
State Space Reduction for Process Algebra

Specifications

Hubert Garavel, Wendelin Serwe

INRIA Rhône-Alpes / VASY
655, avenue de l’Europe

F-38334 St. Ismier Cedex, France

Abstract

Data-flow analysis to identify “dead” variables and reset them to an “undefined”
value is an effective technique for fighting state explosion in the enumerative verifi-
cation of concurrent systems. Although this technique is well-adapted to imperative
languages, it is not directly applicable to value-passing process algebras, in which
variables cannot be reset explicitly due to the single-assignment constraints of the
functional programming style. This paper addresses this problem by performing
data-flow analysis on an intermediate model (Petri nets extended with state vari-
ables) into which process algebra specifications can be translated automatically. It
also addresses important issues such as avoiding the introduction of useless reset
operations and handling shared read-only variables that child processes inherit from
their parents.

Key words: Cadp – Cæsar – compositional verification – data-flow analysis –
formal specification – labeled transition system – Lotos – model checking –
process algebra

1 Introduction

We consider the verification of concurrent systems using enumerative (or ex-
plicit state) techniques, which is based on enumerating the system states reach-
able from the initial state.

Email addresses: Hubert.Garavel@inria.fr (Hubert Garavel),
Wendelin.Serwe@inria.fr (Wendelin Serwe).

URLs: http://www.inrialpes.fr/vasy/people/Hubert.Garavel (Hubert
Garavel), http://www.inrialpes.fr/vasy/people/Wendelin.Serwe (Wendelin
Serwe).

Preprint submitted to Elsevier Science 7 February 2005

Among the various approaches to avoid state explosion, it has been known for
long (e.g., [1]) that a significant reduction of the state space can be achieved
by resetting state variables as soon as their values are no longer needed. This
avoids distinguishing between states that only differ by the values of so-called
dead variables, i.e., variables that will not be used in the future before they are
assigned again. Resetting these variables, as soon as they become useless, to
some “undefined” value (usually, a pattern of 0-bits) allows states that would
otherwise differ to be considered as identical.

When concurrent systems are described using an imperative language with ex-
plicit assignments, it is possible to reset variables by inserting zero-assignments
manually in the source program (e.g., [1]). Some languages even provide a ded-
icated instruction for resetting variables (e.g., [2, §6]). Despite its apparent
simplicity, this approach proves to be tedious and error-prone, and it obscures
the source program with verification artefacts. Both its correctness and effi-
ciency critically depend on the specifier’s skills (resets have to be inserted at
all the right places and only these).

Moreover, this approach does not apply to value-passing process algebras (i.e.,
process algebras with data values such as Ccs, Csp, Lotos [3], µCrl, etc.),
which use a functional programming style in which variables are initialised
only once and cannot be reassigned (thus, reset) later.

This paper addresses these two problems by presenting a general method that
is applicable to process algebras, and that allows variables to be reset auto-
matically in a fully transparent way for the specifier. This method proceeds
in two steps.

In a first step, process algebra specifications are translated automatically into
an intermediate model with an imperative semantics. This approach was first
suggested in [4,5], which proposed a so-called network model consisting of a
Petri net extended with state variables, the values of which are consulted and
modified when the transitions are executed. This network model is used in the
Cæsar compiler for Lotos (Cæsar is distributed as part of the widespread
Cadp verification toolbox [6]). This paper presents the most recent version of
the network model, which adds to the model of [4,5] the enhancements intro-
duced since 1990 in order to allow state space reductions based on transition
compaction and to support the Exec/Cæsar framework for rapid prototyp-
ing of Lotos specifications. We believe that this network model is sufficiently
general to be used for process algebras other than Lotos.

In a second step, resets are introduced, not at the source level (process alge-
braic specifications), but in the intermediate model, by attaching resets to the
transitions of the network.

Various techniques can be used to determine automatically which variables

2

can be reset by which transitions. A simple approach consists in resetting all
the variables of a process as soon as this process terminates. This approach was
implemented in Cæsar 4.3 (January 1992) and gives significant reductions 1

for terminating processes (especially at the points corresponding to the se-
quential composition (“>>”) and disabling (“[>”) operators of Lotos, which
are detected by analysing the structure of the network model), but not for
cyclic (i.e., non-terminating) processes. The Xmc model checker uses a simi-
lar approach [7], with two minor differences: dead variables are determined by
analysing the sequential composition of processes at the source level and are
removed from the representation of the state instead of being reset. 2

A more sophisticated approach was studied in 1992–1993 by the first author
and one of his MSc students [9] in order to introduce variable resets every-
where it would be possible, including in cyclic processes. A key idea in [9] was
the computation of variable resets by means of classical data-flow analysis
techniques (precisely, dead variable analysis), such as those used in optimiz-
ing compilers for sequential languages. An experimental version of Cæsar
implementing this idea was developed in 1993. Although it gave significant
state space reductions, it also happened to produce incorrect results on cer-
tain examples, which prevented it from being integrated in the official releases
of Cæsar. The reason for these errors was unknown at that time, but is now
understood and addressed in this paper.

The use of data-flow analysis for resetting dead variables was later mentioned
in [8] and formalised in [10,11] and recently [12], the main point of [10,11]
being the proof that reduction based on dead variable analysis preserves strong
bisimulation. The main differences between [10,11], [12], and our approach are
the following:

• Our work addresses value-passing process algebras, such as Lotos. [10,11]
target the Sdl language, and, thus, consider a set of communicating au-
tomata with state variables that are consulted and assigned by automata
transitions. [12] targets a concurrent language consisting of sequential, de-
terministic processes with only local variables and process algebra-like prim-
itives for communication and synchronisation between processes.

• As regards system architecture, the network model of Cæsar allows con-
current processes to be nested to an arbitrary depth; this is needed for a
compositional translation of process algebra specifications in which parallel
and sequential composition operators are intertwined arbitrarily — such as

1 For the “rel/REL” reliable atomic multicast protocol, Cæsar 4.3 generated (in
1992) a state space of 126,223 states and 428,766 transitions in 30 minutes on a DEC
Station 5000 with 24 MB RAM, while Cæsar 4.2 would generate a state space of
679,450 states and 1,952,843 transitions in 9 hours on the same machine.
2 See the concerns expressed in [8] about the poor efficiency of such a variable-
length state representation scheme.

3

the Lotos behavior “B1>>(B2|||B3)>>B4” expressing that the execution
of process B1 is followed by the concurrent execution of two processes B2

and B3, which, upon termination of both, will be followed by the execution
of process B4. On the contrary, the models of [10,11] and [12] lack any form
of process hierarchy and allow only a “flat” collection of communicating
automata, all activated in the initial state.

• As regards interprocess communications, the network model implements the
Hoare-style rendezvous mechanism used in process algebras by synchronised
Petri net transitions, which allow data exchanges between processes. To the
contrary, the model of [10,11] relies on Fifo message queues and shared
variables that can be arbitrarily read/written by all the processes. The
model of [12] is closer to our network model in that it uses a communica-
tion scheme based on handshaking, but less general, since in the network
model concurrent processes may share variables inherited from their parent
process(es) — as in the Lotos behavior “G?X:S;(B1|||B2)”, in which
both processes B1 and B2 can use variable X of sort S, whose value has
been set in their parent process. These shared variables are read-only, in the
sense that child processes cannot modify them.

• As regards shared variables, [10,11] propose an approach in which variable
resets are computed partly at compile-time (when analysing each commu-
nicating automaton separately) and partly at run-time (when generating
all reachable states of the product automaton). It is difficult to figure out
how this approach can be implemented in practice, since the authors stand
far from algorithmic concerns and since the most recent versions 3 of their
If tool set [13] do not actually reset shared variables. However, we believe
that the communicating automata model used by [10,11] is not sufficient in
itself to express resets of shared variables, so that some extra information
(yet to be specified) must be passed from compile-time to run-time. In com-
parison, the approach presented in this paper can be performed entirely at
compile-time and requires no addition to the network model.

This paper is organised as follows. Section 2 presents the network model and
its operational semantics. Sections 3 and 4 respectively present the local and
global data-flow analyses derived from [9] for determination of variable resets.
Section 5 deals with the particular case of inherited variables, which need
careful attention to avoid semantic problems caused by a “naive” insertion of
resets. Section 6 reports experimental results, and Section 7 gives concluding
remarks.

3 Namely, If 1.0 (dated November 2003) and If 2.0 (dated March 2003 (sic)).

4

2 Presentation of the Network Model

The network model presented here is based on the definitions of [4,5], the
essential characteristics of which are retained (namely, the Petri net structure
with state variables); but it also contains some more recent extensions that
proved to be useful.

Formally, a network is a tuple 〈Q, Q0,U , T ,G,X ,S,F〉, the components of
which will be presented progressively, so as to avoid forward references. We
will use the following convention consistently: elements of set Q (resp. U , T ,
G, X , S, F) are noted by the corresponding capital letter, e.g., Q, Q0, Q1, Q′,
Q′′, etc.

Sorts, Functions, and Variables. In the above definition of a network,
S denotes a finite set of sorts (i.e., data types), F denotes a finite set of
functions, and X denotes a finite set of (state) variables. We define domain(S)
as the (possibly infinite) set of ground values of sort S. Functions take (zero,
one, or many) typed arguments and return a typed result. Variables also are
typed.

Contexts. To represent the memory containing state variables, we define
a context C as a (partial) function mapping each variable of X either to its
ground value or to the undefined value, written “⊥”. We need 5 operations to
handle contexts. For contexts C1 and C2, and variables X0, . . . , Xn, we define
the contexts:

• {}: X 7→ ⊥ (i.e., the empty context)
• {X0 7→ v}: X 7→ if X = X0 then v else ⊥
• C1 ⊖ {X0, . . . , Xn}: X 7→ if X ∈ {X0, . . . , Xn} then ⊥ else C1(X)
• C1 ⊘ C2: X 7→ if C2(X) 6= ⊥ then C2(X) else C1(X)
• C1 ⊕ C2: X 7→ if C2(X) 6= ⊥ then C2(X) else C1(X)

We only use ⊕ on “disjoint” contexts, i.e., when
(
C1(X)=⊥

)
∨

(
C2(X)=⊥

)
.

Value Expressions. A value expression is a term built using variables and
functions: V ::= X | F (V1, . . . , Vn≥0). We define eval(C, V) as the (unique)
ground value obtained by evaluating value expression V in context C (after
substituting variables with their ground values given by C and applying func-
tions). Because the network is generated from a Lotos specification that is
correctly typed and well-defined (i.e., each variable is initialised before used),
evaluating a value expression never fails due to type errors or undefined vari-
ables.

5

Offers. An offer is a term of the form: O ::= !V | ?X:S | O1 . . . On≥0,
meaning that an offer is a (possibly empty) sequence of emissions (written “!”)
and/or receptions (written “?”). We define a relation “[C, O]

o
→ [C ′, v1 . . . vn]”

expressing that offer O evaluated in context C yields a (possibly empty)
list of ground values v1 . . . vn and a new context C ′ (C ′ reflects that each
reception of the form “?X:S” binds X to the received value(s)). For a
given pair [C, O] there might be one or several pairs [C ′, v1 . . . vn] such that
[C, O]

o
→ [C ′, v1 . . . vn], since a reception “?X:S” generates as many pairs as

there are ground values in domain(S).

v = eval(C, V)

[C,!V]
o
→ [{}, v]

v ∈ domain(S)

[C,?X:S]
o
→ [{X 7→ v}, v]

(∀i ∈ {1, . . . , n}) [C, Oi]
o
→ [Ci, vi]

[C, O1 . . . On]
o
→

[⊕n
i=1 Ci, v1 . . . vn

]

The use of ⊕ in the definition of
o
→ is possible, since Lotos ensures that all

variables Xi used to receive inputs in an offer are pairwise distinct.

Actions. Actions are terms of the form:

A ::= none (empty action)

| when V (condition)

| for X among S (iteration)

| X0, . . . , Xn≥0:=V0, . . . , Vn (vector assignment)

| reset X0, . . . , Xn≥0 (variable reset)

| A1;A2 (sequential composition)

| A1&A2 (collateral composition)

We define a relation “[C, A]
c
→C ′” expressing that successful execution of ac-

tion A in context C yields a new context C ′. For a given pair [C, A] there might
be zero, one, or several C ′ such that [C, A]

c
→C ′, since a “when V ” condition

may block the execution if V evaluates to false, whereas a “for X among S”
iteration triggers as many executions as there are ground values in domain(S).

[C,none]
c
→C

eval(C, V) = true

[C,when V]
c
→C

v ∈ domain(S) [C, X:=v]
c
→C ′

[C, for X among S]
c
→C ′

C ′ = C ⊘
⊕n

i=0{Xi 7→ eval(C, Vi)}

[C, X0, . . . , Xn:=V0, . . . , Vn]
c
→C ′

C ′ = C ⊖ {X0, . . . , Xn}

[C, reset X0, . . . , Xn]
c
→C ′

[C, A1]
c
→C ′ [C ′, A2]

c
→C ′′

[C, A1;A2]
c
→C ′′

[C, A1;A2]
c
→C ′′ [C, A2;A1]

c
→C ′′

[C, A1&A2]
c
→C ′′

6

Gates. In the above definition of a network, G denotes a finite set of gates
(i.e., names for communication points). There are two special gates: “τ”, the
usual notation for the internal steps of a process, and “ε”, which does not
exist in the structured operational semantics of Lotos [3], but is introduced
in Cæsar’s translation algorithms [4,5] to allow a compositional construction
of networks for a large class of Lotos behaviors such as “B1[](B2|||B3)”.
Although ε deserves a special semantic treatment, namely the computation of
an “ε-closure”, this has no influence on the approach proposed in this paper;
thus, we do not distinguish ε from “ordinary” gates here.

Places and Transitions. In the above definition of a network, Q denotes a
finite set of places, Q0 ∈ Q is the initial place of the network, and T denotes
a finite set of transitions. Each transition T is a tuple 〈Qi, Qo, A, G, O, W, R〉,
where Qi ⊆ Q is a set of input places (written in(T)

∆

= Qi), Qo ⊆ Q is a set
of output places (written out(T)

∆

= Qo), A is an action, G is a gate, O is a
(possibly empty) offer, W is a when-guard (i.e., a restricted form of action
constructed only with “none”, “when”, “;”, and “&”), and R is a reaction
(i.e., a restricted form of action constructed only with “none”, “:=”, “reset”,
“;”, and “&”).

Markings. As regards the firing of transitions, the network model obeys the
standard rules of Petri nets with the particularity that it is one-safe, i.e., each
place may contain at most one token. This is due to the so-called static control
contraints [14,4,5], which only allow a statically bounded dynamic creation
of processes. For instance, the following behavior “B1>>(B2|||B3)>>B4” is
permitted, whereas recursion through parallel composition is prohibited.

Therefore, we can define a marking M as a subset of the places of the network
(i.e., M ⊆ Q). We define the initial marking M0

∆

= {Q0}, which expresses
that, initially, only the initial place of the network has one token. We define a
relation “[M, T]

m
→M ′” meaning that transition T can be fired from marking

M , leading to a new marking M ′. Classically, [M, T]
m
→M ′ holds iff in(T) ⊆ M

(i.e., all input places of T have a token) and M ′ = (M \ in(T))∪ out(T) (i.e.,
tokens move from input to output places).

Units. Contrary to standard Petri nets, which consist of “flat” sets of places
and transitions, the places of a network are properly structured using a tree-
shaped hierarchy of units. The set of units, which is finite, is written U in the
above definition of a network. To each unit U is associated a non-empty, finite
set of places, called the proper places of U and written places(U), such that
all sets of proper places {places(U) | U ∈ U} form a partition of Q. Although
units play no part in the transition relation “[M, T]

m
→M ′” between markings,

they satisfy an important invariant: for each marking M reachable from the
initial marking M0 and for each unit U , one has card

(
M∩places(U)

)
≤ 1, i.e.,

7

there is at most one token among the proper places of U , meaning that each
unit models a (possibly inactive) sequential behavior. This invariant serves
both for correctness proofs and compact memory representation of markings.

Units can be nested recursively: each unit U may contain zero, one, or sev-
eral units, called the sub-units of U ; this is used to encapsulate sequential or
concurrent sub-behaviors. There exists a root unit containing all other units.
We define the relation “U ′ ⊑ U” expressing that U ′ is equal to U or tran-
sitively contained in U ; this relation is a complete partial order, the max-
imum of which is the root unit. We define places∗(U) =

⋃
U ′⊑U places(U ′)

as the set of places transitively contained in U . For some marking M reach-
able from M0, one may have card

(
M ∩ places∗(U)

)
> 1 in case of concur-

rency between the sub-units of U . Yet, for all units U and U ′ ⊑ U , one has(
M ∩ places(U) = ∅

)
∨

(
M ∩ places(U ′) = ∅

)
, meaning that the proper places

of a unit are mutually exclusive with those of its sub-units.

Variables may be global, or local to a given unit. We define unit(X) as the
unit to which variable X is attached (global variables are attached to the root
unit). A variable X is said to be inherited in all sub-units of unit(X). To a
first approximation, we will say that variable X is shared between two units
U1 and U2 iff

(
U1 ⊑ unit(X)

)
∧

(
U2 ⊑ unit(X)

)
∧ (U1 6⊑ U2) ∧ (U2 6⊑ U1).

Labelled Transition Systems. Finally, the operational semantics of the
network model is defined as a Labelled Transition System (Lts), i.e., a tuple
〈Σ, σ0,L,→〉 where Σ is a set of states, σ0 ∈ Σ is the initial state, L is the set
of labels and → ⊆ Σ ×L× Σ is the transition relation.

The Lts is constructed as follows. Each state of Σ consists of a pair 〈M, C〉,

with M a marking and C a context. The initial state σ0 is the pair
〈
M0, {}

〉
,

i.e., one token is in the initial place and all variables are undefined initially.
Each label of L consists of a list G v1 . . . vn, with G a gate and v1 . . . vn a
(possibly empty) list of ground values resulting from the evaluation of an
offer. A transition (σ1, L, σ2) belongs to the “−→” relation, which is written

“σ1
L
−→ σ2”, iff

[M, T]
m
→M ′ [C, A]

c
→C ′ [C ′, O]

o
→ [C ′′, v1 . . . vn] [C ′′, (W;R)]

c
→C ′′′

〈M, C〉
G v1...vn−−−−−→ 〈M ′, C ′′′〉

The above definition expresses that firing a transition involves several steps,
each of which must execute successfully: the action is executed first, then the
offer is evaluated, then the when-guard is checked, and the reaction is executed
finally. In fact, the actual definition of the transition relation is more complex
because there are rules to eliminate ε-transitions from the Lts; as mentioned
before, we do not detail these rules here.

8

q6

T3 In2 ?X2:Nat
when X2≥1

q5

q10

T0

T2 Ctrl ?N:Id

Fork
U2

q11

T8

q0

q9

τ

q14

T7

q15

τ

q12

q13

T6 τ

U4

Send !2 !X2

X:=X2; M:=2

when N =2
T5

Y2:=F2(X)

q8

Y :=Y1+Y2+N

(to q9)

U0

U1

when N =2
Recv !2 !Y
Z2:=Y

U3

U5

q7

N:=M

Y1:=F1(X)

T10

T12 Out2 !Z2

when N =1
Recv !1 !YT9

X:=X1; M:=1

when N =1
Send !1 !X1T4

when X1≥1
In1 ?X1:NatT1

q1

q2

T11 Out1 !Z1

q3

q4

Z1:=Y

Fig. 1. Example of a network

An Example. Figure 1 gives an example of a network. According to Petri
net graphical conventions, places and transitions are represented by circles
and rectangles respectively. Dashed boxes are used to represent units. For each
transition, the corresponding action, gate and offer, when-guard, and reaction
are displayed (in that order) from top to bottom on the right. We omit every
action, when-guard, or reaction that is equal to none. The variables attached
to U1 are X1 and Z1; those attached to U2 are X2 and Z2; those attached to U3

are M , N , X, Y , Y1, and Y2. Variable X inherited from U3 is shared between
U4 and U5. Note that, contrary to a place or a variable, a transition is not
attached to a particular unit, which reflects that the input and output places
of a transition may belong to different units. Thus, the fact that a variable is
assigned or consulted in a transition with input or output places belonging to
different units does not mean that this variable is attached to each of these
units, nor to the unit containing all these units (e.g., X is assigned in transition
T4 that has input places in U1 and U3, but X is attached to U3, not to U1 nor
U0).

9

3 Local Data-Flow Analysis

In the network model, transitions constitute the equivalent of the “basic
blocks” used for data-flow analysis of sequential programs. We first analyse
the flow of data within each transition taken individually to characterise which
variables are accessed by this transition. Our definitions are based on [9], with
adaptations to take into account the latest extensions of the network model
and to handle networks that already contain “reset” actions. We define the
following sets by structural induction over the syntax of value expressions,
offers, and actions:

• usev(V) (resp. useo(O), usea(A)) denotes the set of variables consulted in
value expression V (resp. offer O, action A).

• defo(O) (resp. defa(A)) denotes the set of variables assigned a defined value
by offer O (resp. action A).

• unda(A) denotes the set of variables assigned an undefined value (i.e., reset)
by action A.

• use before defa(A) denotes the set of variables consulted by action A and
possibly modified by A later (modifications, if present, should only occur
after the variables have been consulted at least once).

usev(X)
∆

= {X}

usev

(
F (V1, . . . , Vn)

)
∆

=
n⋃

i=1
usev(Vi)

useo(!V)
∆

= usev(V)

useo(?X:S)
∆

= ∅

useo(O1 . . . On)
∆

=
n⋃

i=1
useo(Oi)

unda(reset X0, . . . ,Xn)
∆

= {X0, . . . ,Xn}

unda(A1;A2)
∆

=
(
unda(A1)\defa(A2)

)
∪ unda(A2)

unda(A1&A2)
∆

=unda(A1) ∪ unda(A2)

otherwise : unda(A)
∆

= ∅

defo(!V)
∆

= ∅

defo(?X:S)
∆

= {X}

defo(O1 . . . On)
∆

=
n⋃

i=1
defo(Oi)

defa
(
X0, . . . ,Xn:=V0, . . . , Vn

)
∆

= {X0, . . . ,Xn}

defa(for X among S)
∆

= {X}

defa(A1;A2)
∆

=
(
defa(A1)\unda(A2)

)
∪defa(A2)

defa(A1&A2)
∆

= defa(A1) ∪defa(A2)

otherwise : defa(A)
∆

= ∅

usea(when V)
∆

= usev(V)

usea

(
X0 . . . :=V0 . . .

)
∆

=
n⋃

i=0
usev(Vi)

usea(A1;A2)
∆

= usea(A1) ∪ usea(A2)

usea(A1&A2)
∆

= usea(A1) ∪ usea(A2)

otherwise : usea(A)
∆

= ∅

use before defa(A1;A2)
∆

=use before defa(A1) ∪
(
use before defa(A2) \ defa(A1)

)

use before defa(A1&A2)
∆

=use before defa(A1) ∪ use before defa(A2)

otherwise : use before defa(A)
∆

= usea(A)

10

Finally, for a transition T = 〈Qi, Qo, A, G, O, W, R〉 and a variable X, we
define three predicates, which will be the only local data-flow results used in
subsequent analysis steps:

• use(T, X) holds iff X is consulted during the execution of T .
• def (T, X) holds iff X is assigned a defined value by the execution of T , i.e.,

if X is defined by A, O or R, and not subsequently reset.
• use before def (T, X) holds iff X is consulted during the execution of T and

possibly modified later (modification, if present, should only occur after X

has been consulted at least once).

Formally:

use(T, X)
∆

=X ∈ usea(A) ∪ useo(O) ∪ usea(W) ∪ usea(R)

def (T, X)
∆

=X ∈
((

defa(A) ∪ defo(O)
)
\ unda(R)

)
∪ defa(R)

use before def (T, X)
∆

=X∈

use before defa(A) ∪

(
useo(O) \ defa(A)

)
∪

(
use before defa(W;R) \

(
defa(A) ∪ defo(O)

))

Example 1 For the variable N in the network of Figure 1, we have:
use(T, N) for T ∈ {T4, T5, T8, T9, T10}, def (T, N) for T ∈ {T2, T8}, and
use before def (T, N) for T ∈ {T4, T5, T9, T10}.

4 Global Data-Flow Analysis

Based on local (intra-transition) data-flow predicates, we now perform global
(inter-transition) data-flow analysis, the goal being to compute, for each
transition T = 〈Qi, Qo, A, G, O, W, R〉 and for each variable X, a predicate
reset(T, X) expressing that it is possible to reset variable X at the end of
transition T (i.e., to append “reset X” at the end of A if X is neither defined
in O nor used in O, W , and R; or else to append “reset X” at the end of
R). To be exact, if X is an inherited shared variable, it is not always possible
to insert “reset X” at the end of every transition T such that reset(T, X);
this issue will be dealt with in Section 5; for now, we focus on computing
reset(T, X).

For sequential programs, the classical approach to global data-flow analysis
(e.g., [15]) consists in constructing a control-flow graph on which boolean pred-
icates will then be evaluated using fixed point computations. The vertices of
the control-flow graph are usually the basic blocks connected by arcs express-
ing that two basic blocks can be executed in sequence. Since the control-flow

11

to T2

T1

T12T11

T9 T10

T8

T6 T7

T4 T5
T2

T0

T3

Fig. 2. Cfg for Figure 1

T9 T10

T5T4

T6 T7

T2

T0

T8

Fig. 3. CfgN for Figure 1

graph is a data-independent abstraction, it represents a superset of the possi-
ble execution paths, i.e., some paths of the control-flow graph might not exist
in actual executions of the sequential program.

A significant difference between sequential programs and our setting is that
networks feature concurrency. One could devise a “true concurrency” exten-
sion of data-flow analysis by evaluating the boolean predicates, not on control-
flow graphs, but directly on Petri nets. Instead, following [9], we adopt an
“interleaving semantics” approach that maps concurrency onto a standard
control-flow graph, on which the boolean predicates can be evaluated as usual.

To abstract away concurrency from the network model, various possibilities
exist, leading to different control-flow graphs. One possibility would be to base
the analysis on the graph of reachable markings of the underlying Petri net;
this would be accurate but costly to compute since state explosion might
occur. Hence, we choose a stronger abstraction by defining the control-flow
graph as the directed graph Cfg = 〈T ,→〉, the vertices of which correspond
to the transitions of the network and such that there is an arc T1 → T2 iff
out(T1) ∩ in(T2) 6= ∅.

Example 2 The Cfg corresponding to the network of Figure 1 is shown in
Figure 2.

Instead of constructing a unique Cfg valid for all variables, [9] suggests to
build, for each variable X, a dedicated control-flow graph CfgX , which is a
subset of Cfg containing only the execution paths relevant to X (nowadays,
this would be called “slicing”). According to [9, § 4.3.3], such a restricted
control-flow graph increases the algorithmic efficiency; in our experience, it
also gives more precise data-flow results.

To define CfgX formally, we need two auxiliary definitions. Let trans(U)
∆

={
T |

(
in(T)∪out(T)

)
∩places∗(U) 6= ∅

}
be the set of transitions with an input

or an output place in unit U . Let scope(X) be (an upper-approximation of)
the set of places through which the data-flow for variable X passes. Initially,

12

we define scope(X) as places∗
(
unit(X)

)
, which is the set of all places in the

unit to which X is attached; we will see later that some places might be
removed from scope(X) during the analysis.

We now define CfgX as the directed graph 〈TX ,→X〉 with the set of vertices

TX
∆

= trans
(
unit(X)

)
and such that there exists an arc T1→XT2 between T1

and T2 iff out(T1)∩ in(T2)∩ scope(X) 6= ∅. For T ∈ TX , we define succX(T)
∆

=
{T ′ ∈ TX | T→XT ′} and predX(T)

∆

= {T ′ ∈ TX | T ′→XT}.

Example 3 Figure 3 shows CfgN for the network of Figure 1 and variable
N ; notice that T4 → T9, but not T4→NT9.

Following the classical definition of “live” variables (e.g., [15, pages 631–632]),
we define, for T ∈ TX , the following predicate:

live(T, X)
∆

=
∨

T ′∈succX(T) use before def (T ′, X)∨
(
live(T ′, X)∧¬def (T ′, X)

)

that holds iff after T it is possible, by following the arcs of CfgX , to reach
a transition T ′ that uses X before any modification of X. Notice that the
definition above could also be expressed by the following CTL formula:
“EX(E ¬def U use before def)” where “EXϕ” stands for “exists next”
and “Eϕ1Uϕ2” for “exists until”, and where def (respectively use before def)
holds for a transition T iff def (T, X) (respectively use before def (T, X)) holds.
Since we are interested in the truth value of live at the end of transitions, the
CTL formula does not require that use before def holds in the first “state”
(i.e., transition). For a given X, the set {T ∈ TX | live(T, X)} is computed as
a backward least fixed point.

We could now, as in [10–12], define reset(T, X)
∆

=¬live(T, X). Unfortunately,
this simple approach inserts superfluous resets, e.g., before a variable is ini-
tialised or at places where a variable has already been reset. For this reason,
one needs an additional predicate:

available(T, X)
∆

= def (T, X) ∨
(∨

T ′∈predX(T)

(
live(T ′, X) ∧ available(T ′, X)

))

that holds iff T can be reached from some transition that assigns X a de-
fined value, by following the arcs of CfgX and ensuring that X remains alive
all along the path. Notice that the definition above could also be expressed
by the following CTL formula: “E live S def ” where “Eϕ1Sϕ2” stands for
“exists since” and where def (respectively live) holds for a transition T iff
def (T, X) (respectively live(T, X)) holds. Contrary to the CTL formula for
live, we do not need an equivalent of the outermost “EX” modality. [9] uses
a similar definition without the live(T ′, X) condition, and thus introduces
useless resets for variables that are already reset. For a given X, the set
{T ∈ TX | available(T, X)} is computed as a forward least fixed point.

13

Finally, we define

reset(T, X)
∆

=available(T, X) ∧ ¬live(T, X)

expressing that a variable can be reset where it is both available and dead.

Example 4 Considering the network of Figure 1 and focusing on its vari-
able N , we have {T | live(T, N)} = {T2, T8} and {T | available(T, N)} =
{T2, T4, T5, T8, T9, T10}. Thus, we can insert “reset N” at the end of T4, T5,
T9, and T10. Using the definition of [10,11], one would insert a superfluous
“reset N” at the end of T0, T6, and T7. Using the definition of [9], one
would insert a superfluous “reset N” at the end of T6 and T7. Using Cfg
instead of CfgN would give {T | live(T, N)} = {T0 . . . T5, T8 . . . T12} and
{T | available(T, N)} = {T1 . . . T5, T8 . . . T12}, so that no “reset N” at all
would be inserted.

5 Treatment of Inherited Shared Variables

Issues when Resetting Shared Variables. Experimenting with the ap-
proach of [9], we noticed that systematic insertion of a “reset X” at the end
of every transition T such that reset(T, X) could produce either incorrect re-
sults (i.e., an Lts which is not strongly bisimilar to the original specification)
or run-time errors while generating the Lts (i.e., accessing a variable that has
been reset).

Example 5 In the network of Figure 1, there exists a fireable sequence of
transitions T0, T1, T2, T4, T6, T7. Although reset(T6, X) is true, one should not
reset X at the end of T6, because X is used just after in T7. Clearly, the problem
is that T6 and T7 are two “concurrent” transitions sharing the same variable
X. This was no problem as long as X was only read by both transitions, but as
soon as one transition (here, T6) tries to reset X, it affects the other transition
(here, T7).

So, insertion of resets turns a read-only shared variable into a read/write
shared variable, possibly creating read/write conflicts as in a standard reader-
writer problem. The sole difference is that resets do not provoke write/write
conflicts (concurrent resets assign a variable the same undefined value).

To avoid the problem, a simple solution consists in never resetting inherited
shared variables (as in the If tool set [13]). Unfortunately, opportunities for
valuable state space reduction are missed by doing so.

Example 6 As shown in Figure 4(a) and 4(b), the Lts generated for the
Lotos behavior “G?X:bit;(G1!X;stop|||G2!X;stop)” has 9 states if
the inherited shared variable X is not reset, and only 8 states if X is reset

14

X =⊥

X =0

X =0

G2, 0

G1, 0 G2, 0

G1, 0

G, 0 G, 1

G2, 1

X =0X =0 X =1 X =1

X =1

X =1

G1, 1

G2, 1 G1, 1

(a)

G1, 0 G2, 1

G1, 1G2, 0

G2, 0
G1, 0 G1, 1

G2, 1

G, 0 G, 1

X=⊥

X =0 X =1

X =0 X =1

X =0 X =1

X=⊥

(b)

X =0

X =0

G, 1G, 0

G1, 1

G2, 1

G2, 0

G1, 0

G1, 0G2, 0

X =0

X= 0

X =1

X =0

(c)

Fig. 4. Lts (a) without reset, (b) with correct resets, and (c) with incorrect resets

after firing transitions G1!X and G2!X. State space reduction would be more
substantial if both occurrences of “stop” were replaced by two complex be-
haviors B1 and B2 in which the value of X is not used. Figure 4(c) shows the
incorrect Lts obtained by resetting X to 0 after each transition G1!X and
G2!X.

Duplication of Variables. The deep reason behind the issues when reset-
ting inherited shared variables is that the control-flow graphs Cfg and CfgX

defined in Section 4 are nothing but approximations. Their definitions follow
the place-transition paths in the network, which has the effect of handling sim-
ilarly nondeterministic choice (i.e., a place with several outgoing transitions)
and asynchronous concurrency (i.e., a transition with several output places).
Indeed, both Lotos behaviors “G;(B1|||B2)” and “G;(B1[]B2)” have the
same Cfg. These approximations produce compact control-flow graphs, but
are only correct in the absence of data dependencies (caused by inherited
shared variables) between “concurrent” transitions.

To address the problem, we introduce the notion of variable duplication. For
an inherited variable X shared between two concurrent behaviors B1 and B2,
duplication consists in replacing in one behavior (say, B2) all occurrences of X

with a local copy X ′ initialised to X at the beginning of B2. This new variable
X ′ can be safely reset in B2 without creating read/write conflicts with B1. A
proper application of duplication can remove all data dependencies between
“concurrent” transitions, hence ensuring correctness of our global data-flow
analysis approximations. It also enables the desired state space reductions.

Example 7 In Example 6, duplicating X in “G2!X;stop” yields the Lotos
behavior “G?X:bit;let X ′:bit=X in (G1!X;stop|||G2!X

′;stop)”, in
which it is possible to reset X after the G1!X transition and X ′ after the
G2!X

′ transition; this precisely gives the optimal Lts shown in Figure 4(b).
Note that it is not necessary to duplicate X in “G1!X;stop”.

Instead of duplicating variables at the Lotos source level, as in the above
example, we prefer duplicating them in the network model, the complexity

15

of which has already been reduced by detecting constants, removing unused
variables, identifying variables local to a transition, etc. Taking into account
that concurrent processes are represented by units, we define the duplication
of a variable X in a unit U , with U ⊑ unit(X) and U 6= unit(X), as the
operation consisting of the following steps:

• creating a new variable X ′ of the same sort as X,
• attaching X ′ to U (whereas X is attached to unit(X)),
• initializing scope(X ′) to places∗(U),
• replacing all occurrences of X in the transitions of trans(U) by X ′,
• adding an assignment “X ′:=X” at the end of all transitions T ∈ entry(U)

such that live(T, X), where entry(U)
∆

= {T ∈ trans(U) | in(T) ∩
places∗(U) = ∅} is the set of transitions “entering” U , and

• removing from scope(X) all places of U , i.e., places∗(U), since after dupli-
cation, it is no longer needed to examine the data-flow for X in U .

In general, several duplications may be needed to remove all read/write con-
flicts on a shared variable X. On the one hand, if X is shared between n

concurrent behaviors, (n − 1) duplications of X may be necessary. On the
other hand, each new variable X ′ duplicating X might itself be shared be-
tween concurrent sub-units, so that duplications of X ′ may also be required.

For compactness, we do not implement scope(X) as a decreasing set of places,
but rather as an increasing set of units {U1, . . . , Un}, the places of which must

be excluded from the scope of X. Formally, scope(X) = places∗
(
unit(X)

)
\

⋃n
i=1 places∗(Ui). This set is initially empty, and each duplication of X adds a

new unit to it.

Concurrency Relation between Units. We now formalise the notion of
“concurrent units”. Ideally, two units Ui and Uj are concurrent if there exists
a reachable state 〈M, C〉 in the corresponding Lts such that the two sets

of places
(
M ∩ places∗(Ui)

)
and

(
M ∩ places∗(Uj)

)
are both non-empty and

disjoint (meaning that Ui and Uj are “separate” and simultaneously “active”
in marking M).

Example 8 In the Lotos behavior “(B1|||B2)>>(B3|||B4)”, units U1 and
U2 corresponding to B1 and B2 are concurrent, units U3 and U4 corresponding
to B3 and B4 are also concurrent, but neither U1 nor U2 is concurrent with
either U3 or U4.

Practically, to avoid enumerating all states of the Lts, we need a relation
“Ui ‖ Uj” that is an upper-approximation of the ideal definition above, i.e.,
Ui and Uj concurrent implies Ui ‖ Uj . There are various ways of computing
such an approximation, with different tradeoffs between computational cost
and accuracy.

16

• Instead of basing the definition of concurrent units on reachable states (i.e.,
pairs 〈M, C〉 of a marking M and a context C), one could consider reach-
able markings (regardless of contexts) and define “Ui ‖Uj” iff there exists

a reachable marking M ∈ M such that both sets
(
M ∩ places∗(Ui)

)
and

(
M ∩ places∗(Uj)

)
are both non-empty and disjoint. This relation can be

computed using symbolic techniques (BDD) to represent the graph of reach-
able markings. However, since even the exploration of reachable markings
may face state explosion, we prefer a second approach, which we present
first and compare to a BDD-based approach later.

• We base our definition on an abstraction function α : Q → {1, . . . , N}
(N being the number of units in the network) that maps all the proper

places of each unit to the same number:
(
∀Q ∈ places(Ui)

)
α(Q)

∆

= i. We

extend α to sets of places by defining α̂ : ℘(Q) → ℘
(
{1, . . . , N}

)
such that

α̂
(
{Q1, . . . , Qn}

)
∆

= {α(Q1), . . . , α(Qn)}. We then use α and α̂ to “quotient”
the network, yielding a Petri net with N places numbered from 1 to N , with
initial place α(Q0) (Q0 being the initial place of the network), and which
possesses, for each transition T in the network, a corresponding transition
t such that in(t)

∆

= α̂
(
in(T)

)
and out(t)

∆

= α̂
(
out(T)

)
. “Self-looping” tran-

sitions such that in(t) = out(t), as well as transitions identical to another
one, can be removed. As the number of units is usually small compared to
the number of places, one can easily generate the set Mα of all reachable
markings for the quotient Petri net. Finally, we define Ui ‖Uj iff there exists

M ∈ Mα such that both sets
(
M∩α̂(places∗(Ui))

)
and

(
M∩α̂(places∗(Uj))

)

are not empty and disjoint.

Notice that in both cases, Ui ‖Uj implies Ui 6= Uj , Ui 6⊑ Uj , and Uj 6⊑ Ui.

In experiments with 561 Lotos specifications, we found only one example
where the latter approach (based on the quotient network) yielded less precise
results than the former approach (based on the symbolic computation of the
reachable markings). In this case, the number of pairs (Ui, Uj) such that Ui ‖Uj

was increased by only 4%. On the other hand, while the run-time for the
second approach never exceeded one second, the run-time for the first approach
required up to 1 hour and 41 minutes (on a SPARC Blade 100, using the CUDD
library for BDDs).

Conflicts between Units. For two units Ui and Uj such that Ui ‖Uj, let
ancestor(Ui, Uj) denote the largest unit U such that Ui ⊑ U and Uj 6⊑ U and
let link(Ui, Uj) denote the set of transitions “connecting” the ancestors of Ui

and those of Uj . Formally:

link(Ui, Uj)
∆

= trans
(
ancestor(Ui, Uj)

)
∩ trans

(
ancestor(Uj, Ui)

)

17

To characterise whether two units Ui and Uj are in conflict for variable X in
scope(X) according to given values of predicates use and reset , we define the
predicate:

conflict(Ui, Uj , X, use, reset)
∆

=

places(Ui) ⊆ scope(X) ∧ places(Uj) ⊆ scope(X) ∧ Ui ‖Uj ∧
(
∃Ti ∈ trans(Ui) \ link(Ui, Uj)

) (
∃Tj ∈ trans(Uj) \ link(Ui, Uj)

)

(
reset(Ti, X) ∧ use(Tj, X)

)
∨

(
reset(Tj , X) ∧ use(Ti, X)

)

Intuitively, units Ui and Uj are in conflict for X if there exist two “indepen-
dent” transitions Ti and Tj likely to create a read/write conflict on X. To avoid
irrelevant conflicts (and thus, unnecessary duplications), one can dismiss the
transitions of link(Ui, Uj), i.e., the transitions linking the ancestor of Ui with
that of Uj , since the potential impact of these transitions on the data-flow for
X has already been considered when constructing CfgX and computing reset
— based on the observation that link(Ui, Uj) ⊆ trans

(
unit(X)

)
.

We finally define, for given values of predicates use and reset , the unit conflict
graph for variable X, noted UcgX , as the undirected graph whose vertices
are the units of unit(X) such that there is an edge between Ui and Uj iff
conflict(Ui, Uj, X, use, reset).

Complete Algorithm. The algorithm shown in Figure 5 operates as fol-
lows. VARS denotes the set of all variables in the network, which might be
extended progressively with new, duplicated variables. All the variables X

in VARS are processed individually, one at a time, in an unspecified order.
For a given X, the algorithm performs local and global data-flow analysis,
then builds UcgX . If UcgX has no edge, X needs not be duplicated and
“reset X” can be inserted at the end of every transition T ∈ trans

(
unit(X)

)

such that reset(T, X). Otherwise, X must be duplicated in one or several units
to solve read/write conflicts. This adds to VARS one or several new variables
X ′, which will be later analysed as if they were genuine variables of the net-
work (i.e., to insert resets for X ′ and/or to solve read/write conflicts that may
still exist for X ′). Everytime a new variable X ′ is created to duplicate X, the
data-flow predicates for X and then UcgX are recomputed, as duplication
modifies the network by removing occurrences (definitions, uses, and resets)
of X and adding new assignments of the form X ′:=X, and restricts scope(X),
thus modifying →X and CfgX .

Since each creation of a new variable X ′ increases the size of the state rep-
resentation (thus raising the memory cost of model checking), it is desirable
to minimise the number of duplications by choosing carefully in which unit(s)

18

1. compute the relation Ui ‖Uj and link(Ui, Uj) (cf. Section 5)

2. forall X ∈ X do initialize scope(X) (cf. Section 4)

3. VARS:=X

4. while VARS 6= ∅ do

5. begin

6. X:=one of (VARS)

7. VARS:=VARS \ {X}

8. repeat

9. forall T ∈ trans
(
unit(X)

)
do

10. compute use(T,X), def (T,X), and use before def (T,X) (cf. Section 3)

11. forall T ∈ trans
(
unit(X)

)
do

12. compute reset(T,X) (cf. Section 4)

13. compute conflict(Ui, Uj ,X, use , reset) and UcgX (cf. Section 5)

14. compute U:=best of (UcgX) (cf. Section 5)

15. if U 6= ⊥ then

16. begin

17. duplicate X in U by creating a new variable X ′ (cf. Section 5)

18. VARS:=VARS ∪ {X ′}

19. end

20. until U = ⊥

21. – – at this point, there is no more conflict on X

22. forall T ∈ trans(X) such that reset(T,X) do

23. insert “reset X” at the end of T (cf. Section 4)

24. end

Fig. 5. Complete algorithm

X will be duplicated. Based on the observation that duplicating X in some
unit U removes from UcgX all conflict edges connected to U , the problem is
similar to the classical NP-complete “vertex cover problem”, except that each
edge removal provokes the recalculation of UcgX . To select the unit (written
best of (UcgX)) in which X should be duplicated first, we adopt a combina-
tion of top-down and greedy strategies by choosing, among the units of UcgX

having at least one edge, the outermost ones. If there are several such units,
we then choose one having a maximal number of edges. If UcgX has no edges,
best of (UcgX) returns ⊥.

For a given variable X, the “repeat” loop (line 8) terminates because of fixed
point convergence of global data-flow analysis and because each duplication of
X in U (line 17) removes all places of places∗(U) from scope(X). By definition,
each unit contains at least one place, and thus scope(X) strictly decreases with
respect to set inclusion at each iteration but the last one. 4

4 In an earlier formalization [16] of our algorithm (but not in its actual implementa-
tion), scope(X) remained constant, with the following consequence: after duplicating

19

The outermost “while” loop (line 4), which removes one variable X from
VARS but possibly inserts new variables X ′ in this set, also terminates. Let
δ(U) be the nesting depth of unit U in the unit hierarchy, i.e., the num-
ber of parent units containing U (the root unit having depth 0). Let L =
max{δ(U) | U ∈ Us} be the maximal nesting depth, and let ∆(VARS) be the

vector (n0, . . . , nL) such that (∀i)ni = card{X ∈ VARS | δ
(
unit(X)

)
= i}. At

each iteration of the outermost loop, ∆(VARS) strictly decreases according
to the lexicographic ordering on integer vectors of length L, as all variables
X ′ created to duplicate X are attached to units strictly included in unit(X),

i.e., δ
(
unit(X ′)

)
< δ

(
unit(X)

)
.

6 Experimental Results

To assess our approach, we took as a basis the “standard” version 6.2 of
Cæsar, from which we derived a “prototype” version of Cæsar implement-
ing our algorithm. We then compared this prototype against the “standard”
version itself. We performed all our measurements on a Sun SPARC Blade 100
with 1.6 GB RAM. 5

As mentioned in Section 1, all versions of Cæsar since 1992 already reset
variables, but in a more limited way (using “syntactic” techniques to identify
process termination) than the approach presented in this paper. Therefore, the
results below do not reflect the entire benefits of our approach, but only its
improvements over the “syntactic” technique already implemented in Cæsar.
For instance, if a variable of a process is alive until the process terminates,
our prototype inserts reset(s) at the same point(s) as before, and thus brings
no reduction with respect to the “standard” version of Cæsar.

We based our experiments on a collection of Lotos specifications accumulated
over years during the development of Cadp. Many of them correspond to “real
world” applications and none of them was written specifically to illustrate the
effectiveness of our approach. 6

X in U and creating the new variable X ′, X would be still available, but could be
dead, at the points where X ′ is initialized to X. Thus, at the next iteration, X

would appear to be resettable at these points, yet still with the same conflicts.
5 The results presented in the present section differ from those reported in [16],
which were based on an earlier version 6.1 of Cæsar. The newer version 6.2 brings
speed improvement and, by default, eliminates all “dead” Petri net transitions us-
ing Binary Decision Diagrams, thus yielding simpler networks and possibly smaller
labelled transition systems.
6 The results presented in the present section also differ from those reported in [16],
since we use here a larger set of Lotos specifications.

20

We first considered a collection of 289 value-passing Lotos specifications for
which the entire state space could be generated with the “standard” version of
Cæsar. For 130 examples out of 289 (45%), our approach reduced the state
space (still preserving strong bisimulation) by a mean factor of 15.6 (with a
maximum of 414) as regards the number of states, and a mean factor of 20.3
(with a maximum of 516) as regards the number of transitions. For none of
the other 159 examples did our prototype increase the state space.

Then, we considered 3 new, “industrial” Lotos specifications, for which our
prototype could generate the corresponding state space entirely, whereas the
“standard” version of Cæsar would fail due to lack of memory. For one of
these examples, the “standard” version stopped after producing an incomplete
state space with more than 9 million states, while our prototype generated an
Lts with 820 states and 1,500 transitions (leading to a reduction factor greater
than 104).

We then extended our set of 289+3 examples with 40 new, large examples
for which our prototype is still unable to generate the entire state space. On
these 332 examples, variable duplication occurred in only 27 cases (8.1%),
for which it increased the memory size needed to represent a state by 28%
in average. However, by refining our approach, this increase of 28% was re-
duced to 4%. The reason is the following. In some cases, duplication may
introduce “useless” variables. For instance, consider the following Lotos be-
havior “G?X:S;(B1|||B2)” such that the inherited variable X is used in B1

but not in B2. According to the definitions of Section 4, a “reset X” should
be inserted at the very beginning of B2, but this would create a read/write
conflict with B1. Therefore, our algorithm may duplicate X as X ′ in B2, thus
creating a useless variable X ′ in B2. This issue can be solved in two ways:
we can add extra rules to our algorithm so as not to create a new variable
X ′ when duplicating a variable X in a unit where X is not used; or we can
keep our algorithm unchanged and rely on other optimizations implemented
in Cæsar for removing useless variables (those created by duplication being
only a particular case of a more general problem).

In principle, the insertion of reset(s) does not lead automatically to state space
reduction (e.g., when the current value of the variable to be reset is already
a pattern of 0-bits), and duplication may increase the state size. In practice,
however, on all examples for which the “standard” version of Cæsar could
generate the Lts entirely, we measured that, on average, the increased memory
cost of state representation was more than outweighed by the global reduction
in the number of states so that the memory requirements were reduced by an
average factor of 7.4.

As regards execution time, we observed that our approach divides by a factor
of 10 the total execution time needed to generate all Ltss corresponding to the

21

289 examples mentioned above. Although our approach increases by 10% the
cumulated time of the initial phases of Cæsar (parsing and type-checking of
the Lotos specification, construction and optimization of the network model,
generation and compilation of the C program that will generate the Lts),
this small overhead is absolutely outweighed by the benefits of state space
reduction during the last phase (i.e., when generating the Lts).

7 Conclusion

This paper has shown how state space reduction based on a general (i.e.,
not merely “syntactic”) analysis of dead variables can be applied to process
algebra specifications. Our approach requires two steps.

First, the process algebra specifications are compiled into an intermediate
network model based on Petri nets extended with state variables that can be
consulted and modified by actions attached to the transitions. The network
model presented in this paper is used in the latest version of the Cæsar
compiler and is, we believe, general enough to handle other process algebras
than Lotos.

Then, data-flow analysis is performed on this network to determine auto-
matically where variable resets can be inserted. This analysis generalizes the
“syntactic” technique (resetting variables of a process upon its termination)
implemented in Cæsar since 1992. It handles shared read-only variables in-
herited from parent processes, an issue which so far prevented the approach
of [9] from being included into the official releases of Cæsar.

Compared to related work, our network model features a hierarchy of nested
processes, where other approaches are usually restricted to a flat collection of
communicating automata. Also, our data-flow analysis uses two passes (back-
ward, then forward fixed point computations) in order to introduce no more
variable resets than necessary.

Experiments conducted on several hundreds of realistic Lotos specifications
indicate that state space reduction is frequent (45% of examples) and can reach
several orders of magnitude (e.g., 104). Additionally, state space reduction
makes Cæsar ten times faster when processing the complete set of examples.

As regards future work, one may wish to study the finer analysis proposed
in [12], namely “partially dead” instead of dead variables. To reset a variable
X at some point, this approach does not require X to be dead on all subse-
quent execution paths but only on those for which a condition C holds. [12]
reports that, on one example among five, this approach allowed better state

22

space reductions. It would be interesting to assess the potential gains of this
approach on the comprehensive set of Lotos specifications used in Section 6
of the present paper.

Further open issues (not addressed in this paper, since they are beyond the
scope of the Cæsar compiler for Lotos) are data-flow analysis in presence
of dynamic creation/destruction of processes (arising from recursion through
parallel composition) and data-flow analysis for shared read/write variables
(in which case duplication is no longer possible).

Acknowledgements.

We are grateful to David Champelovier, Nicolas Descoubes, Frédéric Lang,
Radu Mateescu, and the anonymous referees for helpful comments on this
paper.

References

[1] S. Graf, J.-L. Richier, C. Rodŕıguez, J. Voiron, What are the limits of model
checking methods for the verification of real life protocols?, in: J. Sifakis (Ed.),
Proceedings of the 1st Workshop on Automatic Verification Methods for Finite
State Systems (Grenoble, France), Vol. 407 of Lecture Notes in Computer
Science, Springer Verlag, 1989, pp. 275–285.

[2] R. Melton, D. L. Dill, Murphi Annotated Reference
Manual, release 3.1, Updated by C. Norris Ip and Ulrich Stern. Available at
http://verify.stanford.edu/dill/Murphi/Murphi3.1/doc/User.Manual

(1996).

[3] ISO/IEC, LOTOS — A Formal Description Technique Based on the
Temporal Ordering of Observational Behaviour, International Standard 8807,
International Organization for Standardization — Information Processing
Systems — Open Systems Interconnection, Geneva (Sep. 1989).

[4] H. Garavel, Compilation et vérification de programmes LOTOS, Thèse de
doctorat, Université Joseph Fourier, Grenoble (Nov. 1989).

[5] H. Garavel, J. Sifakis, Compilation and verification of LOTOS specifications,
in: L. Logrippo, R. L. Probert, H. Ural (Eds.), Proceedings of the 10th
International Symposium on Protocol Specification, Testing and Verification
(Ottawa, Canada), IFIP, North Holland Publishing Company, 1990, pp. 379–
394.

[6] H. Garavel, F. Lang, R. Mateescu, An overview of CADP 2001, European
Association for Software Science and Technology (EASST) Newsletter 4 (2002)
13–24, also available as INRIA Technical Report RT-0254 (December 2001).

23

[7] Y. Dong, C. R. Ramakrishnan, An optimizing compiler for efficient model
checking, in: J. Wu, S. T. Chanson, Q. Gao (Eds.), Formal Methods for
Protocol Engineering and Distributed Systems, Proceedings of the IFIP TC6
WG6.1 Joint International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols FORTE XII and Protocol
Specification, Testing and Verification PSTV XIX (Bejing, China), Kluwer
Academic Publishers, 1999, pp. 241–256.

[8] G. J. Holzmann, The engineering of a model checker: The Gnu i-Protocol case
study revisited, in: D. Dams, R. Gerth, S. Leue, M. Massink (Eds.), Theoretical
and Practical Aspects of SPIN Model Checking, Proceedings of the 5th and 6th
International SPIN Workshops (Trento, Italy / Toulouse, France), Vol. 1680 of
Lecture Notes in Computer Science, Springer Verlag, 1999, pp. 232–244.

[9] J. Galvez Londono, Analyse de flot de données dans un système parallèle,
Mémoire de DEA, Institut National Polytechnique de Grenoble and Université
Joseph Fourier, Grenoble, defended before a jury composed of Hubert Garavel,
Farid Ouabdesselam, Claude Puech and Jacques Voiron (Jun. 22, 1993).

[10] M. Bozga, J.-C. Fernandez, L. Ghirvu, State space reduction based on live
variables analysis, in: A. Cortesi, G. Filé (Eds.), Proceedings of the 6th
International Symposium on Static Analysis SAS ’99 (Venice, Italy), Vol. 1694
of Lecture Notes in Computer Science, Springer Verlag, 1999, pp. 164–178.

[11] J.-C. Fernandez, M. Bozga, L. Ghirvu, State space reduction based on live
variables analysis, Science of Computer Programming 47 (2–3) (2003) 203–220.

[12] K. Yorav, O. Grumberg, Static analysis for state space reductions preserving
temporal logics, Formal Methods in System Design 25 (1) (2004) 67–96.

[13] M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P. Krimm, L. Mounier, IF: An
intermediate representation and validation environment for timed asynchronous
systems, in: J. Wing, J. Woodcock (Eds.), Proceedings of World Congress on
Formal Methods in the Development of Computing Systems FM’99 (Toulouse,
France), Springer Verlag, 1999.

[14] G. Ailloud, Verification in ECRINS of LOTOS programs, in: Towards
Practical Verification of LOTOS specifications – ESPRIT/SEDOS/C2/N89.2 –
Second Year Project Report, ESPRIT/SEDOS/C2/N48.1, Universiteit Twente,
Enschede, 1986.

[15] A. V. Aho, R. Sethi, J. D. Ullman, Compilers: Principles, Techniques and Tools,
Addison-Wesley, 1986.

[16] H. Garavel, W. Serwe, State space reduction for process algebra specifications,
in: C. Rattray, S. Maharaj, C. Shankland (Eds.), Proceedings of the 10th
International Conference on Algebraic Methodology and Software Technology
AMAST’2004 (Stirling, Scotland, UK), Vol. 3116 of Lecture Notes in Computer
Science, Springer Verlag, 2004, pp. 164–180.

24

