded afterwards
in BPEL. We have already studied some of them and their translation is
not always straightforward, although often tractable. However, it would
be too long to comment all these constructs in this report.

3.3 Data descriptions

Three levels of data representation in PA have to be encoded in BPEL:
type and operation declarations DD, local variable declarations V D, data
management in dynamic behaviours (guards GRD and parameters of
actions IACT and OACT).

As far as DD datatype definitions are concerned, types are described
using XML Schema in the WSDL files. Elements in the Schema are ei-
ther simple (many built-in types are already defined, e.g. integer, string,
Boolean) or more complex (e.g. list, set, etc, built using the complexType
tag). Considering LOTOS algebraic specifications, correspondences are
straightforward because such constructs are shared at both levels. We in-
troduce below a simple datatype defining a product characterized by an
identifier and a quantity, first in LOTOS and then in XML Schema.

type PRODUCTREQUEST is NATURAL, STRING

sorts ProductRequest

opns

conspr (*! constructor *):

String, Nat -> ProductRequest

productId: ProductRequest -> String

quantity: ProductRequest -> Nat

13

Case LOTOS BPEL

emission
+
emission

act1!x; ...

[]

act2!y:t; ...

<pick...createInstance="yes">

<onMessage...variable=...>

......

<!-- first emission -->

<invoke...inputVariable=.../>

......

</onMessage>

<onMessage...>

......

<!-- second emission -->

<invoke...inputVariable=.../>

......

</onMessage>

</pick>

OR

<receive...createInstance="yes">

<sequence>

<switch>

<case condition=...>

......

<!-- first emission -->

<invoke...inputVariable=.../>

......

</case>

<otherwise>

......

<!-- second emission -->

<invoke...inputVariable=.../>

......

</switch>

</sequence>

reception
+
reception

act1?x:t; ...

[]

act?y:t; ...

<pick...createInstance="yes">

<!-- first reception -->

<onMessage...variable=...>

......

</onMessage>

<!-- second reception -->

<onMessage...>

......

</onMessage>

</pick>

emission
+
reception

act1!x; ...

[]

act2?y:t; ...

<pick...createInstance="yes">

<onMessage...variable=...>

......

<!-- emission -->

<invoke...inputVariable=.../>

......

</onMessage>

<!-- reception -->

<onMessage...>

......

</onMessage>

</pick>

Table 2. Correspondence between LOTOS and BPEL constructs

14

...

endtype

↓

<types>

<schema ...>

<element name="ProductRequest">

<complexType>

<sequence>

<element name="productId"

type="xsd:string"/>

<element name="quantity"

type="xsd:int"/>

</sequence>

</complexType>

</element>

...

</schema>

</types>

DD make it possible to define types but also operations on them.
Such abstract operations may be encoded in BPEL following different
ways. First, they can be defined within XPath expressions; several kinds
of functions may be called at this level such as core XPath functions,
BPEL XPath functions or custom ones. XPath expressions appear in the
assign activity. They simplify the extraction of information from elements
or the storage of a value into a variable. Complex data manipulation
may also be written using XSLT, XQuery or JAVA (e.g. JAVA exec tags
enable one to insert Java code into BPEL code). Another way to describe
data operations is to use a database and adequate queries to access and
manipulate stored information.

With regards to data appearing in behaviours, we gather on one hand
IACT and V D because they just involve variables, and on the other hand
OACT and GRD because they deal with data terms. First of all, we recall
that action parameters in PA for emissions and receptions (IACT and
OACT) are translated using the message tag (in the WSDL file). Each
part tag matches a parameter of an action.

BPEL variables are used to encode variables appearing in IACT and
V D. They are defined using the variable tag (global when defined before
the activity part) and their scope may be restricted (local declarations)
using a scope tag. If necessary, local or global variables may be initialized
using an assign after their declaration.

15

<variables>

<variable name="y" type="xsd:int"/>

<variable name="z" type="xsd:int"/>

...

</variables>

Now, regarding terms appearing in OACT and GRD, an emission
send(y) means that the data expression (e.g. x+z below) has to be built
and assigned to variable y before sending using an assign tag, and more
precisely the copy tag. As far as GRD is concerned, guards are defined
in BPEL using the case tag of the switch construct.

[x<5] -> result!x+z; ...

↓
<switch> <!-- < means < in BPEL -->

<case condition="bpws:getVariableData(’x’) < 5">

<assign name="result">

<copy>

<from expression="bpws:getVariableData(’x’)

+bpws:getVariableData(’z’)"/>

<to variable="y"/>

</copy>

</assign>

<reply ... variable="y"/>

</case>

</switch>

We emphasize that data are not available in every process algebra.
Since they are essential in BPEL, it seems judicious to use a process
algebra expressive enough to specify data descriptions. Otherwise, they
are directly encoded at the concrete level enhancing the BPEL skeletons
obtained from the purely dynamic description.

3.4 Processes

As mentioned beforehand, abstract processes are encoded as BPEL ser-
vices. A global abstract system is described using a main behaviour made
up of instantiated processes composed in parallel and synchronizing to-
gether (they are not obliged to synchronize on all actions). Let us observe
that the main specification (P1|P2|...|Pn, | denoting a parallel composi-
tion) does not match a BPEL process. The correspondence is that each
abstract instantiated process (Pi), pertaining to the global system men-
tioned previously, matches a BPEL WS. However, the architecture of

16

the specification is not always preserved. In very specific cases (parallel
behaviours within a process), it might be necessary to define additional
services. The set of messages is not defined explicitely in BPEL, but the
correspondence between interacting services is made explicit using the
partner link declaring on which partner link type services interact, and
their role in the communication (see below such an interaction definition
between an adder and a requester).

<partnerLink

name="Adder"

partnerLinkType="tns:requestResultPartnerLinkType"

partnerRole="requestResultAdder"

myRole="requestResultRequester"/>

At a lower level, each abstract process is usually made up of three
parts: action declarations AD, process parameters V D, and its behaviour
BHV (body of the process). AD are encoded using messages / operations
/ port types / partner link types in the WSDL file and variables in BPEL.
V D correspond to variables in BPEL and BHV is encoded using BPEL
activities.

process Adder [request, result] (z: Nat): exit :=

↓
<process name="Adder" ...>

...

<variables>

<variable name="request"

messageType="tns:requestMessage"/>

...

<variable name="z" type="xsd:int"/>

</variables>

<sequence name="main">

...

</sequence>

</process>

Instantiations of processes are encoded in BPEL as an exchange of
messages with the new process to be instantiated. In BPEL, instantiations
always occur through a reception (a receive or a pick activity).

<receive ... createInstance="yes"/>

or

<pick createInstance="yes">

<onMessage ...> ...

17

In concrete applications, such instantiations are often customers filling
in some forms on-line, and thus requesting some services on the web.

The regular way to encode PA recursive process calls is related to
the notion of transaction. A transaction could be defined as a complete
execution of a group of interacting WSs working out a precise task. In
this context, only one execution of a process is enough, therefore abstract
recursive behaviours are encoded as non recursive services (each transac-
tion corresponds to a new invocation then instantiation of each involved
service). Such an encoding is illustrated in Section 4. In the case of an
abstract choice among different behaviours, some of them ending with re-
cursive calls and other ones ending with exits, the while activity may be
used. The condition of the while is computed from guards of behaviours
ending with exits (conjunction of guard negations).

4 Application: a Stock Management System

Many services involved in e-business applications may be developed fol-
lowing our approach: auction bargaining, on-line sales (CDs, DVDs, flow-
ers, etc), banking systems (own account management for instance), trip
organizations, (car) renting, request engines, (hotel, show, etc) reserva-
tions, any kind of on-line payment, etc. Such a formal-based development
is above all of interest to save time (and money), thereby to respect dead-
lines, and to favour the correctness of the result.

In this section, our goal is to focus on an example and to show how
following our approach (analysis, specification, reasoning, encoding, run-
ning code) we can design and develop executable WSs. The comprehen-
sive specification written in LOTOS and all the WSDL and BPEL files
encoded for this example are available on-line at this URL:

http://www.dis.uniroma1.it/∼chiri/DEVofWS

4.1 Informal requirements and analysis

For space limitation and for the sake of comprehension, we illustrate here
with a simple but realistic problem. Let us imagine that a chain of su-
permarkets (called local stores in the following to be more general) have
to be supplied with goods (or products) every day (or as soon as needed,
it depends on the local policy). All the needed goods are centralized in
a central store whose role is to supply all the local stores when they re-
quest something. This central store has to be supplied as well by suppliers
particularly dedicated to a specific product (e.g. vegetables or cold food).

18

Our goal herein is to develop the web service corresponding to the
central store assuming the existence of services describing local stores and
suppliers. It is obvious that many local stores and suppliers can interact
with one central store (even if afterwards several instances of central stores
could be created).

Local stores and suppliers are viewed through their public interfaces
that we assume represented using a simple behavioural description. It is
out of scope here to introduce an adequate language for interface descrip-
tions. In this section, we introduce them using transition systems with
parameterized actions. A local store (Fig. 2) sends a request (an identi-
fier id and a quantity qt) to acquire a certain amount of a product and
afterwards waits for an acceptance or a refusal. Similarly, a supplier re-
ceives a request and replies depending on its ability to satisfy the request.

okS

requestS?id?qt

nok

ok

request!id!qt

nokS

Local store Supplier

Fig. 2. Behavioural interfaces: local store and supplier

A central store may receive requests from local stores and replies de-
pending on the availability of that product in its stock. It also has to
supply its stock and then should request possible missing products to a
supplier which answers depending on its ability to satisfy the request. As
a simplified version, stocks can be viewed as sets of couples, each couple
containing a product identifier and a quantity. A pictorial representation
of all the interacting services is represented in Figure 3.

4.2 Specification and reasoning

In this report, LOTOS is appropriate to describe abstractly the system
particularly thanks to its expressiveness (data and behaviours) and its

19

Local Store 1

Local Store 3
okS v nokS

Local Store 2 okS v nokS

Supplier 1

Supplier 3

Supplier 2request

okS v nokS

ok v nok

ok v nok

ok v nok

Central Store

requestS

requestS

request

request

requestS

Fig. 3. Overview of the service-to-be and its mates

toolbox CADP is helpful to validate specifications. We start with the
description of the data part. We represent a stock as a set of couple
(id,qt) with two constructors (empty and add) to build it. Some operations
allow to access and update a stock, such as the increase operation which
increments the quantity of a product.

type STOCK is NATURAL, BOOLEAN

sorts Stock

opns empty (*! constructor *) : -> Stock

add (*! constructor *) :

Nat, Nat, Stock -> Stock

increase : Nat, Nat, Stock -> Stock

...

From the local store and supplier automata describing their public
interfaces, LOTOS specifications are easily deduced making the reason-
ing steps possible. We illustrate with the process Supplier in which the
previous behaviour is extended to the management of a stock (declared
as a parameter of the process) for verification purposes.

process Supplier [requestS, okS, nokS]

(s: Stock): noexit :=

requestS?id:Nat?q:Nat;

(

[isAvailable(id, q, s)] -> okS;

Supplier[requestS, okS, nokS]

20

(decrease(id, q, s))

[]

[not(isAvailable(id, q, s))] -> nokS;

Supplier[requestS, okS, nokS](s)

)

endproc

Now, we focus on the central store process. This process has two
possible behaviours: (i) it receives a request from a local store and it
replies depending on the availability of the required quantity in the stock,
(ii) in case of the existence in the stock of a product whose quantity is less
than a threshold (to be defined arbitrarily), a request (the identifier and
a quantity, 5 as an example) is sent to a supplier and a reply received.
The stock is updated in case of delivery or restocking using adequate
operations (decrease and increase).

process CentralStore[request, ok, nok, requestS,

okS, nokS] (s: Stock): noexit :=

(

request?id:Nat?q:Nat;

(

[isAvailable(id, q, s)] -> ok;

CentralStore[request, ok, nok, requestS,

okS, nokS](decrease(id, q, s))

[]

[not(isAvailable(id, q, s))] -> nok;

CentralStore[...](s)

)

[]

requestS!extract(s)!5;

(

okS; CentralStore[...]

(increase(extract(s),5,s))

[]

nokS; CentralStore[...](s)

)

)

endproc

To validate this new service, several verification steps can be per-
formed using CADP to ensure a correct processing of the interacting
processes. Accordingly, we show a possible closed system which can be
built from the previous definitions. It contains two local stores and two
suppliers. Synchronization sets are explicitly declared, e.g. the central
store interact with one local store along the request, ok and nok gates.

let

21

s1: Stock = (* a product identified by 1 *)

add(1, 6, (* and with 6 as quantity *)

add(2, 5,

add(3, 8, empty))),

...

in

(

Supplier[requestS, okS, nokS](s4)

|||

Supplier[requestS, okS, nokS](s5)

)

|[requestS, okS, nokS]|

CentralStore[request, ok, nok, requestS,

okS, nokS](s1)

|[request, ok, nok]|

(

LocalStore[request, ok, nok](s2)

|||

LocalStore[request, ok, nok](s3)

)

Several mistakes in the specification have been found out (in the de-
sign, in the interaction flows, in the data description and management).
Simulation has helped to clarify misunderstandings in the analysis of the
problem at hand. Proofs may be verified using Evaluator (an on-the-fly
model checker part of CADP) to ensure safety, liveness and fairness prop-
erties written in µ-calculus. Due to the simplicity of the problem at hand,
we particularly check the absence of deadlock, and liveness properties en-
suring for example that the firing of every request gate (also checked with
requestS) is either followed by an acceptance or a refusal.

[true* . "request!*"] <("ok" or "nok")> true

4.3 Translation into BPEL

In this subsection, our goal is to emphasize how previous guidelines are
used to encode abstract processes (written in LOTOS herein) into BPEL.
We explain this translation through a sample of the BPEL code imple-
mented for the central store.

Development environment. The Development was carried out us-
ing Oracle BPEL Process Manager 2.0, BPEL Console, BPEL Designer5.
The process manager provides an infrastructure for deploying executing
and managing BPEL processes.The console is useful to test the deployed
5 http://www.oracle.com/technology/products/ias/bpel /index.html/

22

BPEL services. The designer makes it possible to build BPEL code from a
developer-friendly visual tool, and to validate and pack BPEL processes.
Data have been described using a Microsoft Access relational database
(it is obvious that any DBMS could be used at this level). The package
java.sql was helpful to access the database and the driver JDBC-ODBC
to make the connection between Java classes and the database. We use
the Java exec activity to insert Java code into BPEL code so as to call
the Java methods defined to access and update the database.

Following the guidelines. Let us focus on the first half of the cen-
tral store (the interaction with the local store) we specified previously
in LOTOS. We overview how the constructs involved in this behaviour
are expressed in BPEL. Firstly, LOTOS emissions and receptions (gates,
variables and types) are encoded in the WSDL file. Note that the ok and
nok actions have been encoded in BPEL using the same name of message
but both branches are distinguished by the value of its Boolean parameter
(true in case of availability, false otherwise).

Each stock is encoded as a simple table with two fields (identifier,
quantity). A Java class was encoded and contains methods to access and
update correctly each database (using SQL queries), e.g. to test the avail-
ability of a product. We highlight that the central store handles one re-
quest after the other. Thereby, it possibly updates the database at the
end of each transaction and concurrent accesses to the base are then dis-
carded.

The LOTOS sequence is directly translated using the sequence activ-
ity. The reception and the emission in this part of the central store are
translated as a pick activity with one onMessage tag followed by a reply.
The choice is composed of two branches with guards and emissions (with-
out parameters), consequently a switch activity is employed to translate
this LOTOS behaviour, and each branch is implemented using a case
activity with guards corresponding to queries on the database.

Recursive calls are encoded as exits in the BPEL code. In the case
at hand, we introduce the transaction notion corresponding to a request
posted by a local store and to a reply depending on the availability of the
product in the database. Thus, such a transaction is instantiated every
time that a new request is received. In the LOTOS specification, recursive
calls are accompanied of stock updates. It is done in BPEL modifying
judiciously the database before the service completes.

Sample of BPEL. Our goal in this part is to introduce the skeleton of
the BPEL code describing interactions between the central store and the

23

local store. The central store service was implemented through a BPEL
service, its WSDL interface, a database and a Java class implementing
the useful methods to interact with the databases. For experimentation
purposes, some other services were encoded (local stores and suppliers)
using the same technologies. We remind that the WSDL and BPEL files
corresponding to this problem may be consulted on-line and run using
the BPEL Process Manager.

<sequence name="main">

<pick createInstance="yes">

<onMessage

partnerLink="LocalStore" portType="tns:CentralStore"

operation="requestProduct" variable="productRequest">

<!-- invocation from the LocalStore -->

<sequence>

...

<!-- verifying the availability of the product -->

<bpelx:exec language="java" version="1.4">

<![CDATA[

...

//open the connection with the DB

DBConnection cscDBC=new DBConnection("CentralStoreStock");

if(cscDBC.isAvailable((String) productId.getNodeValue()))

{

setVariableData("available", new Boolean("true"));

}

//close the connection with the DB

cscDBC.close();

]]>

</bpelx:exec>

<switch>

<case condition=

"bpws:getVariableData(’available’)=true()">

<sequence>

<assign name="isAvailable">

<copy>

<from expression="true()">

</from>

<to variable="productResponse" part="response"

query="/tns:ProductResponse/tns:response"/>

</copy>

</assign>

<!-- send the response to the LocalStore -->

<reply name="response" partnerLink="LocalStore"

portType="tns:CentralStore"

operation="requestProduct"

variable="productResponse"/>

<!-- if the order is accepted we update the stock -->

...

</sequence>

</case>

<otherwise>

<sequence>

<!-- state the response to false -->

...

24

<!-- send the response to the LocalStore -->

<reply .../>

</sequence>

</otherwise>

</switch>

</sequence>

</onMessage>

... </sequence>

Implementing WSs in BPEL using all the necessary technologies (Java,
databases, BPEL Process Manager) is not so simple. Nevertheless, with a
minimum knowledge of such technologies, WSs can be implemented and
deployed easily and pretty quickly (depending of course on the size of the
application) following our approach.

5 Related Work

We are going to introduce three kinds of related work aiming at: (i) spec-
ifying WSs at an abstract level using formal description techniques and
reasoning on them, (ii) mapping abstract descriptions and executable lan-
guages (mainly BPEL), (iii) developing WSs from abstract specifications.

At this abstract level, lots of proposals originally tended to describe
WSs using semi-formal notations, especially workflows [18]. More recently
some more formal proposals grounded for most of them on transition
system models (LTSs, Mealy automata, Petri nets) have been suggested
[15, 22, 13, 2, 17]. With regards to the reasoning issue, works have been
dedicated to verifying WS description to ensure some properties of sys-
tems [10, 6, 22, 9, 21]. Summarizing these works, they use model checking
to verify some properties of cooperating WSs described using XML-based
languages (DAML-S, WSFL, BPEL, WSCI). Accordingly, abstract repre-
sentations are extracted from WS implementations, and some properties
may be ensured using ad-hoc or well-known tools (e.g. SPIN, LTSA).

In comparison to these existing works, the strength of our alterna-
tive approach (using PA) is to work out all these issues (description,
composition, reasoning) at an abstract level, based on the use of ex-
pressive (especially compared to the former proposals) description tech-
niques and equipped with state-of-the-art reasoning tools. Compared to
the automata-based approaches, the main benefit of PA is its expressive-
ness, particularly due to a large number of existing calculi enabling one
to choose the most adequate formalism depending on its final use. Addi-
tionally, another interest of PA is that their constructs are adequate to
specify composition due to their compositionality property (not the case
of the automata-based notations for instance). At last, textual notations

25

(even if sometimes criticized to be less readable than transition systems)
are more adequate to describe real-size problems, as well as to reason on
them.

The second group of related work [10, 24, 9, 22, 28] deals with map-
pings between abstract and concrete descriptions of WSs. Let us empha-
size that in other attempts (especially ours) [25, 26, 8], rough ideas have
already been proposed to map process algebra and BPEL. The main im-
provement in this report is that guidelines are much more precise and
everything was experimented, validated and run using the BPEL Process
Manager. A relevant related work is [10] in which the authors present
an approach to analyse BPEL composite web services communicating
through asynchronous messages. They use guarded automata as an in-
termediate language from which different target languages (and tools)
can potentially be employed. They especially illustrate with the formal
language Promela and the corresponding model checker SPIN.

Compared to them, our attempt is slightly different while sharing some
common points. First, we do not argue for a reverse engineering direction
for the mapping but we propose a method to develop WSs. A judicious
choice of our abstract language (e.g. LOTOS) makes the specification
of advanced data descriptions and operations on them possible at the
abstract level (more complex than in [10] where operations cannot be
modelled as an example) as well as at the executable one. Our method
was used to develop and deploy running WSs, consequently it has not
remained at a conceptual level as it is most of the time the case.

Finally, we note that, to our knowledge, very few formal approaches
have been proposed to develop WSs. The recent proposal of Lau and
Mylopoulos [16] argues that TROPOS (an agent-oriented methodology)
may be used to design WSs, but this work does not take into account the
formal part of the methodology [11]. Mantell [19] advocates a tool to map
UML processes into BPEL ones, but the semi-formality of UML is a limit
to the validation and verification stage. On the industrial side, platforms
like .NET and J2EE make it possible to develop WSs, but they do not
propose methods (above all formal-oriented) to achieve this goal.

6 Concluding Remarks

Development of web services distributed on the web is a recent issue and
the need of formal approaches to ensure a smooth and validated process
is obvious for many e-business applications. In this report, we advocated
such an approach starting from simple and abstract descriptions of pro-

26

cesses and ending with executable web services implemented in BPEL.
The two main contributions of our proposal are first a simplified develop-
ment thanks to guidelines enabling one to encode abstract processes into
executable ones. Secondly, validation steps are made possible through the
use of formal reasoning tools, which usually accompany process algebra,
thereby enabling one to detect possible errors and flaws at an early stage.
Future work aims at developing a prototype accepting as input abstract
specifications written using a process algebra (LOTOS in a first attempt),
and generating as output the BPEL skeletons corresponding to the input
descriptions. It will be implemented using the LOTOS NT compiler con-
struction [12].

Acknowledgments. The authors thank Lucas Bordeaux and Marco
Schaerf for judicious comments they made on this work. This work is
partially supported by Project ASTRO funded by the Italian Ministry
for Research under the FIRB framework (funds for basic research).

References

1. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Specification:
Business Process Execution Language for Web Services Version 1.1. 2003.

2. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Au-
tomatic Composition of E-services That Export Their Behavior. In Proc. of IC-
SOC’03, volume 2910 of LNCS, pages 43–58, Italy, 2003. Springer-Verlag.

3. J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process Algebra.
Elsevier, 2001.

4. T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. In P. H. J. van Eijk, C. A. Vissers, and M. Diaz, editors, The Formal
Description Technique LOTOS, pages 23–73. Elsevier Science Publishers North-
Holland, 1989.

5. M. Butler and C. Ferreira. An Operational Semantics for StAC, a Language for
Modelling Long-Running Business Transactions. In Proc. of COORDINATION’04,
volume 2949 of LNCS, pages 87–104, Italy, 2004. Springer-Verlag.

6. A. Deutsch, L. Sui, and V. Vianu. Specification and Verification of Data-driven
Web Services. In Proc. of PODS’04, pages 71–82, Paris, 2004. ACM Press.

7. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics, volume 6 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, New-York, 1985.

8. A. Ferrara. Web Services: A Process Algebra Approach. In Proc. of ICSOC’04,
USA, 2004. ACM Press.

9. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web
Service Compositions. In Proc. of ASE’03, pages 152–163, Canada, 2003. IEEE
Computer Society Press.

10. X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In Proc.
of WWW’04, USA, 2004. ACM Press.

27

11. A. Fuxman, L. Liu, M. Pistore, M. Roveri, and J. Mylopoulos. Specifying and
Analyzing Early Requirements: Some Experimental Results. In Proc. of RE’03,
pages 105–114, USA, 2003. IEEE Computer Society Press.

12. H. Garavel, F. Lang, and R. Mateescu. Compiler Construction Using LOTOS NT.
In R. N. Horspool, editor, Proc. of CC’02, volume 2304 of LNCS, pages 9–13,
France, 2002. Springer-Verlag.

13. R. Hamadi and B. Benatallah. A Petri Net-based Model for Web Service Com-
position. In Proc. of ADC’03, volume 17 of CRPIT, Australia, 2003. Australian
Computer Society.

14. G. Holzmann. The SPIN Model-Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

15. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: a Look Behind the
Curtain. In Proc. of PODS’03, pages 1–14, USA, 2003. ACM Press.

16. D. Lau and J. Mylopoulos. Designing Web Services with Tropos. In Proc. of
ICWS’04, pages 306–314, San Diego, USA, 2004. IEEE Computer Society Press.

17. A. Lazovik, M. Aiello, and M. P. Papazoglou. Planning and Monitoring the Ex-
ecution of Web Service Requests. In Proc. of ICSOC’03, volume 2910 of LNCS,
pages 335–350, Italy, 2003. Springer-Verlag.

18. F. Leymann. Managing Business Processes via Workflow Technology. Tutorial at
VLDB’01, Italy, 2001.

19. K. Mantell. From UML to BPEL. IBM developerWorks report, 2003.
20. R. Milner. Communication and Concurrency. International Series in Computer

Science. Prentice Hall, 1989.
21. S. Nakajima. Model-checking Verification for Reliable Web Service. In Proc. of

OOWS’02, satellite event of OOPSLA’02, USA, 2002.
22. S. Narayanan and S. McIlraith. Analysis and Simulation of Web Services. Com-

puter Networks, 42(5):675–693, 2003.
23. J. Parrow. An Introduction to the π-Calculus, chapter 8, pages 479–543. Handbook

of Process Algebra. Elsevier, 2001.
24. M. Pistore, M. Roveri, and P. Busetta. Requirements-Driven Verification of Web

Services. In Proc. of WS-FM’04, volume 105 of ENTCS, pages 95–108, Italy, 2004.
25. G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Ser-

vices using Process Algebra. In Proc. of ICWS’04, pages 43–51, San Diego, USA,
2004. IEEE Computer Society Press.

26. G. Salaün, A. Ferrara, and A. Chirichiello. Negotiation among Web Services using
LOTOS/CADP. In Proc. of ECOWS’04, volume 3250 of LNCS, pages 198–212,
Germany, 2004. Springer-Verlag.

27. S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. N. Reed, and A. W. Roscoe.
Timed CSP: Theory and Practice. In Proc. of REX Workshop on Real-Time:
Theory in Practice, volume 600 of LNCS, pages 640–675, Germany, 1992. Springer.

28. M. Viroli. Towards a Formal Foundation to Orchestration Languages. In Proc. of
WS-FM’04, volume 105 of ENTCS, pages 51–71, Italy, 2004.

29. W3C. Web Services Choreography Description Language Version 1.0.
Available at http://www.w3.org/TR/2004/WD-ws-cdl-10-2 0040427/.

