
IS
S

N
 0

24
9-

63
99

IS
R

N
 IN

R
IA

/R
R

--
42

23
--

F
R

+
E

N
G

ap por t

de r ech er ch e

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

SVL: a Scripting Language
for Compositional Verification

Hubert Garavel — Frédéric Lang

N° 4223

Juillet 2001

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38330 Montbonnot-St-Martin (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

SVL: a Scripting Language

for Compositional Verification

Hubert Garavel∗ , Frédéric Lang†

Thème 1 — Réseaux et systèmes

Projet VASY

Rapport de recherche n
�

4223 — Juillet 2001 — 36 pages

Abstract: Compositional verification is a way to avoid state explosion for the enumerative
verification of complex concurrent systems. Process algebras such as Lotos are suitable
for compositional verification, because of their appropriate parallel composition operators
and concurrency semantics. Extending prior work by Krimm and Mounier, this report
presents the Svl language, which allows compositional verification of Lotos descriptions
to be performed simply and efficiently. A compiler for Svl has been implemented using
an original compiler-generation technique based on the Enhanced Lotos language. This
compiler supports several formats and tools for handling Labeled Transition Systems. It is
available as a component of the Cadp toolbox and has been applied on various case-studies
profitably.

Key-words: Abstraction, Bisimulation, Compositional Verification, Concurrency, Coor-
dination Language, E-Lotos, Enumerative Verification, Labeled Transition System, Lotos,
Model-Checking, Process Algebra, Reachability Analysis, Specification, Validation.

A short version of this report is also available as “SVL: a Scripting Language for Compositional

Verification”, in Proceedings of the 21st IFIP WG 6.1 International Conference on Formal Techniques for
Networked and Distributed Systems FORTE’2001 (Cheju Island, Korea), August 28-31, 2001.

∗ Hubert.Garavel@inria.fr
† Frederic.Lang@inria.fr

SVL : un langage de script

pour la vérification compositionnelle

Résumé : La vérification compositionnelle est un moyen d’éviter l’explosion combinatoire
d’états lors de la vérification énumérative de systèmes concurrents complexes. Les algèbres
de processus telles que Lotos conviennent bien à la vérification compositionnelle de par
leurs opérateurs de composition parallèle et leur sémantique du parallélisme adéquats. Pro-
longeant les travaux de Krimm et Mounier, ce rapport présente le langage Svl qui permet
de vérifier simplement et efficacement des descriptions Lotos de manière compositionnelle.
Un compilateur pour Svl a été réalisé selon une technique originale de construction de com-
pilateurs basée sur le langage Enhanced Lotos. Ce compilateur s’appuie sur divers formats
et outils pour représenter et manipuler des systèmes de transitions étiquetées. Il est intégré
à la bôıte à outils Cadp et a été appliqué avec succès à plusieurs études de cas.

Mots-clés : Abstraction, bisimulation, vérification compositionnelle, concurrence, lan-
gage de coordination, E-Lotos, vérification exhaustive, système de transitions étiquetées,
Lotos, vérification basée sur les modèles, algèbre de processus, analyse d’atteignabilité,
spécification, validation.

SVL: a Scripting Language for Compositional Verification 3

1 Introduction

Enumerative verification (also called reachability analysis or model-checking) is a popular
technique for verifying concurrent systems. Roughly speaking, it is a “brute force” technique,
which consists in exploring and checking all states and transitions reachable by a concurrent
system. This technique is confronted to the state explosion problem, which occurs when the
number of states grows exponentially as the number of concurrent processes in the system
increases. To avoid or reduce state explosion, various approaches have been proposed, among
which: symbolic verification, on-the-fly verification, partial orders, symmetries, data flow
analysis, and compositional verification.

This report deals with the latter approach (also known as compositional reachability analysis
or compositional minimization). This approach assumes that the concurrent system under
study can be expressed as a collection of communicating sequential processes, the behaviors
of which are modeled as finite state machines or labelled transition systems (Ltss, for short).
The sequential processes are composed in parallel, either in a flat or hierarchical manner.

In its simplest form [Fer88, MSGS88, SLU89, YY91, TK93a, TK93b, Val93], compositional
verification consists in replacing each sequential process by an abstraction, simpler than the
original process but still preserving the properties to be verified on the whole system. Quite
often, abstracting a process is done by minimizing its corresponding Lts modulo an appropri-
ate equivalence or preorder relation (e.g., a bisimulation relation, such as strong, branching
or observational equivalence). If the system has a hierarchical structure, minimization can
also be applied at every intermediate level in the hierarchy. Clearly, this approach is only
possible if the parallel composition is “compatible” with Lts minimization: in particular,
this is the case with the parallel composition operators of most process algebras, for which
bisimulation is a congruence (see [YY91] for a discussion on this issue).

Although this simple form of compositional verification has been applied successfully to some
complex systems (e.g., [FGM+92, CGM+96] in the case of the Lotos language [ISO88]), it
may be counter-productive in some other cases: generating the Lts of each process separately
may lead to state explosion, whereas the generation of the whole system of concurrent
processes might succeed if processes constrain each other when composed in parallel.

This issue has been addressed by refined compositional verification approaches [GS90, CK93,
Yeh93, CK95, CK96, GSL96, KM97, Che98, Gia99], which allow to generate the Lts of each
separate process by taking into account interface constraints (also known as environment
constraints or context constraints). These constraints express the behavioral restrictions
imposed on each process by synchronization with its neighbor processes. Taking into account
the environment of each process allows to eliminate states and transitions that are not
reachable in the Lts of the whole system. Depending on the approach, interface constraints
can be either written by the user or generated automatically.

The refined approach to compositional verification has been implemented in two tools,
namely the Tracta tool [Gia99] and the Projector/Des2Aut tools [KM97]. The latter

RR n
�

4223

4 H. Garavel, F. Lang

tools are part of the Cadp protocol engineering toolbox [FGK+96] and have been applied
to industrial case-studies [KM97, Pec99, GVZ01]. Although positive, these experiments
revealed various issues and shortcomings that prevented compositional verification to be
used on a larger scale, especially in industrial projects. To solve these problems, we de-
signed a scripting language named Svl, which can be seen as a process algebra extended
with operations on Ltss, e.g., minimization (also called reduction), abstraction, compari-
son, deadlock/livelock detection, etc. We implemented a compiler for this language, with
the goal of making compositional verification easier for non-experts.

This report is organized as follows. Section 2 gives a few preliminary definitions. Section 3
briefly presents the principles and limitations of the Des2Aut tool of [KM97]. Section 4
defines the syntax and semantics of the Svl language. Section 5 introduces high-level
features of Svl, which allow sophisticated strategies for compositional verification. Section 6
describes the implementation of the Svl 2.0 compiler. Section 7 gives concluding remarks
and lists directions for future work. Finally, Appendices A and B illustrate the benefits of
Svl on practical examples.

2 Definitions

Labelled Transition Systems are the natural model for action-based specification lan-
guages, especially process algebras such as Ccs [Mil89], Csp [Hoa85], Acp [BK84], or
Lotos [ISO88]. Formally, an Lts is a tuple M = (S, A, T, s0), where S is the set of states,
A the set of actions (or labels), T ⊆ S ×A×S the transition relation, and s0 ∈ S the initial
state. A transition (s, a, s′) ∈ T indicates that the system can evolve from state s to state
s′ by performing action a. In enumerative verification, there are essentially two ways to
represent an Lts:

� An explicit Lts is defined in extension, by enumerating all its states and transitions.
Practically, there exist several formats to store explicit Ltss in computer files. The
Cadp verification tool set uses three such formats: Aut, a simple textual format, Bcg
(Binary Coded Graphs), a compact binary format based upon dedicated compression
algorithms, and Seq, a human-readable format for displaying sequences of transitions
produced by verification tools to explain why a given property is not verified. There
exist other Lts formats, for instance the Fc2 format used by the Fc2Tools [BRRd96],
with which the Cadp tools are interfaced.

� An implicit Lts is defined in comprehension by giving its initial state s0 and its suc-
cessor function succ : S → 2T defined by succ(s) = {(s, a, s′) | (s, a, s′) ∈ T }. A
generic representation of implicit Ltss is provided by the language-independent envi-
ronment Open/Cæsar [Gar98] embedded in Cadp. Open/Cæsar offers primitives
for accessing the initial state of an Lts and for enumerating the successors of a given
state, as well as various data structures (state tables, stacks, etc.), allowing on-the-fly

INRIA

SVL: a Scripting Language for Compositional Verification 5

verification algorithms to be implemented concisely. A number of input languages are
connected to Open/Cæsar, including Lotos and the Exp formalism of Cadp, which
describes implicit Ltss as sets of explicit Ltss combined together using Lotos par-
allel composition and hiding operators. Similarly, the Fc2 format allows to describe
networks of communicating automata, which can be processed by the Fc2Tools.

The tools available in Cadp and Fc2Tools allow to perform the usual operations on (ex-
plicit or implicit) Ltss in several complementary ways, as summarized in the following table:

Aldébaran Reduction, comparison, deadlock/livelock detection
Bcg Io Conversion from one explicit Lts format to another
Bcg Labels Hiding and renaming of labels
Bcg Min Reduction
Bcg Open Implicit Lts view of an explicit Lts

Cæsar.adt, Cæsar Lts generation from a Lotos description
Cæsar.Open Implicit Lts view of a Lotos description
Evaluator Model-checking, deadlock/livelock detection
Exhibitor Deadlock detection
Exp2Fc2 Conversion from Exp format to Fc2

Exp.Open Implicit Lts view of an Exp description
Fc2Explicit, Fc2Implicit Reduction, comparison, deadlock/livelock detection
Generator Explicit Lts generation from an implicit Lts

Projector Abstraction (see Section 3 below)

3 The Des2Aut tool

Des2Aut is a tool performing compositional generation of an Lts from a composition
expression (called behavior) written in the Des language [KM97]. Given a behavior, the
Des2Aut tool generates and minimizes its Lts compositionally modulo a relation R (e.g.,
strong or branching bisimulation) specified on the command-line. The Des language is
defined by the following grammar, where B, B0, B1, B2 are non-terminal symbols denoting
behaviors and F , P , G1, . . . , Gn are terminal symbols denoting respectively file prefixes,
Lotos process identifiers, and Lotos gate identifiers:

B ::= F.aut | F.exp | F.lotos | Proc(F.lotos, P[G1, . . . , Gn]) (1)
| hide G1, . . . , Gn in B0 (2)
| B1 |[G1, . . . , Gn]| B2 (3)
| B1 -|[G1, . . . , Gn]| B2 | B1 -|[G1, . . . , Gn]|? B2 (4)

The syntactic constructs above denote:

(1) an explicit Lts, either contained in a file in Aut format, or generated from an implicit
Lts given as an Exp description, an entire Lotos description, or a particular process

RR n
�

4223

6 H. Garavel, F. Lang

P defined in a Lotos description (this process being instantiated with actual gate
parameters G1, . . . , Gn);

(2) the behavior B0 in which gates G1, . . . , Gn are hidden using the Lotos hiding operator;

(3) the behaviors B1 and B2 executing in parallel with synchronization and communication
on gates G1, . . . , Gn according to the Lotos parallel composition semantics;

(4) the behavior B1 restricted by synchronizing it on the set of gates G1, . . . , Gn with B2

(B2 is considered as an automaton, the regular language of which expresses interface
constraints); the resulting behavior is called the abstraction of B1 w.r.t. B2. The
“?” symbol, if present, indicates that the user is unsure that the interface constraints
expressed in B2 are sound w.r.t. the real environment of B1: as a consequence, validity
checks are performed when the resulting Lts is composed in parallel with other Ltss.

Although the usefulness of the Des2Aut tool has been established on significant case-
studies [KM97, Pec99, GVZ01], its applicability is limited by several practical shortcomings:

� It only supports a single verification strategy: for each parallel composition operator,
the operands are minimized first, then combined in parallel. Therefore, operands
can only be combined two by two according to the evaluation order defined by the
algebraic parallel composition operators; it is not possible to combine more than two
components simultaneously. In some cases, this leads to state explosions that could
be avoided otherwise. In the following example,

(User1.aut ||| User2.aut) |[G]| Medium.aut

generating the interleaved combination of “User1.aut” and “User2.aut” first — in-
dependently from “Medium.aut” — is likely to produce a larger state space than if
“Medium.aut” was taken into account.

So far, this problem has been circumvented by using other Cadp tools (namely
Aldébaran and Exp.Open), which allow several Ltss to be combined together using
Lotos parallel composition operators. Practically, this is tedious because the Des and
Exp languages accepted by Des2Aut and Aldébaran–Exp.Open, respectively, are
incompatible in syntax and semantics, and because many auxiliary Des and Exp files
are needed to describe a compositional verification scenario this way. The problem is
even worse as there are often many possible scenarios corresponding to various decom-
positions of the system into sub-systems, which requires a trial-and-error approach to
find the most effective decomposition.

� The Des2Aut tool relies on Aldébaran to perform Lts minimization and does not
support other bisimulation tools such as Bcg Min and Fc2Tools. Moreover, it only
accepts the Aut format, which is much less compact than the Bcg format, so that
compositional verification often aborts due to a lack of disk space.

INRIA

SVL: a Scripting Language for Compositional Verification 7

� The Des2Aut tool has some implementation problems: the Des format parser is
overly strict with respect to occurrences of spaces and newlines in certain contexts;
the names of intermediate files generated by Des2Aut can exceed the maximal length
of filenames allowed by the file system; finally, Des2Aut is based on the Unix C-shell,
which causes portability issues for Linux and Windows.

� When a compositional verification scenario fails (e.g., if Lts generation, minimization,
or parallel composition aborts at some point, because of a lack of memory or disk space,
for instance), localizing and understanding the reason of the problem is difficult, as
Des2Aut does not provide sufficient debugging information.

4 The SVL language

To address these problems, we propose a scripting language for compositional verification.
This language, named Svl, contains all the features of the Des language, as well as new
ones that provide increased flexibility in the verification task.

To define the abstract syntax of Svl, we first introduce several terminal symbols: F denotes
a file prefix, G, G1, . . . , Gn denote Lotos gate identifiers, L, L1, . . . , Ln denote (Unix-like)
regular expressions on labels considered as character strings, and P denotes a Lotos process
identifier. We also introduce the following non-terminal symbols:

op ::= <= | == | >=

par ::= |[G1, . . . , Gn]| | ||| | ||

E ::= aut | bcg | exp | fc2 | lotos | seq
R ::= branching | strong | observational | safety | tau*.a | . . .

M ::= std | fly | bdd

T ::= aldebaran | bcg min | evaluator | exhibitor | fc2tools | . . .

U ::= user | <empty>

where op denotes an equivalence or preorder relation, par a Lotos parallel operator
(“|[G1, . . . , Gn]|” meaning parallel composition with synchronization on gates G1, . . . , Gn,
“|||” meaning parallel composition without synchronization, and “||” meaning parallel
composition with synchronization on all visible gates), E a file extension, R a bisimulation
relation, M an algorithmic method to compute bisimulations (“std” meaning a standard
partition refinement algorithm such as Paige-Tarjan or Kanellakis-Smolka, “fly” meaning
the Fernandez-Mounier on-the-fly algorithm, and “bdd” meaning an algorithm based on
Binary Decision Diagrams), and T a tool.

The two main non-terminal symbols are S (statements), and B (behaviors). They are
defined by the following grammar, where ‘[’ and ‘]’ delimit optional clauses in the grammar,
and where ‘[’ and ‘]’ denote the terminal bracket symbols. An Svl program is a list of
statements “S1; . . . ; Sn”.

RR n
�

4223

8 H. Garavel, F. Lang

S ::= "F.E" = B0 (S1)
| "F.E" = R comparison [using M] [with T] B1 op B2 (S2)
| "F.E" = deadlock [with T] of B0 (S3)
| "F.E" = livelock [with T] of B0 (S4)
| ["F1.E" =] verify "F2.mcl" in B0 (S5)

B ::= "F.E" | "F.lotos" : P[G1, . . . , Gn] (B1)
| hide [all but] L1, . . . , Ln in B0 (B2)
| B1 par B2 (B3)
| rename L1 → L′

1, . . . , Ln → L′
n in B0 (B4)

| generation of B0 (B5)
| R reduction [using M] [with T] of B0 (B6)
| U abstraction B1 sync G1, . . . , Gn of B2 (B7)
| B2 -|[G1, . . . , Gn]|[?] B1 (B8)

An Svl behavior denotes either an explicit or an implicit Lts, contrary to the Des language,
in which every implicit Lts is immediately converted to an explicit one. Formally, the
semantics of a behavior B is given by a denotation function [[B]]σ, the result of which is
either an (explicit or implicit) Lts file, a Lotos file, a Lotos process instantiation, or
an Exp composition expression (i.e., a set of explicit Ltss combined together with hiding
and parallel composition operators). The subscript σ denotes a set of file extensions, which
denote all acceptable formats in which the result of [[B]]σ should be produced. The value
of σ is determined by the context in which B will be used, and namely by the tools that
will be applied to B, given that certain tools require certain formats for their inputs and
outputs (for instance, the Fc2Tools only handle Ltss in the Fc2 format). Hence, format
conversions may be required at some places but, for efficiency reasons, should be avoided as
much as possible. σ always contains at least an explicit Lts format; if it contains more than
one, a preferred Lts format noted pref (σ) is selected in the following preference order: bcg,
then aut, then fc2, then seq. A dedicated type-checking is done on Svl programs, mainly
to distinguish between explicit and implicit Ltss: certain constraints on σ (listed below)
must be satisfied, otherwise type-checking errors are reported. The semantics of behaviors
is the following:

(B1) denotes a behavior contained in a file (or a Lotos process instantiation). If it is an
implicit Lts file (resp., a Lotos file), then exp or fc2 (resp., lotos) must belong to σ.
If E ∈ σ then [[B]]σ returns B else it converts the Lts contained in B to pref (σ) using
Bcg Io or Exp2Fc2. Lotos process instantiations are handled similarly as Lotos
files.

(B2) denotes the label hiding of an implicit or explicit Lts using the Aldébaran,
Bcg Labels, and Exp.Open tools. This generalizes the Lotos hiding operator by
allowing regular expressions on labels and/or by defining the labels not to be hidden
(using the “all but” keyword). Contrary to the Des language, in which all implicit

INRIA

SVL: a Scripting Language for Compositional Verification 9

Ltss are converted into explicit ones before hiding, Svl semantics preserves implicit
Ltss as long as possible (according to the definition of Exp composition expressions).
If σ contains exp or fc2 and all labels L1, . . . , Ln are Lotos gates and the “all but”
keyword is absent and B0 is a parallel composition of behaviors, then [[B]]σ returns the
Exp composition expression hide L1, . . . , Ln in [[B0]]{exp,aut,bcg,fc2,seq}, else [[B]]σ
returns the conversion to pref (σ) of [[B0]]{bcg} in which labels matching (respectively

not matching if the “all but” keyword is present) one of L1, . . . , Ln are hidden.

(B3) denotes the parallel composition of B1 and B2. σ must contain exp or fc2.
[[B]]σ returns the Exp composition expression [[B1]]σ′ par [[B2]]σ′ where σ′ =
{exp, aut, bcg, fc2, seq}.

(B4) denotes the label renaming of an explicit Lts using the Bcg Labels tool, which sup-
ports Unix-like regular expression matching and substring replacement. [[B]]σ returns
the conversion to pref (σ) of [[B0]]{bcg} in which labels are renamed as specified by the

rules L1 → L′
1, . . . , Ln → L′

n.

(B5) denotes the conversion from an implicit Lts to an explicit one, which is com-
puted using Open/Cæsar compilers and Generator. In Svl, such conversions
must be requested explicitly using the “generation” operator, unlike the Des lan-
guage in which such conversions are automatic and cannot be avoided. Let α be
[[B0]]σ∪{exp,fc2,lotos}. If α is already an explicit Lts, then [[B]]σ returns α else it

returns the conversion of α to an explicit Lts of format pref (σ).

(B6) denotes the reduction of an Lts modulo an equivalence relation R, using an algorithmic
method M and a tool T (Aldébaran, Bcg Min, or Fc2Tools). For short, we
abbreviate this operator to RMT -reduction. [[B]]σ returns the conversion to format
pref (σ) of the RMT -reduction of [[B0]]σT , where σT is the set of input formats accepted
by tool T (see Figure 1 for the definition of σT). The parameters M and T are
optional; by default, the Bcg Min tool and the “std” method are selected.

(B7) denotes the abstraction w.r.t. interface constraints, which is computed using
Open/Cæsar compilers and Projector. [[B]]σ returns the conversion to format
pref (σ) of the abstraction of [[B2]]{bcg,exp,fc2,lotos} w.r.t. the interface [[B1]]{aut}.

The “user” keyword indicates that the interface is provided by the user and that the
correctness of this interface must be checked as explained in [KM97].

(B8) is an alternative notation for abstraction, reminiscent of the Des language and kept for
compatibility. The optional “?” symbol has the same meaning as the “user” keyword
in (B7). Compared to (B7), operands B1 and B2 appear in reverse order, B1 being
the interface.

The statements have the following effects:

RR n
�

4223

10 H. Garavel, F. Lang

T σT

Aldébaran {aut, bcg, exp, fc2, seq}
Bcg Min {bcg}
Evaluator {bcg, exp, fc2, lotos}
Exhibitor {bcg, exp, fc2, lotos}
Fc2Tools {fc2}

Figure 1: Input formats accepted by the different tools.

(S1) stores in file F.E (where E 6= lotos) either [[B0]]{E} if E denotes an explicit Lts

format or [[B0]]{aut,bcg,exp,fc2,seq} if E denotes an implicit Lts format.

(S2) compares two Ltss modulo an equivalence or preorder relation R, using an algorithmic
method M and a tool T (Aldébaran or Fc2Tools). Formally, it compares [[B1]]σT

and [[B2]]σT , where σT is defined on Figure 1. The result stored in file F.E (where
E /∈ {exp, lotos}) is a (set of) distinguishing path(s) if the comparison returns false
or an empty path otherwise. The parameters M and T are optional; by default,
Aldébaran and the “std” method are selected.

(S3) detects deadlocks using a tool T (Aldébaran, Evaluator, Exhibitor, or
Fc2Tools) in [[B0]]σT . The result stored in file F.E (where E /∈ {exp, lotos}) is
a (set of) path(s) leading to (one or all) deadlock state(s), if any, or an empty path
otherwise. If no tool T is specified, then Aldébaran is chosen by default.

(S4) checks for livelocks in a way similar to statement (S3). If no tool T is specified, then
Aldébaran is chosen by default.

(S5) evaluates using the Evaluator tool [MS00] a temporal logic formula on [[B0]]σEvaluator .
The temporal logic formula is written in regular alternation-free mu-calculus and is
contained in file F2.mcl. The Evaluator tool returns a truth value (true or false)
and possibly a diagnostic (example or counter-example) explaining this truth value.
This diagnostic is a portion of the whole Lts of B0 and can be stored in file F1.E
(where E /∈ {exp, lotos}).

5 Meta-operations

Svl has so-called meta-operations, which allow various compositional reduction strategies
to be written concisely; this has proven to be useful in many case-studies. Meta-operations
extend the syntax of Svl behaviors as follows:

INRIA

SVL: a Scripting Language for Compositional Verification 11

B ::= . . .

| A R reduction using M with T of B0

where the attribute A is defined by:

A ::= leaf | root leaf | node

Informally, meta-operations have the effect of propagating RMT -reductions automatically
at various places in the algebraic term B0. Depending on the value of A, they have different
semantics:

� “leaf” means that an RMT -reduction must be applied to all leaves "F.E" but also
to all subterms of B0 that generate an explicit Lts (i.e., to all abstraction, renaming,
hiding, generation, and reduction operators). Leaf reduction is not propagated through
generation and reduction operators. Moreover, to maximize the use of the Exp format
of Cadp and to avoid converting Exp descriptions into explicit Ltss (unless requested
by the user), RMT -reduction is not applied to hiding operators whose operands are
parallel compositions of Ltss.

� “root leaf” is similar to “leaf” except that B0 itself is also RMT -reduced at the
top-level.

� “node” is similar to “leaf” except that RMT -reductions are also applied to all parallel
composition operators in the abstract tree of B0. This emulates the reduction strategy
of the Des2Aut tool and is mainly implemented for backward compatibility purpose.

Formally, “A R reduction using M with T of B” is expanded into ERMT (B, A) where
ERMT is defined as follows and where the shorthand notation RRMT (B) stands for an
RMT -reduction of B:

ERMT (B, A) = if A = “root leaf ” then RRMT (ERMT (B, leaf))
else case B in

rename . . . in B0 → RRMT (rename . . . in ERMT (B0, A))
| U abstraction B1 . . . of B2 →

RRMT (U abstraction B1 . . . of ERMT (B2, A))
| B1 par B2 →

if A = “node” then RRMT (ERMT (B1, A) par ERMT (B2, A))
else ERMT (B1, A) par ERMT (B2, A)

| hide L1, . . . , Ln in B0 → if ERMT (B0, A) has the form “B1 par B2” and

all Li are Lotos gates then hide L1, . . . , Ln in ERMT (B0, A)
else RRMT (hide L1, . . . , Ln in ERMT (B0, A))

| otherwise → RRMT (B)

RR n
�

4223

12 H. Garavel, F. Lang

After meta-operation expansion, all behaviors containing meta-operations are replaced by
simple behaviors (as defined in Section 4). Since the application of ERMT may create su-
perfluous operations, an optimization function called O is applied to the resulting behaviors
in order to increase efficiency. For instance, O merges nested hiding operators into a single
hiding operator. O also replaces RRMT (RR′M ′T ′(B)) by RR′M ′T ′(B) if the relation R′ is
weaker or equal to the relation R (noted R′ v R), since an RMT -reduction is useless after
an R′M ′T ′-reduction. At last, O suppresses an RMT -reduction applied to the operand of
a hiding (resp. abstraction) operator if the result of this hiding (resp. abstraction) itself is
to be reduced modulo the same relation R.

O(B) = case B in

"F.E"[:P[. . .]] → B

| B1 par B2 → O(B1) par O(B2)
| generation of B0 → generation of O(B0)
| rename . . . in B0 → rename . . . in O(B0)
| U abstraction B1 . . . of B2 → U abstraction O(B1) . . . of O(B2)
| hide L1, . . . , Ln in B0 →

if B0 has the form “hide Ln+1, . . . , Ln+m in B′
0” then

O(hide L1, . . . , Ln+m in B′
0)

else hide L1, . . . , Ln in O(B0)
| RRMT (B0) → case B0 in

RR′M′T ′(B′
0) where R′ v R → O(RR′M′T ′(B′

0))
| hide L1, . . . , Ln in RR′M′T ′(B′

0) where R = R′ →
O(RRMT (hide L1, . . . , Ln in B′

0))
| U abstraction B1 . . . of RR′M′T ′(B2) where R = R′ →

O(RRMT (U abstraction B1 . . . of B2))
| otherwise → RRMT (O(B0))

6 The SVL 2.0 compiler

A compiler for the Svl language has been implemented within the Cadp toolbox. This
compiler, named Svl 2.0, includes five phases, as shown in Figure 2. It was developed using
an original compiler construction technology also used for two other compilers developed by
the Vasy team of Inria:

� The lexical analysis, syntax analysis, and abstract tree construction phases (1, 100
lines of code) are implemented using the Syntax compiler generator [BD97]. Syntax
has similar functionalities as Lex and Yacc, enhanced with a well-designed automatic
error recovery mechanism.

� Type checking, expansion of meta-operations, and code generation (2, 900 lines
of code) are implemented as a set of data types and functions written in the

INRIA

SVL: a Scripting Language for Compositional Verification 13

LOTOS NT

Term

LOTOS NT

TermScript

Bourne Shell

Term

LOTOS NT

Input Files

Program

SVL

Output Files

O
U

T
P

U
T

IN
P

U
T

Type error

Syntax error

Type Checking

(LOTOS NT)

Expansion of

Meta-Operations

(LOTOS NT)

Code Generation

(LOTOS NT)
Shell Interpreter

Syntax Analysis &

Abstract Tree construction

(SYNTAX)

Figure 2: Architecture of Svl 2.0

Lotos NT language [GS98, Sig00]. Inspired by the standardization work on En-
hanced Lotos [Que01], Lotos NT combines the theoretical foundations of process
algebras with features borrowed from both functional and imperative languages (such
as abstract data types, patterns, assignments, loops, . . .) suitable for a wider in-
dustrial acceptance of formal methods. The Traian compiler [SBC+00] translates
the Lotos NT code into a set of C types and functions. The generated C code is
augmented with about 200 lines of hand-written C code.

� Svl generates a script written in Bourne shell. This script starts by including a
set of predefined functions (1, 750 lines of Bourne shell), then the Svl statements
and expressions are translated into sequences of calls to these functions with suitable
parameters.

In total, the development of Svl 2.0 took about 5 person · month, and totalizes more
than 11, 000 lines of generated C code. The Svl compiler is designed carefully to ease the
verification task. We give five examples of such a careful design:

� When executing a verification scenario, Svl 2.0 produces simultaneously two kinds
of output: a high-level, concise execution trace expressed at the abstraction level of
the Svl source program, and a low-level log file which lists all the executed shell

RR n
�

4223

14 H. Garavel, F. Lang

commands and the output of their execution. This file is very convenient to locate
and understand run-time errors.

� During its execution, the generated script produces several temporary files (explicit
Ltss, Exp files, hiding and renaming files, etc.) needed by the various tools of Cadp.
To minimize disk space consumption, Svl removes temporary files as soon as possible
and uses as much as possible the Bcg format for representing explicit Ltss, because
the Bcg format is more compact than other Lts formats.

� Several convenient compiler options are implemented, e.g., “-debug”, which prevents
intermediate files from being erased, “-expand”, which produces the Svl program ob-
tained by expanding all meta-operations, and “-script”, which generates the Bourne
shell script without executing it.

� As much as possible, the generated script tries to recover from errors automatically
by using “expert” knowledge about the verification process. For instance:

– When a reduction fails because the combination of relation, tool, and method
specified in the source Svl program is not available, Svl 2.0 attempts to change
some of the parameters (tool and/or method). For instance, it can replace “std”
with “bdd” when using Aldébaran to perform strong reduction of an Lts in
the Exp format since standard reduction is not available in this case.

– If a weak reduction fails, e.g., because of memory exhaustion, Svl 2.0 tries to
perform first stronger reduction(s) before trying again the weak reduction. For
instance, observational reduction may be preceded by branching reduction, and
branching reduction may be preceded by strong reduction. If the reduction still
fails, Svl 2.0 will leave the Lts un-reduced and continue execution.

– The Svl semantics states that a “generation” operator is mandatory whenever
an implicit Lts should be converted to an explicit Lts because such conversion
is costly and can lead to state explosion. Practically, this constraint is slightly
relaxed: if a “generation” operator is omitted, it will be inserted automatically
and a warning message will be emitted.

� Svl 2.0 permits to invoke shell commands from the Svl description. This can be
used for calling tools with features not implemented in Svl, for using the shell control
structures to perform conditionals and loops, and for modifying the values of environ-
ment variables specifying the default tools, methods, and relations as well as options
to be passed to the tools.

7 Conclusion

Although compositional verification has a strong potential in attacking the state explosion
problem, only a few implementations have been carried out. In this respect, the composi-

INRIA

SVL: a Scripting Language for Compositional Verification 15

tional verification tools of Cadp are of particular interest because they are widely distributed
and have been applied to several industrial case-studies [CGM+96, KM97, Pec99, GVZ01].
However, these tools require a good level of expertise to be effective. To address this problem,
we designed the scripting language Svl, which is well-adapted to compositional verification:

� Svl combines process algebra operators (parallel composition, label hiding) with oper-
ations on Ltss (e.g., minimization, abstraction, comparison, livelock/deadlock detec-
tion, label hiding and label renaming using regular expressions, etc.). It also provides
high-level meta-operators, which allow sophisticated compositional verification strate-
gies to be expressed concisely. Practically, Svl is expressive enough to supersede the
two formats Exp and Des previously used in the Cadp toolbox and to suppress the
need for hand-written Makefiles.

� Svl behaves as a tool-independent coordination language (in the same way as Eu-
calyptus [Gar96] is a tool-independent graphical user interface). Due to its concise
syntax and well-chosen default options, Svl relieves the user from the burden of launch-
ing verification tools manually: it invokes the relevant tools with appropriate options
and allocates/deletes temporary files automatically. Svl supports several verification
tools (Aldébaran, Bcg Min, Fc2Tools) both for explicit (enumerative) and im-
plicit (on-the-fly) verification. It supports several Lts formats (Aut, Bcg, Fc2, Seq)
though using as much as possible the Bcg format, which allows significant savings in
both disk space and access time. Switching from one tool or one format to another
can be done simply by changing a few words in the Svl description.

� Svl is extensible in two ways. Its modular design will allow new tools and new formats
to be integrated easily. Moreover, as Bourne shell commands can be directly invoked
from an Svl description, the user can easily describe specific processings and benefit
from the high-level constructs of the Bourne shell (if and case conditions, while and
for loops, etc.).

For this language, we have fully implemented the Svl 2.0 compiler which is developed using
an original approach to compiler construction, combining the Syntax compiler generator
and Lotos NT, a variant of the forthcoming E-Lotos standard.

Svl 2.0 has reached a good level of stability and maturity. It is distributed as a component
of Cadp and available on four different Unix and Windows platforms. It has been used
in ten case-studies profitably, in particular for the compositional verification of a dynamic
reconfiguration protocol for agent-based applications [CGMdP01]. As regards future work,
three directions can be identified:

� Svl could be enhanced with common sub-expressions detection. At present, the user
can always avoid redundant computations by storing their results in intermediate,
named files, which can be reused later. For instance, the statement:

RR n
�

4223

16 H. Garavel, F. Lang

"a.bcg" = leaf strong reduction of

((B1 |[G]| B0) || (B2 |[G]| B0))

can be evaluated more efficiently as:

"b.bcg" = strong reduction of B0

"a.bcg" = ((strong reduction of B1) |[G]| "b.bcg") ||

((strong reduction of B2) |[G]| "b.bcg")

Ideally, this optimization could also be performed automatically.

� The Svl language could be enriched with additional operators, e.g., to model-check
temporal logic formulas, and additional meta-operators, such as recursive propagation
of hiding (so as to hide labels as soon as possible) or recursive abstractions. More
applications are needed to determine which extensions are practically useful.

� The Svl language and related tools should be extended to support the new parallel
composition operators [GS99] introduced in E-Lotos and Lotos NT; these operators
are more expressive and user-friendly than Lotos ones and would thus contribute to
make compositional verification easier.

Acknowledgements

We would like to thank the former and current members of the Inria/Vasy team involved
in the Svl project, namely: Mark Jorgensen and Christophe Discours, who implemented the
early versions (1.0–1.6) of the Svl compiler, Ghassan Chehaibar and Charles Pecheur, who
used and gave valuable feedback about the Des2Aut and Svl 1.* tools, Marc Herbert and
Stéphane Martin, who tested the improved Cadp tools on several architectures carefully,
and Radu Mateescu, who experimented the Svl 2.0 compiler on several case-studies.

We are also grateful to Ji He (University of Stirling) for her reports about the Des2Aut
tool, to Laurent Mounier (Univ. Joseph Fourier, Grenoble) for his pertinent explanations
regarding Des2Aut in particular and compositional verification in general, and to Solofo
Ramangalahy, and to the anonymous referees for their useful comments about this report.

INRIA

SVL: a Scripting Language for Compositional Verification 17

A SVL examples

The Svl language and compiler have been used in 19 of the 29 demo examples packaged in
the Cadp tool kit distribution. This appendix attempts at convincing the reader that Svl
allows to write non trivial verification scenarios simply. To this aim, we present excerpts
that illustrate some significant features of Svl.

A.1 Compositional verification

This example deals with the compositional verification of a Lotos specification of the Alter-
nating Bit Protocol [Gar89]. This protocol is divided into four processes. For each process,
the corresponding Lts is generated and reduced modulo strong bisimulation. The four Ltss
are then composed together (using Lotos parallel composition and hiding operators) and,
finally, the resulting Lts is reduced modulo strong bisimulation.

In Svl, this scenario is written as follows (the “%” symbol is used to mark the beginning of
a line containing a Bourne shell command):

% DEFAULT_LOTOS_FILE="bitalt_protocol.lotos"

"bitalt_protocol.bcg" = root leaf strong reduction of

hide SDT, RDT, RDTe, RACK, SACK, SACKe in

(

(

BODY_TRANSMITTER

|||

BODY_RECEIVER

)

|[SDT, RDT, RDTe, RACK, SACK, SACKe]|

(

MEDIUM1

|||

MEDIUM2

)

);

In this example, one can see two reasons for the conciseness of Svl:

� by setting the shell variable “DEFAULT LOTOS FILE” to the name of the Lotos file in
which the four processes are defined, one avoids to specify this file name before each
process name;

� by using the “root leaf strong reduction” meta-operation, one avoids to write the
following equivalent, but longer, expanded description:

RR n
�

4223

18 H. Garavel, F. Lang

"bitalt_protocol.bcg" = strong reduction of

hide SDT, RDT, RDTe, RACK, SACK, SACKe in

(

(

(strong reduction of BODY_TRANSMITTER)

|||

(strong reduction of BODY_RECEIVER)

)

|[SDT, RDT, RDTe, RACK, SACK, SACKe]|

(

(strong reduction of MEDIUM1)

|||

(strong reduction of MEDIUM2)

)

);

When a network of communicating Ltss must be used several times, it is possible to store
it in an Exp file:

% DEFAULT_LOTOS_FILE="bitalt_protocol.lotos"

"bitalt_protocol.exp" = leaf strong reduction of

hide SDT, RDT, RDTe, RACK, SACK, SACKe in

(

(

BODY_TRANSMITTER

|||

BODY_RECEIVER

)

|[SDT, RDT, RDTe, RACK, SACK, SACKe]|

(

MEDIUM1

|||

MEDIUM2

)

);

This Exp file can be reused later in various verification scenarios, for instance to check
deadlock freeness:

"bitalt_dead.seq" = deadlock of "bitalt_protocol.exp";

or to perform an on-the-fly comparison with an explicit Lts:

"bitalt_oequ.seq" = observational comparison using fly

"bitalt_protocol.exp" == "bitalt_service.bcg";

INRIA

SVL: a Scripting Language for Compositional Verification 19

Of course, the Exp description can still be used for explicit Lts generation:

"bitalt_protocol.bcg" = generation of "bitalt_protocol.exp";

A.2 Compositional verification with abstractions

The verification of the rel/REL protocol [BM91, FGM+92] illustrates how interfaces can be
used to avoid state explosion. The verification of this protocol using the Des2Aut tool was
presented in [KM97]. We present here the same verification using Svl.

The rel/REL example is composed of four processes: one crash transmitter and three re-
ceivers. Since the Ltss corresponding to the receivers are too large to be generated directly,
the following strategy is adopted:

� The crash transmitter is generated, then reduced modulo strong bisimulation.

� For each receiver, a restricted Lts is generated by taking into account interface con-
straints provided by the three other processes. These interface constraints are speci-
fied in Lotos by the user; the constraints for receiver i are contained in a file named
“ri interface.lotos”.

� Restricted Ltss associated to receivers are then reduced modulo strong bisimulation
and composed together, each parallel composition being further restricted with respect
to the interface constraints of the crash transmitter. The resulting Lts is then reduced
modulo strong bisimulation.

� Finally, the LTS associated to the crash transmitter is generated, reduced modulo
strong bisimulation, and composed with the Lts resulting from the composition of
the receivers. The correcteness of user-given interfaces is checked during this last
composition step.

This generation scenario is written in Svl as follows:

% DEFAULT_LOTOS_FILE="rel_rel.lotos"

"crash_trans.bcg" = strong reduction of CRASH_TRANSMITTER ;

"rel_rel.bcg" = strong reduction of generation of leaf strong reduction of

hide R_T1, R_T2, R_T3, R12, R13, R21, R23, R31, R32 in

(

(

(

(RECEIVER_NODE_1 -||? "r1_interface.lotos")

|[R12, R21, R13, R31]|

(

RR n
�

4223

20 H. Garavel, F. Lang

(RECEIVER_NODE_2 -||? "r2_interface.lotos")

|[R23, R32]|

(RECEIVER_NODE_3 -||? "r3_interface.lotos")

) -|[R_T2, R_T3]| "crash_trans.bcg"

) -|[R_T1, R_T2, R_T3]| "crash_trans.bcg"

)

|[R_T1, R_T2, R_T3]|

"crash_trans.bcg"

);

Again, the conciseness provided by meta-operators is noticeable. Indeed, expanding the
above Svl description would result in a much longer Svl description:

% DEFAULT_LOTOS_FILE="rel_rel.lotos"

"crash_trans.bcg" = strong reduction of CRASH_TRANSMITTER ;

"rel_rel.bcg" = strong reduction of generation of

hide R_T1, R_T2, R_T3, R12, R13, R21, R23, R31, R32 in

(

(

strong reduction of

(

(

(

strong reduction of

(RECEIVER_NODE_1 -||? "r1_interface.lotos")

)

|[R12, R21, R13, R31]|

(

strong reduction of

(

(

(

strong reduction of

(RECEIVER_NODE_2 -||? "r2_interface.lotos")

)

|[R23, R32]|

(

strong reduction of

(RECEIVER_NODE_3 -||? "r3_interface.lotos")

)

) -|[R_T2, R_T3]| "crash_trans.bcg"

)

)

) -|[R_T1, R_T2, R_T3]| "crash_trans.bcg"

)

INRIA

SVL: a Scripting Language for Compositional Verification 21

)

|[R_T1, R_T2, R_T3]|

(strong reduction of "crash_trans.bcg")

);

A.3 Verification using bisimulations

Svl is also convenient to perform verification using bisimulations, as illustrated by the
verification of a Plain Ordinary Telephone Service (POTS) tackled by Patrick Ernberg and
Laurent Mounier. The Lts corresponding to the formal description in Lotos of the POTS
is first generated non-compositionally, then reduced modulo strong bisimulation:

"pots.bcg" = strong reduction of generation of "pots.lotos";

Then, several requirements can be checked using bisimulations. We give two examples:

� It should always be possible to perform the “S !1 !DIALT !ON” action from any state.
The verification of this requirement is done by hiding all labels but “S !1 !DIALT

!ON”, and comparing modulo branching equivalence the resulting Lts to an Lts (con-
tained in file “r2 1.aut”) having a single state and a single cyclic transition labelled
with “S !1 !DIALT !ON”:

"diag_2_1_1.seq" = branching comparison using fly

(total hide all but "S !1 !DIALT !ON" in "pots.bcg") == "r2_1.aut";

� It should always be possible for subscriber 1 to perform an “ONH” (onhook) or an
“OFFH” (offhook) action. This requirement is verified by renaming all onhook and
offhook actions to a unique “ONHOOK OFFHOOK” action and all the other actions to
an “OTHERS” action, then by checking that the resulting graph is strongly equivalent
to the Lts (contained in file “r4.aut”) having one state and two cyclic transitions
respectively labelled with “ONHOOK OFFHOOK” and “OTHERS”:

"diag_4_1.seq" = strong comparison

(

total rename

"S !1 !OFFH !ASUBSC" -> "ONHOOK_OFFHOOK",

"S !1 !OFFH !BSUBSC" -> "ONHOOK_OFFHOOK",

"S !1 !ONH" -> "ONHOOK_OFFHOOK",

".*" -> "OTHERS"

in "pots.bcg"

)

== "r4.aut";

RR n
�

4223

22 H. Garavel, F. Lang

A.4 Parameterized verification scripts

By combining Svl with Bourne shell features (essentially variables and control structures),
it is possible to introduce parameterization in verification scenarios.

The first example illustrates the use of a “for” loop to verify eight temporal logic properties
(contained in files “prop1.mcl”, “prop2.mcl”, . . . , “prop8.mcl”) on an Lts generated from
a Lotos description:

"bitalt.bcg" = generation of "bitalt.lotos";

% for N in 1 2 3 4 5 6 7 8

% do

verify "prop$N.mcl" in "bitalt.bcg";

% done

Note that this verification could also be done on-the-fly on the Lotos description itself:

% for N in 1 2 3 4 5 6 7 8

% do

verify "prop$N.mcl" in "bitalt.lotos";

% done

A “for” loop can also be used to repeat more complex Svl statements. In the following
example, each Lotos file is translated to an Lts, which is then minimized modulo observa-
tional equivalence:

% for PARAMS in 1-1 1-2 1a-1 1a-2 1a-3 2-1 3-1 5-1 6-1

% do

"co4-${PARAMS}_omin.bcg" = observational reduction of

generation of "co4-${PARAMS}.lotos";

% done

Other Bourne shell control structures than “for” loops can be used. The following ex-
ample illustrates a combination of “for” and “if”: files “a0.bcg”, “a1.bcg”, “a2.bcg”,
“b0.bcg”, “b1.bcg, “b2.bcg” are generated and reduced in turn; every time a “bi.bcg” file
is generated, it is compared to “ai.bcg”:

% for P in a b

% do

% for N in 0 1 2

% do

"PN.bcg" = strong reduction of generation of "PN.lotos";

% if test $P = b

% then

"a$N-b$N_sequ.seq" = safety comparison "a$N.bcg" == "b$N.bcg";

% fi

INRIA

SVL: a Scripting Language for Compositional Verification 23

% done

% done

Bourne shell functions can also be used in place of “for” loops to provide another form
of parameterization. In the following example taken from the verification of various
leader election protocols [GM97], there are several files named “EXPERIMENT i.lotos”.
Each of them contains six processes named “STATION 1”, STATION 2”, “STATION 3”,
“LINK 1”, “LINK 2”, and “LINK 3”, which are composed together (using parallel compo-
sition and hiding) and compared on-the-fly modulo branching equivalence to an Lts named
“SERVICE WITHOUT CRASHES.bcg”:

% for N in 01 02 03 04

% do

% DEFAULT_COMPARISON_METHOD="fly"

% DEFAULT_LOTOS_FILE="EXPERIMENT_${N}.lotos"

"EXPERIMENT_$N.seq" = branching comparison

leaf strong reduction of

hide PRED1, SUCC1, PRED2, SUCC2, PRED3, SUCC3 in

(

(

STATION_1

|||

STATION_2

|||

STATION_3

)

|[PRED1, SUCC1, PRED2, SUCC2, PRED3, SUCC3]|

(

LINK_1

|||

LINK_2

|||

LINK_3

)

)

==

"SERVICE_WITHOUT_CRASHES.bcg" ;

% done

Alternatively, in the same example, a Bourne shell function “F” could have been defined to
enclose the Svl statements contained in the body of the “for” loop. Then, function “F”
can be invoked several times with different arguments:

% F () {

% DEFAULT_COMPARISON_METHOD="fly"

% DEFAULT_LOTOS_FILE="EXPERIMENT_$1.lotos"

RR n
�

4223

24 H. Garavel, F. Lang

"EXPERIMENT_$1.seq" = branching comparison

leaf strong reduction of

hide PRED1, SUCC1, PRED2, SUCC2, PRED3, SUCC3 in

(

(

STATION_1

|||

STATION_2

|||

STATION_3

)

|[PRED1, SUCC1, PRED2, SUCC2, PRED3, SUCC3]|

(

LINK_1

|||

LINK_2

|||

LINK_3

)

)

==

"SERVICE_WITHOUT_CRASHES.bcg" ;

% }

(* function invocations *)

% F 01

% F 02

% F 03

% F 04

INRIA

SVL: a Scripting Language for Compositional Verification 25

B Comparing an SVL description and a Makefile

This example is based upon a case-study presented in [Pec99], dealing with the verification
of a Cluster File System (CFS). It shows how a 2 page long Svl description can replace a 5
page long Makefile performing the same compositional verification, thus illustrating the
gain in conciseness and clarity offered by Svl.

B.1 SVL description

% DEFAULT_LOTOS_FILE="cfs.lotos"

"site123medium.bcg" = generation of

leaf branching reduction of

(

(

OutputCell1With23

|||

OutputCell2With13

|||

OutputCell3With12

)

|[SEND, RCV]|

(

Master1With23

|||

Site2With13

|||

Site3With12

)

);

"cfs123.bcg" = branching reduction of

generation of hide "SEND", "RCV" in "site123medium.bcg";

% echo

% echo "***"

% echo "Verifying on cfs123.bcg properties defined in cfs.xtl"

% echo "---"

% xtl cfs.xtl cfs123.bcg

% echo "***"

"complete123.bcg" = branching reduction of

generation of leaf branching reduction of

(

"site123medium.bcg"

RR n
�

4223

26 H. Garavel, F. Lang

|[CFSREQ, CFSANS, SEND]|

(

InitMemory

|[READ, WRITE]|

(

GeneralUser1

|||

GeneralUser2

|||

GeneralUser3

)

)

);

"abstract123.bcg" = branching reduction of generation of

hide "CFS...", "SEND", "RCV" in "complete123.bcg";

% echo

% echo "***"

% echo "Verifying on abstract123.bcg properties defined in data.xtl"

% echo "---"

% xtl data.xtl abstract123.bcg

% echo "***"

"abstract123_12.bcg" = branching reduction of generation of

(

(

total rename "\([A-Z0-9]*\) \(.*\)" -> "\1 !ADDR1 \2" in

"abstract123.bcg"

)

|||

(

total rename "\([A-Z0-9]*\) \(.*\)" -> "\1 !ADDR2 \2" in

"abstract123.bcg"

)

);

% echo

% echo "***"

% echo "Verifying on abstract123_12.bcg properties defined in data_12.xtl"

% echo "---"

% xtl data_12.xtl abstract123_12.bcg

% echo "***"

INRIA

SVL: a Scripting Language for Compositional Verification 27

B.2 Makefile description

#! /bin/make

CAESAR = caesar

CAESAR_ADT = caesar.adt

MIN = aldebaran -omin -std

EXPOPEN = exp.open

CAESAROPEN = caesar.open

BCGOPEN = bcg_open

INFO = aldebaran -info

XTL = xtl

GENERATOR = generator

##

XTL verifications

##

all: cfs-cfs \

data-abstract \

data-abstract-2

cfs-cfs: cfs.xtl cfs123.bcg

$(XTL) cfs.xtl cfs123.bcg

data-abstract: data.xtl abstract123.bcg

$(XTL) data.xtl abstract123.bcg

data-abstract-2: data_12.xtl abstract123_12.bcg

$(XTL) data_12.xtl abstract123_12.bcg

##

process LOTOS file.

##

cfs.h: cfs.lotos

$(CAESAR_ADT) cfs.lotos

cfs.bcg: cfs.lotos cfs.h

$(CAESAR) cfs.lotos

##

Implicit rules

##

minimize a LTS

RR n
�

4223

28 H. Garavel, F. Lang

%_omin.bcg: %.bcg

$(MIN) -output $@ $<

##

Targets for compositional LTS generation

##

master1with23.bcg: cfs.lotos cfs.h

$(CAESAR) -root Master1With23 cfs.lotos

$(MIN) -output $@ cfs.bcg

$(INFO) $@

rm -f cfs.bcg

site2with13.bcg: cfs.lotos cfs.h

$(CAESAR) -root Site2With13 cfs.lotos

$(MIN) -output $@ cfs.bcg

$(INFO) $@

rm -f cfs.bcg

site3with12.bcg: cfs.lotos cfs.h

$(CAESAR) -root Site3With12 cfs.lotos

$(MIN) -output $@ cfs.bcg

$(INFO) $@

rm -f cfs.bcg

outputcell1with23.bcg: cfs.lotos cfs.h

$(CAESAR) -root OutputCell1With23 cfs.lotos

$(MIN) -output $@ cfs.bcg

$(INFO) $@

rm -f cfs.bcg

outputcell2with13.bcg: cfs.lotos cfs.h

$(CAESAR) -root OutputCell2With13 cfs.lotos

$(MIN) -output $@ cfs.bcg

$(INFO) $@

rm -f cfs.bcg

outputcell3with12.bcg: cfs.lotos cfs.h

$(CAESAR) -root OutputCell3With12 cfs.lotos

$(MIN) -output $@ cfs.bcg

$(INFO) $@

rm -f cfs.bcg

memory.bcg: cfs.lotos cfs.h

$(CAESAR) -root InitMemory cfs.lotos

$(MIN) -output $@ cfs.bcg

INRIA

SVL: a Scripting Language for Compositional Verification 29

$(INFO) $@

rm -f cfs.bcg

user1.bcg: cfs.lotos cfs.h

$(CAESAR) -root GeneralUser1 cfs.lotos

$(MIN) -output $@ cfs.bcg

$(INFO) $@

rm -f cfs.bcg

user2.bcg: cfs.lotos cfs.h

$(CAESAR) -root GeneralUser2 cfs.lotos

$(MIN) -output $@ cfs.bcg

$(INFO) $@

rm -f cfs.bcg

user3.bcg: cfs.lotos cfs.h

$(CAESAR) -root GeneralUser3 cfs.lotos

$(MIN) -output $@ cfs.bcg

$(INFO) $@

rm -f cfs.bcg

##

compositional generation and minimization

##

medium123output.bcg: outputcell1with23.bcg outputcell2with13.bcg \

outputcell3with12.bcg medium123output.exp

$(EXPOPEN) medium123output.exp $(GENERATOR) TMP.bcg

$(MIN) -output $@ TMP.bcg

$(INFO) $@

rm -f TMP.bcg

user123memory.bcg: user1.bcg user2.bcg user3.bcg memory.bcg \

user123memory.exp

$(EXPOPEN) user123memory.exp $(GENERATOR) TMP.bcg

$(MIN) -output $@ TMP.bcg

$(INFO) $@

rm -f TMP.bcg

site123medium.bcg: master1with23.bcg site2with13.bcg site3with12.bcg \

medium123output.bcg site123medium.exp

$(EXPOPEN) site123medium.exp $(GENERATOR) TMP.bcg

$(MIN) -output $@ TMP.bcg

$(INFO) $@

rm -f TMP.bcg

RR n
�

4223

30 H. Garavel, F. Lang

cfs123.bcg: site123medium.bcg sendrcv.hide

$(MIN) -output $@ -hide sendrcv.hide site123medium.bcg

$(INFO) $@

complete123.bcg: user123memory.bcg site123medium.bcg complete123.exp

$(EXPOPEN) complete123.exp $(GENERATOR) TMP.bcg

$(MIN) -output $@ TMP.bcg

$(INFO) $@

rm -f TMP.bcg

abstract123.bcg: complete123.bcg cfssendrcv.hide

$(MIN) -output $@ -hide cfssendrcv.hide complete123.bcg

$(INFO) $@

abstract123_12.bcg: abstract123_1.bcg abstract123_2.bcg abstract123_12.exp

$(EXPOPEN) abstract123_12.exp $(GENERATOR) TMP.bcg

$(MIN) -output $@ TMP.bcg

$(INFO) $@

rm -f TMP.bcg

##

Generation of isomorphic graphs by renaming using bcg_labels

##

add first attribute "!ADDR1" to all transitions

abstract123_1.rename:

@echo ’rename’ > $@

@echo ’"\([A-Z0-9]*\) \(.*\)" -> "\1 !ADDR1 \2"’ >> $@

abstract123_1.bcg: abstract123_1.rename abstract123.bcg

bcg_labels -rename abstract123_1.rename abstract123.bcg $@

add first attribute "!ADDR2" to all transitions

abstract123_2.rename:

@echo ’rename’ > $@

@echo ’"\([A-Z0-9]*\) \(.*\)" -> "\1 !ADDR2 \2"’ >> $@

abstract123_2.bcg: abstract123_2.rename abstract123.bcg

bcg_labels -rename abstract123_2.rename abstract123.bcg $@

##

Auxiliary text files, re-generated on demand.

##

INRIA

SVL: a Scripting Language for Compositional Verification 31

medium123output.exp:

echo ’ outputcell1with23’ > $@

echo ’ ||| outputcell2with13’ >> $@

echo ’ ||| outputcell3with12’ >> $@

site123medium.exp:

echo ’medium123output |[SEND,RCV]|’ > $@

echo ’(master1with23 ||| site2with13 ||| site3with12)’ >> $@

user123memory.exp:

echo ’memory |[READ,WRITE]| (user1 ||| user2 ||| user3)’ > $@

complete123.exp:

echo ’site123medium |[CFSREQ,CFSANS,SEND]| user123memory’ > $@

abstract123_12.exp:

echo ’abstract123_1 ||| abstract123_2’ > $@

sendrcv.sync:

echo ’Sync’ > $@

echo ’SEND’ >> $@

echo ’RCV’ >> $@

sendrcv.hide:

echo ’hide’ > $@

echo ’SEND .*’ >> $@

echo ’RCV .*’ >> $@

cfssendrcv.hide:

echo ’hide’ > $@

echo ’CFS... .*’ >> $@

echo ’SEND .*’ >> $@

echo ’RCV .*’ >> $@

RR n
�

4223

32 H. Garavel, F. Lang

References

[BD97] Pierre Boullier and Philippe Deschamp. Le système SYN-
TAX : Manuel d’utilisation et de mise en œuvre sous Unix.
http://www-rocq.inria.fr/oscar/www/syntax, October 1997.

[BK84] J. A. Bergstra and J. W. Klop. Process Algebra for Synchronous Communica-
tion. Information and Computation, 60:109–137, 1984.

[BM91] Simon Bainbridge and Laurent Mounier. Specification and Verification of a
Reliable Multicast Protocol. Technical Report HPL-91-163, Hewlett-Packard
Laboratories, Bristol, U.K., October 1991.

[BRRd96] Amar Bouali, Annie Ressouche, Valérie Roy, and Robert de Simone. The
Fc2Tools set: a Toolset for the Verification of Concurrent Systems. In Rajeev
Alur and Thomas A. Henzinger, editors, Proceedings of the 8th Conference
on Computer-Aided Verification (New Brunswick, New Jersey, USA), volume
1102 of Lecture Notes in Computer Science. Springer Verlag, August 1996.

[CGM+96] Ghassan Chehaibar, Hubert Garavel, Laurent Mounier, Nadia Tawbi, and
Ferruccio Zulian. Specification and Verification of the PowerScale Bus Ar-
bitration Protocol: An Industrial Experiment with LOTOS. In Reinhard
Gotzhein and Jan Bredereke, editors, Proceedings of the Joint International
Conference on Formal Description Techniques for Distributed Systems and
Communication Protocols, and Protocol Specification, Testing, and Verification
FORTE/PSTV’96 (Kaiserslautern, Germany), pages 435–450. IFIP, Chapman
& Hall, October 1996. Full version available as INRIA Research Report RR-
2958.

[CGMdP01] Manuel Aguilar Cornejo, Hubert Garavel, Radu Mateescu, and Noël de Palma.
Specification and Verification of a Dynamic Reconfiguration Protocol for
Agent-Based Applications. In Aleksander Laurentowski, Jacek Kosinski, Zofia
Mossurska, and Radoslaw Ruchala, editors, Proceedings of the 3rd IFIP WG
6.1 International Working Conference on Distributed Applications and Inter-
operable Systems DAIS’2001 (Krakow, Poland), pages 229–242. IFIP, Kluwer
Academic Publishers, September 2001. Full version available as INRIA Re-
search Report RR-4222.

[Che98] K. H. Cheung. Compositional Analysis of Complex Distributed Systems. PhD
thesis, Department of Computer Science, Hong Kong University of Science and
Technology, Hong Kong, 1998.

[CK93] S. C. Cheung and J. Kramer. Enhancing Compositional Reachability Analysis
with Context Constraints. In Proceedings of the 1st ACM SIGSOFT Interna-
tional Symposium on the Foundations of Software Engineering (Los Angeles,
CA, USA), pages 115–125. ACM Press, December 1993.

INRIA

SVL: a Scripting Language for Compositional Verification 33

[CK95] S. C. Cheung and J. Kramer. Compositional Reachability Analysis of Finite-
State Distributed Systems with User-Specified Constraints. In Proceedings of
the 3rd ACM SIGSOFT International Symposium on the Foundations of Soft-
ware Engineering (Washington, DC, USA), pages 140–150. ACM Press, Octo-
ber 1995.

[CK96] S. C. Cheung and J. Kramer. Context Constraints for Compositional Reach-
ability. ACM Transactions on Software Engineering Methodology TOSEM,
5(4):334–377, October 1996.

[Fer88] Jean-Claude Fernandez. ALDEBARAN : un système de vérification par
réduction de processus communicants. Thèse de Doctorat, Université
Joseph Fourier (Grenoble), May 1988.

[FGK+96] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu, Lau-
rent Mounier, and Mihaela Sighireanu. CADP (CÆSAR/ALDEBARAN Devel-
opment Package): A Protocol Validation and Verification Toolbox. In Rajeev
Alur and Thomas A. Henzinger, editors, Proceedings of the 8th Conference
on Computer-Aided Verification (New Brunswick, New Jersey, USA), volume
1102 of Lecture Notes in Computer Science, pages 437–440. Springer Verlag,
August 1996.

[FGM+92] Jean-Claude Fernandez, Hubert Garavel, Laurent Mounier, Anne Rasse, Car-
los Rodŕıguez, and Joseph Sifakis. A Toolbox for the Verification of LOTOS
Programs. In Lori A. Clarke, editor, Proceedings of the 14th International
Conference on Software Engineering ICSE’14 (Melbourne, Australia), pages
246–259. ACM, May 1992.

[Gar89] Hubert Garavel. Compilation et vérification de programmes LOTOS. Thèse de
Doctorat, Université Joseph Fourier (Grenoble), November 1989.

[Gar96] Hubert Garavel. An Overview of the Eucalyptus Toolbox. In Z. Brezočnik and
T. Kapus, editors, Proceedings of the COST 247 International Workshop on
Applied Formal Methods in System Design (Maribor, Slovenia), pages 76–88.
University of Maribor, Slovenia, June 1996.

[Gar98] Hubert Garavel. OPEN/CÆSAR: An Open Software Architecture for Verifica-
tion, Simulation, and Testing. In Bernhard Steffen, editor, Proceedings of the
First International Conference on Tools and Algorithms for the Construction
and Analysis of Systems TACAS’98 (Lisbon, Portugal), volume 1384 of Lecture
Notes in Computer Science, pages 68–84, Berlin, March 1998. Springer Verlag.
Full version available as INRIA Research Report RR-3352.

[Gia99] D. Giannakopoulou. Model Checking for Concurrent Software Architectures.
PhD thesis, Imperial College of Science, Technology and Medicine — University
of London — Department of Computer Science, January 1999.

RR n
�

4223

34 H. Garavel, F. Lang

[GM97] Hubert Garavel and Laurent Mounier. Specification and Verification of Various
Distributed Leader Election Algorithms for Unidirectional Ring Networks. Sci-
ence of Computer Programming, 29(1–2):171–197, July 1997. Special issue on
Industrially Relevant Applications of Formal Analysis Techniques. Full version
available as INRIA Research Report RR-2986.

[GS90] Susanne Graf and Bernhard Steffen. Compositional Minimization of Finite
State Systems. In R. P. Kurshan and E. M. Clarke, editors, Proceedings of the
2nd Workshop on Computer-Aided Verification (Rutgers, New Jersey, USA),
volume 531 of Lecture Notes in Computer Science, pages 186–196. Springer
Verlag, June 1990.

[GS98] Hubert Garavel and Mihaela Sighireanu. Towards a Second Generation of
Formal Description Techniques – Rationale for the Design of E-LOTOS. In
Jan-Friso Groote, Bas Luttik, and Jos van Wamel, editors, Proceedings of the
3rd International Workshop on Formal Methods for Industrial Critical Systems
FMICS’98 (Amsterdam, The Netherlands), pages 187–230, Amsterdam, May
1998. CWI. Invited lecture.

[GS99] Hubert Garavel and Mihaela Sighireanu. A Graphical Parallel Composition
Operator for Process Algebras. In Jianping Wu, Qiang Gao, and Samuel T.
Chanson, editors, Proceedings of the Joint International Conference on Formal
Description Techniques for Distributed Systems and Communication Protocols,
and Protocol Specification, Testing, and Verification FORTE/PSTV’99 (Bei-
jing, China), pages 185–202. IFIP, Kluwer Academic Publishers, October 1999.

[GSL96] S. Graf, B. Steffen, and G. Lüttgen. Compositional Minimisation of Finite
State Systems using Interface Specifications. Formal Aspects of Computation,
8, September 1996.

[GVZ01] Hubert Garavel, César Viho, and Massimo Zendri. System Design of a
CC-NUMA Multiprocessor Architecture using Formal Specification, Model-
Checking, Co-Simulation, and Test Generation. Springer International Journal
on Software Tools for Technology Transfer (STTT), 3(3):314–331, July 2001.
Also available as INRIA Research Report RR-4041.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[ISO88] ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, Interna-
tional Organization for Standardization — Information Processing Systems —
Open Systems Interconnection, Genève, September 1988.

[KM97] Jean-Pierre Krimm and Laurent Mounier. Compositional State Space Genera-
tion from LOTOS Programs. In Ed Brinksma, editor, Proceedings of TACAS’97

INRIA

SVL: a Scripting Language for Compositional Verification 35

Tools and Algorithms for the Construction and Analysis of Systems (Univer-
sity of Twente, Enschede, The Netherlands), volume 1217 of Lecture Notes in
Computer Science, Berlin, April 1997. Springer Verlag. Extended version with
proofs available as Research Report VERIMAG RR97-01.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MS00] Radu Mateescu and Mihaela Sighireanu. Efficient On-the-Fly Model-Checking
for Regular Alternation-Free Mu-Calculus. In Stefania Gnesi, Ina Schiefer-
decker, and Axel Rennoch, editors, Proceedings of the 5th International Work-
shop on Formal Methods for Industrial Critical Systems FMICS’2000 (Berlin,
Germany), GMD Report 91, pages 65–86, Berlin, April 2000. Also available as
INRIA Research Report RR-3899.

[MSGS88] J. Malhotra, S. A. Smolka, A. Giacalone, and R. Shapiro. A Tool for Hier-
archical Design and Simulation of Concurrent Systems. In Proceedings of the
BCS-FACS Workshop on Specification and Verification of Concurrent Systems
(Stirling, Scotland), pages 140–152, Swinton, UK, July 1988. British Computer
Society.

[Pec99] Charles Pecheur. Advanced Modelling and Verification Techniques Applied to
a Cluster File System. In Robert J. Hall and Ernst Tyugu, editors, Proceedings
of the 14th IEEE International Conference on Automated Software Engineering
ASE-99 (Cocoa Beach, Florida, USA). IEEE Computer Society, October 1999.
Extended version available as INRIA Research Report RR-3416.

[Que01] Juan Quemada, editor. Information Technology – Enhancements to LOTOS
(E-LOTOS). ISO/IEC FDIS 15437 ballot, May 2001.

[SBC+00] Mihaela Sighireanu, Xavier Bouchoux, Claude Chaudet, Hu-
bert Garavel, Marc Herbert, Frédéric Lang, and Bruno Vivien.
TRAIAN: A Compiler for E-LOTOS/LOTOS NT Specifications.
http://www.inrialpes.fr/vasy/traian/, November 2000.

[Sig00] Mihaela Sighireanu. LOTOS NT User’s Manual (Version 2.1). INRIA projet
VASY. ftp://ftp.inrialpes.fr/pub/vasy/traian/manual.ps.Z, Novem-
ber 2000.

[SLU89] K. K. Sabnani, A. M. Lapone, and M. U. Uyar. An Algorithmic Procedure for
Checking Safety Properties of Protocols. IEEE Transactions on Communica-
tions, 37(9):940–948, September 1989.

[TK93a] K. C. Tai and V. Koppol. Hierarchy-Based Incremental Reachability Analysis
of Communication Protocols. In Proceedings of the IEEE International Con-
ference on Network Protocols (San Francisco, CA), pages 318–325, Piscataway,
NJ, October 1993. IEEE Press.

RR n
�

4223

36 H. Garavel, F. Lang

[TK93b] K. C. Tai and V. Koppol. An Incremental Approach to Reachability Analysis
of Distributed Programs. In Proceedings of the 7th International Workshop on
Software Specification and Design (Los Angeles, CA), pages 141–150, Piscat-
away, NJ, December 1993. IEEE Press.

[Val93] Antti Valmari. Compositional State Space Generation. In Proceedings of Ad-
vances in Petri Nets, volume 674 of Lecture Notes in Computer Science, pages
427–457. Springer Verlag, 1993.

[Yeh93] W. J. Yeh. Controlling State Explosion in Reachability Analysis. PhD thesis,
Software Engineering Research Center (SERC) Laboratory, Purdue University,
December 1993. Technical Report SERC-TR-147-P.

[YY91] W. J. Yeh and M. Young. Compositional Reachability Analysis Using Process
Algebra. In Proceedings of the ACM SIGSOFT Symposium on Testing, Anal-
ysis, and Verification (SIGSOFT’91, Victoria, British Columbia, Canada),
pages 49–59, New York, NY, October 1991. ACM Press.

INRIA

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route desLucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

