
SEQ.OPEN: A Tool for Efficient

Trace-Based Verification?

Hubert Garavel and Radu Mateescu

Inria Rhône-Alpes / Vasy
655, avenue de l’Europe, F-38330 Montbonnot Saint Martin, France

{Hubert.Garavel,Radu.Mateescu}@inria.fr

Abstract. We report about recent enhancements of the Cadp verifica-
tion tool set that allow to check the correctness of event traces obtained
by simulating or executing complex, industrial-size systems. Correct-
ness properties are expressed using either regular expressions or modal
µ-calculus formulas, and verified efficiently on very large traces.

1 Introduction

Trace-based verification [3, 10, 15, 16] consists in assessing the correctness of a
(software, hardware, telecommunication...) system by checking a set of event
traces, i.e., chronological lists of inputs/outputs events sent/received by this
system. Although trace-based verification is more limited than general verifica-
tion on state graphs or Labelled Transition Systems (Ltss), it might be the only
option for “real” systems that run as “black boxes”, disclose none or little infor-
mation about their internal state, and provide no means for an external observer
to control or simply know about their branching structure (i.e., the list of pos-
sible transitions permitted in a given state). This is particularly true when the
source code of these systems is not available, or cannot be instrumented easily.

The importance of trace-based verification is widely recognized in the hard-
ware community, where traces might be the only information available during
the execution of a circuit or the simulation of an Hdl model. In particular, there
are recent efforts to standardize the use of temporal logics (e.g., Sugar [4] and
ForSpec [2]) for trace-based verification.

Trace-based verification can be either on-line (i.e., verification is done at the
same time the trace is generated) or off-line (i.e., the trace is generated first,
stored in a file and verified afterwards). On-line verification avoids to store the
trace in a file, but gets potentially slower if several correctness properties must
be checked on the same trace, in which case it might be faster to generate the
trace only once and perform all verifications off-line.

In this paper, we present a general solution for off-line trace-based verifica-
tion, which is easily applicable to the traces generated by virtually any system.
Traces are encoded on a very simple, line-based format. Correctness properties
are specified using either regular expressions or µ-calculus formulas, and model

? This research was partially funded by Bull S.A. and the European Ist -2001-32360
project “ArchWare”.

checked using dedicated tools of the widespread Cadp verification tool set [9].
Notice that on-line trace-based verification could also be addressed by the Cadp
tools supporting on the fly verification, although this is beyond the scope of this
paper.

2 Assumptions on Trace Structure and Representation

Following the “black box” testing paradigm, we assume that the internal state
of the system is not available for inspection. Thus, a trace is defined as a (de-
generated) Lts (S, A, T, s0) consisting of a set S of states, a set A of actions

(transition labels corresponding to the input/output communications of the sys-
tem), a transition relation T ⊆ S×A×S, and an initial state s0 ∈ S. Should (a
part of) the internal state be observable, then this information could be encoded
in the actions without loss of generality [14].

We then assume that the length, i.e., the number of states (and transitions)
in a trace can be large (e.g., several millions), since traces can be produced
by hour- or day-long simulation/execution of the system. In fact, the number of
states can be as large as for classical explicit-state verification (with the difference
that traces are particular Ltss with a tiny breadth and a huge depth).

We make no special assumption regarding actions. Their contents are unre-
stricted and may include any sequence of data, including variable-length values
such as lists, sets, etc. We therefore represent actions as arbitrary-length char-
acter strings. As a consequence, the set A of all possible actions may be very
large (or even unbounded), so that it might be prohibitive (or even infeasible) to
enumerate its elements. Finally, we make no assumption of regularity or locality
in the occurrence of actions. In the worst-case, a trace might contain as many
different actions as it contains transitions.

In general, traces might be too large to fit into main memory entirely and
must be stored in computer files instead. The Cadp tool set provides a textual file
format (the Seq format) for representing traces. So far, this format was mostly
used to display the counter-examples generated by Cadp model-checkers, but,
since this format satisfies the above assumptions, we decided to adopt it for
trace-based verification as well. In practice, it is often convenient to store in the
same file several traces issued from the same initial state. For this reason, a Seq
file consists of a set of finite traces, separated by the choice symbol “[]”, which
indicates the existence of several branches starting at the initial state. Each
trace consists of a list of character strings (one string per line) enclosed between
double quotes, each representing one action in the trace. The Seq format also
admits comments (enclosed between the special characters “\001” and “\002”).

3 Principles of the Seq.Open Tool

All the Cadp tools that operate on the fly (i.e., execution, simulation, test gen-
eration, and verification tools) rely upon the Open/Cæsar [8] software frame-
work. Due to the modularity and reusability brought by Open/Cæsar, it was

not needed to develop yet another model checker dedicated to traces encoded
in the Seq format. The proper approach was to design a new tool (named
Seq.Open) that connects the Seq format to Open/Cæsar, thus allowing all the
Open/Cæsar tools (including model checkers) to be applied to traces without
any modification.

A central feature of Open/Cæsar is its generic Api (Application Program-

ming Interface) providing an abstract representation for on the fly Ltss. This
Api clearly separates language-dependent aspects (translation of source lan-
guages into Lts models, which is done by Open/Cæsar-compliant compilers

implementing the Api) from the language-independent aspects (on the fly Lts
exploration algorithms built on top of the Api). In a nutshell, the Api consists
of two types “Lts state” and “Lts label”, equipped with comparison, hash, and
print functions, and two operations computing the initial state of the Lts and
the transitions going out of a given state.

Seq.Open is an Open/Cæsar-compliant compiler that maps a Seq file
onto the aforementioned Api (see Figure 1). A set of n traces contained in
a Seq file can be viewed as an Lts with three types of states: deadlock states

(terminating states, with 0 successors1); normal states (intermediate states, with
1 successor); and the initial state (common to all traces, with n successors). The
user of Seq.Open may decide to explore all the n traces, or only the i-th one
(1 ≤ i ≤ n).

system

"............."

"............."

real

"............."

hash-based
cache table

Seq.Open

O
p
e
n
/
C

æ
sa

r
A

p
i

"............."
"............."
"............."
"............."
"............."

"............."

[]

trace (.seq)

"............."
"............."

[]

"............."
"............."

. . .

on the fly Cadp tools

yes/no + diagnostic

temporal
formula

Evaluator

regular
expression

Exhibitor

N
en

tr
ie

s

Fig. 1. The Seq.Open Tool

1 All traces end in a deadlock state. If necessary, a distinction can be made between
successful and abnormal termination by considering the action of the last transition
preceding the deadlock state.

An Lts label is implemented by Seq.Open as an offset in the Seq file (the
offset returned by the Posix function ftell() for the double quote opening
the label character string). This representation is not canonical: The same label
occurring at different places in the file is represented by different offsets.

States also are implemented as offsets. Each deadlock state is represented by
the special offset -1. Each normal state s is represented by the offset of the label
of the transition going out of s. The initial state is represented by the offset of
the first label of the first trace to be considered. Contrary to labels, the state
representation is canonical (up to graph isomorphism).

A transition (s1, a, s2) of the Lts is encoded by a couple (o1, o2), where o1 is
the offset of state s1 (equal to the offset of label a) and o2 is the offset of state
s2. The transition relation is implemented as follows. Deadlock states have no
successors. For a normal state s with offset o1, the offset o2 of its successor is
computed by positioning the file cursor at o1 using the fseek() function, reading
the character string of the transition label going out of s (possibly skipping
comments), then taking for o2 the offset returned by the ftell() function. For
the initial state, the successors are computed only once at initialization. This is
done using a preliminary scan of the Seq file, unless the user wants to consider
the first trace only (a frequent situation for which no preliminary scan is needed).

To reduce the time overhead induced by calls to fseek(), i.e., back and
forth skips inside the Seq file, we introduced a hash-based cache table similar to
those used in Bdd implementations. This table has a prime number N of entries,
which is chosen by the user and remains constant regardless of the number of
visited states/transitions. The table speeds up both (1) for a label a known by its
offset, the computation of the character string of a, and (2) for a normal state
s1 known by its offset, the computation of the outgoing transition (s1, a, s2).
Precisely, for a label (resp. normal state) with offset o1, the table entry of index
o1mod N may contain the character string of label o1 (resp. the character string
of the transition label going out of state o1, and the successor state offset o2);
if this entry is already occupied by another label (resp. state), its contents will
be erased and replaced with information corresponding to the label (resp. state)
with offset o1 (this information will be computed using fseek() and ftell()

as explained above).
The other operations of the Open/Cæsar Api are performed as follows.

Comparison of states is simply an equality test of their offsets (since state offsets
are canonical). Comparison of labels is done by comparing their character strings
(since label offsets are not canonical), a comparison that is sped up when labels
are already present in the cache.

4 Verification of Trace Properties

Cadp provides two different tools for checking general properties over traces on
the fly2.

2 For very specific, application-dependent properties, additional tools could be devel-
oped using the Open/Cæsar environment.

Exhibitor allows to check linear-time properties expressed as regular ex-
pressions over traces. Individual actions in a trace are characterized by boolean
formulas consisting of action predicates (plain character strings or Unix-like
regular expressions matching several character strings) combined using boolean
connectors such as negation (“~”), disjunction (“|”), and conjunction (“&”).
Regular expressions over traces consist of these boolean formulas combined us-
ing regular operators such as concatenation (newline character “\n”), choice
(“[]”), and iteration (“*” and “+”). A special “<deadlock>” operator charac-
terizes deadlock states. Additional operators inspired from linear temporal logic
are provided as shorthand notations: “<until> P” is equivalent to “(~P)*” and
“<while> P <until> Q” is equivalent to “(P & ~Q)* \n Q”.

Evaluator [13] allows to check branching-time properties expressed in
alternation-free µ-calculus [7], a specification formalism for which efficient
model checking algorithms exist [5] with a linear (time and space) complex-
ity O(|ϕ| · (|S| + |T |)), where |ϕ| is the number of operators in the formula ϕ

to be checked, and where |S| and |T | are the respective numbers of states and
transitions in the Lts under verification. It was shown recently that on acyclic
Ltss (which contain traces as a particular case), the alternation-free µ-calculus
has the same expressive power as the full µ-calculus [11]. This result allows, in
the case of acyclic Ltss, to benefit from the expressiveness of the full µ-calculus
(which subsumes most temporal logics, including Ctl and Pdl [7], as well as
Ltl and Ctl∗ [6]) still keeping model checking algorithms with a linear (rather
than exponential) complexity. Furthermore, space complexity can be reduced
down to O(|ϕ| · |S|) (still maintaining a linear complexity in time) by using spe-
cialized algorithms for checking alternation-free µ-calculus formulas on acyclic
Ltss [11, 12].

Both Exhibitor and Evaluator provide diagnostic generation features, al-
lowing to exhibit the prefix of the trace illustrating the truth value of a property.

5 Conclusion

We presented a working solution for model checking large event traces. Based
upon the generic Open/Cæsar [8] framework, this solution relies on a new soft-
ware tool, Seq.Open, which enables fast, cache-based handling of large traces
stored in computer files. Combined with already existing components of the
Cadp tool set (such as Exhibitor and Evaluator), Seq.Open allows to ver-
ify trace properties efficiently.

Due to the extreme simplicity of Seq.Open’s line-based trace format, our
solution is not “intrusive”, in the sense that it is easily applicable to most existing
systems without heavy reengineering.

In the setting of hardware systems, our solution was chosen by Bull for val-
idating the traces produced by the Verilog simulation of the cache coherency
protocol used in Bull’s Novascale multiprocessor servers. This validation task,
previously done by human reviewers, is now fully automated with good perfor-
mances (7.4 million model checking jobs in 23 hours using a standard 700 MHz
Pentium PC).

In the setting of software systems, our solution is used to analyze the traces
produced by a multi-threaded virtual machine, which provides the runtime envi-
ronment for executing the ArchWare description language for mobile software
architectures.

As for future work, we plan to study trace-based verification algorithms that
improve “locality”, i.e., produce less faults in the Seq.Open cache table.

Acknowledgements The authors are grateful to Bruno Ondet (Inria/Vasy) for
his contribution to the implementation of Seq.Open, and to Nicolas Zuanon
and Solofo Ramangalahy (Bull) for their industrial feedback.

References

1. H. R. Andersen. Model checking and boolean graphs. TCS, 126(1):3–30, 1994.
2. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver,

S. Mador-Haim, E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The
ForSpec Temporal Logic: A New Temporal Property-Specification Language. In
TACAS’2002, LNCS vol. 2280, pp. 296–311.

3. T. Arts and L-A. Fredlund. Trace Analysis of Erlang Programs. In ACM SIGPLAN
Erlang Workshop (Pittsburgh, PA, USA), 2002.

4. I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The
Temporal Logic Sugar. In CAV’2001, LNCS vol. 2102, pp. 363–367.

5. R. Cleaveland and B. Steffen. A Linear-Time Model-Checking Algorithm for the
Alternation-Free Modal Mu-Calculus. FMSD, 2:121–147, 1993.

6. M. Dam. Ctl∗ and Ectl∗ as fragments of the modal µ-calculus. TCS, 126(1):77–
96, 1994.

7. E. A. Emerson and C-L. Lei. Efficient Model Checking in Fragments of the Propo-
sitional Mu-Calculus. In LICS’86, pp. 267–278.

8. H. Garavel. OPEN/CÆSAR: An Open Software Architecture for Verification,
Simulation, and Testing. In TACAS’98, LNCS vol. 1384, pp. 68–84. Full version
available as INRIA Research Report RR-3352.

9. H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. EASST
Newsletter, 4:13–24, 2002. Also available as INRIA Technical Report RT-0254.

10. K. Havelund, A. Goldberg, R. Filman, and G. Rosu. Program Instrumentation
and Trace Analysis. In Monterey Workshop (Venice, Italy), 2002.

11. R. Mateescu. Local Model-Checking of Modal Mu-Calculus on Acyclic Labeled
Transition Systems. In TACAS’2002, LNCS vol. 2280, pp. 281–295. Full version
available as INRIA Research Report RR-4430.

12. R. Mateescu. A Generic On-the-Fly Solver for Alternation-Free Boolean Equation
Systems. In TACAS’2003, LNCS vol. 2619, pp. 81–96.

13. R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. SCP, 46(3):255–281, 2003.

14. R. De Nicola and F. W. Vaandrager. Action versus State based Logics for Transition
Systems. In Semantics of Concurrency, LNCS vol. 469, pp. 407–419, 1990.

15. S. Vloavic and E. Davidson. TAXI: Trace Analysis for X86 Implementation. In
ICCD’2002 (Freiburg, Germany).

16. A. Ziv. Using Temporal Checkers for Functional Coverage. In MTV’2002 (Austin,
Texas, USA).

