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Inria Rhône-Alpes and Dyade / Vasy group

655, avenue de l’Europe
38330 Montbonnot St Martin

France

Tel: +(33) 4 76 61 52 24 Fax: +(33) 4 76 61 52 52
E-mail: {hubert.garavel,mihaela.sighireanu}@inria.fr

Web: http://www.inrialpes.fr/vasy

Abstract

Process algebras are often advocated as suitable formalisms for the specifica-
tion of telecommunication protocols and distributed systems. However, despite
their mathematical basis, despite standardization attempts (most notably the
Formal Description Technique Lotos), and despite an ever growing number of
successful case-studies, process algebras have not yet reached a wide acceptance
in industry.

On the other hand, description languages such as Promela or Sdl are quite
popular, although they lack a formal semantics, which should prohibit their use
for safety-critical systems.

In this paper, we seek to merge the “best of both worlds” by attempting to
define a “second generation Formal Description Technique” that would combine
the strong theoretical foundations of process algebras with language features
suitable for a wider industrial dissemination of formal methods. Taking the
international standard Lotos as a basis, we suggest several enhancements, which
fall into three categories: data part, behaviour part, and modules.

Our work was initiated in 1992 in the framework of the Iso/Iec Committee
for the revision of the Lotos standard. Several of our suggestions have been
accepted and will be integrated into the revised standard E-Lotos. The other
suggestions are considered in the context of Lotos NT, a variant of E-Lotos
for which a prototype compiler/model-checker is under development at Inria.



H. Garavel, M. Sighireanu

Introduction

Originally intended for the theoretical study of concurrency, process algebras can also
be used for the formal description of communication protocols and distributed systems.
The word “process algebras” encompasses pure mathematical calculi (e.g., Acp [BK84],
Ccs [Mil80, Mil89], Csp [Hoa85, BHR84], Sccs [dS85]) as well as more elaborate lan-
guages (such as Fdr [For97], Lotos [ISO88b, BB88], µCrl [GP95], Occam [Cam89]),
which provide additional features intended for the description of real systems (e.g.,
user-defined data types and modules).

Semantically speaking, process algebras have strong advantages: expressiveness,
compositionality, formal semantics defined in terms of Labelled Transition Systems
(Lts) [Par81] using structural operational semantics rules [Plo81, GV92], verification
algorithms based on behavioural equivalences and preorders, refinement methods, etc.
Process algebras have been used successfully many times to model the behaviour of real
systems. In addition, simulators, model-checkers, and theorem-provers are available for
analyzing process algebraic descriptions.

However, most of these efforts take place in the academic context. Even when
applied to industrial problems, process algebras remain a formalism to be used by
experts rather than average computer industry engineers. This is mostly due to the
fact that process algebras require a substantial learning effort for non-specialists, which
strongly limits their potential for industrial take-up.

On the one hand, the complexity of process algebras is intrinsic and can not be
reduced: for instance, the concepts of non-determinism, concurrency, bisimulation,
etc. are primitive ones and they can not be avoided when asynchronous systems have
to be modelled accurately.

On the other hand, the “steep learning curve” of process algebras is mostly a con-
sequence of wrong design choices. Taking argument of their mathematical origins,
process algebras often neglected to integrate certain features considered as standard
in most computer languages, so that beginners would have trouble when faced to very
simple situations. For instance, most of the aforementioned process algebras lack an
“if-then-else” operator, as well as an “array” type constructor. Although one can
argue that alternative solutions can be used (e.g., guarded commands to express condi-
tionals, abstract data types to simulate array types, etc.), it should be understood that
engineers in industry have little time for similar subtleties; they tend to be productive
as fast as possible and thus are reluctant to new approaches for reinventing the wheel.

In this respect, it is worth noticing that some other languages (e.g.,
Promela [Hol91], Sdl [IT92]) seem to find a faster acceptance. Technically, these lan-
guages are often behind process algebras: they lack a formal semantics, they have lim-
itations for expressing concepts such as multi-way synchronization, non-determinism,
internal transitions, etc. Among other reasons, their relative success is certainly due to
features borrowed from imperative programming languages (Promela is close to the C
language) or graphical languages (Sdl diagrams are close to flow charts). Building on
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standard practice enables beginners to capitalize on former knowledge when learning
new formalisms.

Based upon our experience in applying, teaching, and developing tools for the first
generation of description languages (including Estelle and Lotos), we believe that
better languages could be designed, which would combine features from process alge-
bras together with features taken from classical programming languages. As the part of
safety-critical missions devoted to computer hardware and/or software is continuously
increasing, there is a need for a second generation of Formal Description Techniques,
provided that this new generation includes wide dissemination and industrial accep-
tance in its objectives.

We started to work on this topic in 1992, within the framework of an interna-
tional standardization project (Iso/Iec Jtc1/Sc21/Wg7 New Work Item on En-
hancements to Lotos, which recently moved to Iso/Iec Jtc1/Sc33/Wg9). This
standardization project aims at producing a revised version of the Lotos standard.
The revised version should include new features suitable for increasing both the ex-
pressiveness and user-friendliness of the language.

There have been numerous proposals for improving Lotos, some of which are
anterior to the E-Lotos project, e.g., [Sco86, Bri88, Sto91, LL91]. Many proposals
suggest enhancements to the data part of Lotos [Pec93, BL95, RdMS95, JGL+95,
Pec96] while other focus on the behaviour part [QA92, Gar95a, GS96], including the
introduction of time in Lotos [Leo97, LL97, Her98], etc.

This paper presents our current views about the enhancement of Lotos. Due to
lack of space, it was not possible to give an exhaustive technical definition1. Instead,
we preferred to highlight the major concepts, design choices, and pending issues, and
to illustrate them with examples.

Most of the ideas expressed in this paper have been submitted for standardization;
some of them are integrated into the current version of E-Lotos [Que98]. Additionally,
we are working on a variant of E-Lotos named Lotos NT2 for which a prototype
compiler/model-checker is under development at Inria Rhône-Alpes. The language
features presented below belong to Lotos NT; many of them belong to E-Lotos as
well.

The organization of this paper follows the structure of Lotos, which consists
of two orthogonal parts: data and behaviours. Section 1 presents the data part of
the language, including types, functions, and expressions. Section 2 introduces the
main concepts of the behaviour part: gates, behaviours, and processes. E-Lotos and
Lotos NT improve over standard Lotos by adding structuring capabilities (modules
and interfaces) detailed in Section 3.

1The reader may find a chronological list of our proposals and other E-Lotos-related information
at the Inria/Vasy Web site http://www.inrialpes.fr/vasy/elotos

2NT stands here for “New Technology”
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1 Data part

A Formal Description Technique must be equipped with a sub-language for describing
and handling data, e.g., the types and values of messages exchanged by a protocol. In
the sequel, this sub-language will be called the data part. In practice, the data part
can be either algebraic (e.g., Lotos, µCrl, and Sdl, which rely on abstract data
types, especially ActOne), functional (e.g., Fdr [For97] or Lcs [BL94], which are
based on the functional language Ml), or imperative (e.g., Estelle [ISO88a] based on
Pascal, or Promela and Murphi based on C). Each approach has its own problems
and limitations.

The inclusion of ActOne abstract data types in Lotos has been often criticized
by both users and implementors [Mun91, JGL+95]. The most common problems are:

• Abstract data type definitions are too verbose and error-prone. For instance,
defining the equality predicate on an enumerated type with n values usually
requires n

2 equations (a more elaborate definition can reduce this number to n

equations, which is still too much).

• Basic data types (e.g., enumerations, records, lists, etc.) and their associated
operations have to be redefined again every time, and the standard library is not
effective in cutting down this effort.

• Axiomatic definitions raise completeness and consistency issues: when specifying
data types, users are never sure that they have written “enough” equations, nor
that the equations do not contradict each other.

• The initial semantics approach is not appropriate for modelling partial functions
(e.g., dividing by zero, accessing the head of an empty list, etc.), for which an
exception mechanism is advisable.

• Equivalence of terms for an arbitrary algebra is undecidable. Thus, it is impos-
sible to provide sound and complete Lotos simulators. In practice, users and
implementors tend to use rewrite rules and pattern-matching style instead of the
standard equational semantics (see, for instance, [Gar89]). However, different
implementations may produce different results depending on the strategy used
to turn equations into rewrite rules.

• Finally, ActOne definitions lack a proper structuring, as nothing prevents
conceptually-related sorts, operations and equations from being scattered in many
different places. In particular, this leads to the persistency issue discussed in Sec-
tion 3.

Producing correct specifications requires a substantial theoretical background (e.g.,
initial semantics, quotient algebras, etc.) that is out of proportion with respect to the
practical goal (e.g., specifying the messages exchanged by a protocol). For protocol
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specifiers as well as tool builders, abstract data types are often perceived as a problem
rather than a solution.

There have been many attempts at tackling these problems. The algebraic spec-
ification community has proposed refined languages, e.g., Lpg [BE86] and Opal
[Pep94, FGGP93, Exn94], which are more user-friendly and better implementation-
oriented.

Within the Lotos community, improving the data part has also been a constant
concern [Sco86, Bri88, LL91, Sto91, Pec93, BL95, RdMS95, Pec96]. After a detailed
discussion, the E-Lotos standardization Committee concluded that, in spite of their
formal semantics and high abstraction level, algebraic specifications were not suitable,
and looked for a data specification formalism that could replace ActOne. To achieve
symmetry with the behaviour part, which allows an operational definition of processes,
this replacement formalism had to support constructive definitions of data types and
associated functions.

Functional languages were considered first, and most notably Sml, which solved
a lot of problems faced by ActOne users. However, it appeared that Sml was not
entirely suitable. One the one hand, it was considered too complex: certain features
of Sml (such as polymorphism and higher-order functions) would have been of little
use for protocol descriptions, although they would have made tool implementations
certainly more difficult. On the other hand, the purely functional approach had several
limitations:

• As E-Lotos was intended for the design of distributed systems, some compat-
ibility with Idl [ISO96] (the language used to specify the interfaces of Corba
and Odp systems) was desirable. More precisely, Idl and E-Lotos had to be
used jointly, the former to specify the interfaces, the latter the behaviours of
distributed objects. In Idl, the methods permitted on a given object are spec-
ified as functions taking “in”, “out”, and/or “in/out” parameters, returning a
result, and (possibly) raising some exceptions. The existence in Idl of “out”
and “in/out” clashed with the approach taken in Sml, where functions have
only “in” parameters and only a single result (possibly a tuple if several values
have to be returned). It was decided that E-Lotos functions should have “out”
parameters to achieve compatibility not only with Idl, but also with external li-
braries written using algorithmic languages (such as C, Ada, Java, etc.), which
would have been difficult to interface from a purely functional language.

• The introduction of “out” parameters led to question the functional approach
more thoroughly. The need for assignment (at least to give a return value to
“out” parameters) and iterative constructs (“while” and “for” loops) was ac-
knowledged. It was felt that a strictly functional approach would limit the accep-
tance and dissemination of E-Lotos in the same way as ActOne did for Lotos:
because functional languages are not so common in industry, an extra-training
effort would be needed before users could start producing E-Lotos descriptions.
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The solution retained for the data part of E-Lotos is a compromise: the syntax
looks imperative (explicit assignment, sequential composition operator, etc.), but the
semantics remains functional (in the sense that there is no concept of “store”: special
substitutions are used instead).

In most cases, both the imperative and functional interpretations yield the same
result for a given fragment of code. However, there are tricky situations (especially
with language constructs having multiple exits, such as exception handling) in which
the result given by the functional semantics is not the same that one would expect
according to an imperative interpretation. Additionally, defining the semantics in terms
of substitutions creates awkward problems, for instance with “in/out” parameters (not
supported in E-Lotos) and loops (non-standard in E-Lotos).

To avoid these problems, we decided to explore a different solution by designing a
language named Lotos NT with a truly-imperative semantics. We believe that an
imperative language should be easier to learn by engineers and easier to implement by
a translation to existing programming languages (especially, C or Java). We outline
below the main design choices for the data part of Lotos NT.

The data part of a Lotos NT description is a collection of type and function
definitions (which can be structured in modules, as explained in Section 3).

Lotos NT is a strongly typed language. Type-checking is done fully at compile-
time (contrary to E-Lotos which requires some type-checking at run-time). Types
are defined constructively by giving the list of their constructors (in the same way as
“datatypes” in Sml). For instance:

type PACKET is

PACKET (DATA:STRING, CRC:INTEGER)

end type

type PACKET_LIST is

EMPTY,

CONS (HEAD:PACKET, TAIL:PACKET_LIST)

end type PACKET_LIST

Type definitions can be recursive directly or transitively. Semantically, a type rep-
resent the set of closed, well-typed terms that can be generated by its (free) construc-
tors. For each type defined, an equality relation (expressing the syntactic equivalence
of terms) and its negation are derived automatically; these relations are needed in the
behaviour part to define the semantics of value-passing rendezvous.

The arguments of each constructor are named in type definitions. This serves
several purposes. First, argument names can be used in constructor invocations,
as in Ada: for instance, the expression “PACKET ("ABC", 3)” can also be written
“PACKET (CRC -> 3, DATA -> "ABC")”. Second, field names implicitly define projec-

tions: if P is an expression of type PACKET, then “P.DATA” will select the first field
of P. Third, they also define updaters: if P is an expression of type PACKET, then
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“P.{CRC := 0}” denotes the value derived from P by setting to zero the field named
CRC.

These “constructive” type definitions have other advantages:

• They are aligned with the various proposals for improving Lotos data types,
almost all of which recommend to distinguish between constructors and defined
functions.

• Lotos sort definitions involving only free constructors can easily be translated
into constructive type definitions.

• The constructors of a given type are grouped together in the definition of the
type, instead of being scattered anywhere, as it might be the case in Lotos
descriptions.

• They allow to declare unbounded data structures (e.g., lists, trees, etc.) without
handling pointers or union discriminants explicitly. By doing so, one avoids
all the problems related to pointers (e.g., dangling references, incorrect pointer
deallocations, etc.) and discriminated unions (e.g., accessing a field that is not
available with the current value of the discriminant, modifying the discriminant
separately from the fields, thus subverting the type-checking system, etc.).

A function is defined in Lotos NT in the same way as in algorithmic languages,
by specifying its name, the names, types, and modes (“in”, “out”, “in/out”) of its
arguments, the type of its result (if any: a function without result is like a “procedure”),
and the exceptions that it can raise. For instance:

function ** (X:REAL, N:INTEGER) : REAL is

...

end function

function PARTITION (in L:PACKET_LIST, out LEFT, RIGHT:PACKET_LIST) is

...

end function

function INVERT (inout M:MATRIX) raises NULL_DISCRIMINANT is

...

end function INVERT

The data part of Lotos NT provides various user-friendly features, several of them
being absent in Lotos: there are built-in notations for integers, reals, characters, and
strings; function names can be overloaded; user-defined functions can have mathemati-
cal names (e.g., “**” in the above example); additionally, the usual arithmetic, boolean
and relational operators (e.g., “+”, “and”, “<=”) are recognized as special cases with
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built-in priorities; functions with two arguments can be called either with prefix or infix
notations (e.g., “mod (X, Y)” or “X mod Y”); argument lists in function invocations
can be either positional or named (i.e., “F (0, 1)” or “F (X->0, Y->1)”).

As most algorithmic programming languages, Lotos NT establishes a distinction
between expressions and instructions (also called “statements”). This is an essential
difference with E-Lotos, which has only expressions.

In Lotos NT, expressions are very simple: they are built using constants, vari-
ables, constructor and function invocations. An expression can not have side-effects,
e.g., assigning a variable. The evaluation of an expression is deterministic (in identical
contexts, it always yields the same result or raises the same exception) and instanta-
neous (evaluating an expression takes no time).

Instructions are more complex: they include variable assignment, sequential com-
position, “if” and “case” conditionals, “for” and “while” loops, exception raise and
trap, etc. As for expressions, the execution of an instruction is always deterministic
(in identical contexts, it always assigns the same variables with the same values and
terminates with the same exception) and instantaneous. The body of a function is
always an instruction. For instance:

function FIRST_PACKET (L: PACKET_LIST) : PACKET raises EMPTY_LIST is

case L is

NIL -> raise EMPTY_LIST

CONS (P:PACKET, any) -> return P

end case

end function FIRST_PACKET

function LIST_LENGTH (L: PACKET_LIST) : INTEGER is

var N:INTEGER := 0 in

while L <> NIL loop

N += 1;

L := L.TAIL

end loop;

return N

end function LIST_LENGTH

However, such an imperative approach has potential problems that must be ad-
dressed in order to have a well-defined formal semantics.

As mentioned above, problems related to discriminated unions are avoided by the
use of constructive types and pattern-matching “case” statements.

Another problem remains, as variables can be used before they have been assigned.
To get rid of this issue, Lotos NT follows the solution adopted by Hermes [SBL+91]
and later by Java [Sun96, chapter 16]: a Lotos NT program is legal iff one can
prove at compile-time that each variable will be assigned before used. This is done
by extending the static semantics with additional checks expressing sufficient syntactic
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conditions on the data flow to rule out (potentially) unsafe programs. For instance,
the following function definition will be rejected because the value of Y is not assigned
when X is negative.

function F (in X:INTEGER, out Y:INTEGER) is

if X >= 0 then

Y := SQRT (X)

end if

end function

We can also mention two important facilities offered by Lotos NT:

• Lotos NT supports predicative subtyping : one can define subtypes of a given
type (called the “base type”) by specifying a boolean predicate that restricts the
domain of the base type. In the example below, POSITIVE is a subtype of the
INTEGER base type:

type POSITIVE is { N:INTEGER | N > 0 } end type

Predicative subtyping allows a more precise description of data domains by
adding restrictions to the domains generated by free constructors. The base
type and the subtype are considered to be different types: conversion from the
base type to the subtype (and vice-versa) must be done explicitly using (au-
tomatically generated) conversion functions that can raise an exception if the
predicate associated to the subtype is not satisfied. Implicit conversions would
not be possible due to the presence of overloading (this would make type-checking
non-polynomial). The constructors of the subtype are the same as the construc-
tors of its base type, except that the base type is replaced with the subtype in
their profiles.

• In addition to its predefined type library (booleans, integers, etc.), Lotos NT
provides syntactic facilities for a compact definition of usual types and functions.
These syntactic notations are automatically expanded into type and function
definitions, in the same way as [BM79, Pec93, Pec96]. For instance, the following
type declaration defines an enumerated type equipped with an order relation:

type STATUS is

enum

NONE, PENDING, INVOICED

with >, ORD, SUCC, PRED

end type STATUS

Similar shorthand notations exist for records, arrays, lists, sets, etc.



H. Garavel, M. Sighireanu

2 Behaviour part

Although the behaviour part of Lotos is far superior to the data part, it is not fully
satisfactory. In particular, two features are missing:

• Lotos does not allow gate typing. Although gates define interface points between
a behaviour and its environment, it is not possible to specify the types of messages
exchanged via a gate, nor their direction (sent or received), thus limiting the
possibilities of type checking at compile-time (a typing error in the messages
exchanged can only be detected because a deadlock occurs at run-time). This is
a common concern [Ard97] for which solutions have been proposed [Gar95b].

• Lotos has no concept of quantitative time (i.e., delays, timeouts) nor urgency,
which prevents it from being used for the description of timed systems, including
real-time systems. There have been several proposals for introducing time in
E-Lotos, e.g., Rt-Lotos [Cd95] and Et-Lotos [Leo97, LL97, Her98].

Initially, the E-Lotos Committee mainly focused on the two issues above, with the
idea of minimizing changes to the behaviour part. However, as the data part evolved
towards a functional/imperative language, it became clear that deeper changes were
needed to align the behaviour part with the data part. The Committee agreed that a
maximal symmetry between the data and behaviour parts would be highly desirable.
By doing so, some defects of the behaviour part, which had been underestimated so
far, became more apparent:

• For beginners, sequential composition is probably the most confusing aspect in
the behaviour part of Lotos. Following the ideas of Ccs and Csp, Lotos
has two different sequential composition operators: the action prefix operator
and the enabling operator, both of which obey to different rules. Action prefix
is asymmetric and passes to its right argument all the variables bound in its
left argument, whereas enabling is symmetric, creates an internal event “i”, and
passes to its right argument only the variables declared in its “accept” clause and
bound to the values returned by its left argument using “exit” statements. For
instance, naive users have trouble in understanding why behaviour expressions
such as

(G1 ?X:NAT [] G2 ?X:NAT); H !X

or:

(G1 ?X1:NAT ||| G2 ?X2:NAT); H !(X1 + X2)

are not allowed, and should be written instead:
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G1 ?X:NAT; H !X; stop [] G2 ?X:NAT; H !X; stop

and:

(G1 ?X1:NAT; exit (X1, any NAT)

|||

G2 ?X2:NAT; exit (any NAT, X2))

>> accept X1, X2:NAT in H !(X1 + X2); stop

This problem was solved by replacing action prefix and enabling with a single
sequential composition operator noted “;” (as in Acp). A neutral element (noted
“null”) for this operator was introduced.

• Lotos only provides guarded commands to express conditionals, which is te-
dious, error prone, and leads to inefficient implementations (as boolean condi-
tions in mutually exclusive branches have to be evaluated twice or even more).
This problem was solved by introducing “if” and “case” statements.

• Lotos has no iterative statements: recursive processes have to be used instead,
which affects the readability of the control flow and requires the introduction of
auxiliary processes. This problem was solved by introducing “for” and “while”
loops.

• The need for specifying the abrupt termination of a given behaviour was acknowl-
edged. For instance, it may be necessary to express the situation in which a par-
allel composition is terminated by one of its components: this feature is called
non-synchronized termination as opposed to Lotos synchronized termination,
which requires that a parallel composition can only terminate if all components
synchronize on an “exit” action [QA92]. It was shown that non-synchronized
termination could be addressed as a special case of exception handling [GS96].

The changes in the data part impacted the behaviour parts in several other places.
E-Lotos processes received “out” parameters (Lotos NT even allows “in/out” pa-
rameters). Consequently, explicit variable assignment was introduced in the behaviour
part of E-Lotos. This change was a significant improvement over Lotos, as it allows
a direct modelling of “state variables”. In Lotos, state variables have to be modelled
as formal parameters of recursive processes and can only be assigned by parameter
passing; to describe behaviours in which there is, conceptually, a single state variable,
Lotos require several variables to be declared (especially if there are several mutually
recursive processes). Multiplying the variables as such creates several shortcomings:
the description becomes less readable, because the original intention of the specifier is
lost; debugging by simulation becomes more difficult, because instead of tracing the
value of a single state variable, several variables have to be inspected, only one of which
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is active in the current state; it makes model-checking verification harder, because it
is not possible to express invariant properties on state variables and because multiple
variables contribute to state explosion (unless the compiler is smart enough to allocate
different instances of the same variable in the same memory location, a non-polynomial
problem for which there is generally no unique solution).

To summarize, we are convinced that the functional-like style used in Lotos and
other process algebras is inappropriate practically. In fact, this style has no other
purpose than ensuring that each variable is properly assigned before used, and that
concurrent behaviours do not communicate using shared variables. With the imperative
style of Lotos NT, the same guarantees are obtained by adding data flow restrictions
to the static semantics, e.g., by checking that if a variable is assigned in some component
of a parallel composition, the other components can neither read nor write to this
variable.

All these changes lead to a process description style very different from the Lotos
style: descriptions are often shorter and more readable. For instance:

process BUFFER [in INPUT:PACKET, out OUTPUT:PACKET] is

loop

INPUT ?P:PACKET;

OUTPUT !P

end loop

end process BUFFER

process QUERY [in INPUT:INTEGER]

(in X1, X2, X3:INTEGER, out Y1, Y2, Y3:INTEGER) is

if X1 <> 0 then Y1 := X1 else INPUT ?Y1 end if;

if X2 <> 0 then Y2 := X2 else INPUT ?Y2 end if;

if X3 <> 0 then Y3 := X3 else INPUT ?Y3 end if

end process QUERY

It is worth noticing that the definition of process QUERY would be harder and less
readable in process algebras based on action-prefix.

After the sequential operators, the wind of reform reached the parallel operators.
Although multi-way rendezvous and parallel composition are far superior in Lotos
than in Ccs and Csp, they are still perfectible. The E-Lotos Committee agreed on
three major improvements:

• A parallel composition iterating over a finite set of values, or a finite type was
introduced, as suggested in [Bri88]. For instance:

par X:T || B (X) end par
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starts several concurrent instances of the behaviour B parameterized by variable
X, one instance for each value of type T. This operator is practically useful since it
allows to describe networks of parameterized processes concisely (without using
process recursion through parallel composition).

Such an operator does not exist in Lotos because, in the initial algebra frame-
work, one can not decide in general whether a given type will be finite or not.
Fortunately, this problem becomes decidable when types are defined by free con-
structors as in E-Lotos: a type is finite iff its definition is not recursive and if
the types of the arguments of its constructors are themselves finite.

• Because of the “mathematical flavour” of process algebras, parallel composition
is expressed by binary operators. This approach has several limitations:

– It is not easy for new users to write an algebraic term denoting a network
of concurrent processes (this approach has to be compared with graphical
formalisms such as Sdl, in which the user simply has to draw the desired
network).

– There is no canonical form: for a given network, there are usually several
different algebraic terms [Kar94, Kar97].

– Finally, there are process networks that can not be expressed as algebraic
terms [Bol90].

Following various proposals [Bri88, Gar95b], it was decided to replace the binary
parallel operators with an n-ary operator, the semantics of which is very intuitive:
this operator simply gives the list of concurrent behaviours; for each behaviour,
the list of gates on which the behaviour has to synchronize is specified. For
instance, the following process network:

B1 B2

B3

B4 B5

G4G3

G1

G2

can be specified as:



H. Garavel, M. Sighireanu

par

G1, G3 -> B1

||

G1, G4 -> B2

||

G1, G2, G3, G4 -> B3

||

G2, G3 -> B4

||

G2, G4 -> B5

end par

This operator establishes a direct mapping between process networks and their
textual representation, thus paving the way for graphical tools.

• The parallel composition operator was also extended to allow “2 among n” syn-
chronization, i.e., when a set of n processes synchronize two by two on the same
gate(s) [Gar95b]: this feature (different from the maximal cooperation paradigm
of Lotos, where all processes synchronized on a given gate have to perform ren-
dezvous simultaneously) is useful for describing networks of distributed objects
connected by binary communication links [FNLL96].

For the design of Lotos NT, we are considering other improvements:

• The hiding operator of Lotos is not fully satisfactory: when a gate is hidden, it
is renamed into “i” (the Lotos notation for τ -actions) and all values passed on
this gate disappear. Although renaming into τ -actions is needed when performing
bisimulation-based verification, it may be unsuitable in other circumstances, es-
pecially when simulating Lotos descriptions: useful information about internal
transitions is likely to be unavailable if the simulator implements the semantics
of Lotos strictly.

A more flexible hiding operator would be desirable, which would offer the choice
between either renaming the hidden gate into τ and forgetting about the values
exchanged on this gate, or simply assigning the gate a unique, local name (so
that external synchronization on this gate becomes impossible).

• As many process algebras, Lotos is based on the so-called interleaving seman-

tics: parallel composition is expressed in terms of sequential composition and
non-deterministic choice. This approach is generally appropriate for the descrip-
tion of asynchronous systems (in spite of the criticisms formulated by true con-

currency proponents). However, it may be unsuitable for safety-critical systems,
e.g., avionics [GH94], for which non-deterministic behaviours are generally pro-
hibited by certification authorities.
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For such applications, a second generation Formal Description Technique should
be able to describe networks of cooperative processes that produce a determin-
istic execution. Synchronous languages [Hal93] are one possible solution. In
the asynchronous framework of Lotos NT, we are considering two alternative
approaches for a deterministic parallel operator:

– coroutines: we proposed an operator suitable for describing coroutines, i.e.,
a set of cooperating processes executing on a single processor [SG97]. For
instance:

exec

G1 -> B1

||

G2 -> B2

||

G3 -> B3

end exec

denotes a set of three coroutines B1, B2, and B3, of which only one is active
at a time. The active coroutine Bi (initially B1) executes as long as it does
not suspend itself by performing an action Gj which transfers the control
to another coroutine Bj; when suspended, a coroutine Bi keeps its current
state until it becomes re-activated by another coroutine executing the action
Gi. The coroutine operator extends to n behaviours the suspend-resume

operator [HF95, Her98] introduced in E-Lotos to model interrupts.

– priorities: in the real-time world, priorities are the standard way to spec-
ify a deterministic execution for a set of concurrent processes (priorities
are enforced by the scheduling algorithm and most real-time operating sys-
tems support at least 256 different priority levels). Modelling priorities is
desirable, as it would allow process algebras to be used in the area of safety-
critical, real-time systems. Moreover, recent work [BCL97] demonstrates
that priorities can be an effective way of cutting down state explosion in
model-checking verification.

At present, E-Lotos has no concept of priorities, although the introduction
of priorities was a goal of the Committee initially. As regards Lotos NT,
based on [BCL97, CLN97], we propose to attach priorities to internal ac-
tions (using the “hide” operator to specify priorities) in such a way that
prioritized actions can preempt other actions.

There are two other important issues for which we seek a better solution than
E-Lotos:
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• exceptions: as stated in Section 1, the evaluation of an expression may raise an
exception instead of returning a result. The behaviour part should therefore be
prepared to deal with exceptions arising from the data part.

For this purpose, E-Lotos introduces a new concept of signal, which denotes an
urgent event on which the environment can not synchronize. In this approach,
exceptions arising from the data part are modelled as signals. Unfortunately, this
approach has several drawbacks: because the new concept of signal has to coexist
with the old concept of action, there is a sudden inflation in the number of rules
in the syntax, static and dynamic semantics. Moreover, it creates methodological
problems by forcing specifiers to classify events into signals and actions, a non-
obvious decision which has to be made at the earliest steps of a formal design.

An alternative approach would be to use actions for modelling exceptions arising
from the data part, thus keeping actions as the unique concept.

• time determinism: initially, the time semantics was based on Et-Lotos [Leo97,
LL97, Her98], itself designed as an upward compatible extension of Lotos with
time. However, the deep changes brought to the behaviour part of Lotos (such
as the introduction of assignment, symmetric sequential composition, and signals)
have led to new issues, among which the time determinism problem plays a central
role. This problem can be summarized as follows. Given the behaviour:

(wait (1) ; G !1) [] (wait (1); G !2)

should the corresponding Timed Labelled Transition System be non-deterministic
with respect to the passing of time (solution 1) or deterministic (solution 2)?

G !2

wait (1)wait (1)

G !1 G !2

wait (1)

G !1

Solution 1 Solution 2

For E-Lotos, the Committee adopted solution 2. But the problem is so complex
that E-Lotos requires not less than three different mechanisms to ensure time-
determinism:

1. The structured operational semantics rules for choice are conceived so as to
perform some determinization with respect to time transitions. For instance,
both behaviours:
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(wait (1) ; G !1) [] (wait (1); G !2)

and:

wait (1) ; (G !1 [] G !2)

will generate the same Timed Labelled Transition System (solution 2 above).
This is also the case for parallel composition.

2. However, time determinization is not always tractable in presence of con-
structs that take no time to execute (e.g., assignments). For the following
behaviour:

(V := 1 [] V := 2) ; wait (1) ; G !V

a strict application of E-Lotos structural semantics rules will generate a
non-deterministic Timed Labelled Transition System (solution 1 above). To
circumvent the problem, the static semantics of E-Lotos was modified to
forbid any behaviour likely to create time non-determinism. In particular,
any operand of the choice operator is required to perform at least an action
(visible or hidden) or a signal. Such restrictions are contained in a predicate
called “guarded”, the definition of which obscures the static semantics.

3. Though, these restrictions are still unsufficient. Even if properly
“guarded”, certain behaviours may create time non-determinism, e.g.:

trap

X -> wait (1); G !1

Y -> wait (1); G !2

in

signal X [] signal Y

end trap

The dynamic semantics of E-Lotos was modified once more: in certain
places, time non-determinism is avoided not by determinization, but by
introducing τ -actions! For instance, the Timed Labelled Transition System
corresponding to the previous example is the following (with the paradoxical
effect that signals X and Y generate internal actions, although signals and
actions are claimed to be different objects everywhere else):

wait (1)

G !1

wait (1)

G !2

i i
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The E-Lotos attempt at time determinism is probably too complex; it will
confuse most users and may cause non-compositionality issues. For Lotos NT,
we are considering an alternative approach with simpler semantics rules that do
not attempt to generate time deterministic models nor to forbid those behaviours
that might create time non-determinism.

Instead, the (potentially time non-deterministic) models generated according to
these rules are considered modulo a relation that behaves like strong bisimulation
with respect to visible and hidden actions (thus preserving the branching struc-
ture), and like trace equivalence with respect to time transitions (thus performing
time determinization). For instance, both graphs entitled Solution 1 and 2 above
are considered to be equivalent modulo this relation.

3 Modules

Modularity is a desirable language feature, which allows to decompose a large, mono-
lithic description into smaller parts of manageable sizes. To handle large descriptions,
Lotos offers some basic structuring capabilities:

• Each process definition can contain nested definitions of types and processes;

• Each type definition can contain collections of sorts, functions and equations, and
thus be seen as a “module”. Existing types can be combined together by means
of import, renaming, parameterization and actualization, in order to build more
complex types.

These design choices have often been criticized, for several reasons:

1. they establish a dissymmetry between the data and behaviour parts;

2. Lotos types lack abstraction, as every sort or function declared in a type is
automatically exported (a sort or a function can not be declared “local” to a
type);

3. Lotos types do not enforce persistency, as one can modify the initial semantics
of existing types by adding new equations (for instance, a user-defined type can
contain an equation “true = false” that corrupts the semantics of the standard
boolean type).

These problems have been known for long and various solutions have been pro-
posed, borrowing ideas from programming languages supporting modularity, such as
Modula-2 [Wir83], Ada [WWF87], Sml [MTH90]. Our proposal [SG96] was retained
as the basis of E-Lotos [Que98]. It builds upon both Sml and [BL95], which itself
improves over a previous proposal [Bri88]. The main ideas are presented below.
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E-Lotos modules constitute an additional layer, defined on top of the data and
behaviour parts. Contrary to Lotos, they deal with data and behaviours symmetri-
cally. As in Ada, Modula-2, Sml, etc., a clear distinction is made between interfaces

(which contain declarations) and modules (which provide implementations): this allows
to define libraries of reusable components, especially suitable for team work.

An E-Lotos description is a “flat” collection of modules and interfaces. Contrary
to Sml, interfaces and modules can not be nested: it is not allowed to declare an
interface or a module within another interface or module. Yet, interfaces and modules
can be organized using import relations (which form directed acyclic graphs).

An interface may contain declarations of types, constructors, functions, and pro-
cesses.

Type declarations in an interface can be either complete (all the constructors of the
type are specified), opaque (the constructors of the type are not specified, and thus will
not be available for pattern-matching, projections, updaters, etc.), or partial (a list of
constructors is specified and followed by the ellipsis symbol “...”, meaning that any
implementation for this type must have at least the mentioned constructors; similarly,
the argument list of constructors can be incompletely specified).

A type can be qualified with the “finite” keyword, meaning that its set of values
is finite, so that the type can be used in contexts requiring finite types, e.g., the “par”
operator that enumerates over a domain. The example below illustrates the various
possibilities of type declarations in interfaces:

-- example of complete type

type VECTOR is VEC (X, Y, Z: REAL) end type

-- example of opaque (finite) type

finite type COMMAND end type

-- example of partial type

type PACKET is

DATA (N:INTEGER, ...),

ACKNOWLEDGE (B:BOOL),

...

end type

Functions and processes are declared in interfaces by specifying their complete
profiles (ellipsis is not allowed). By default, for each type declared in an interface,
equality and non-equality functions are automatically made available. Additionally,
the “with” keyword can be used for a concise specification of the functions available
with a given type. For instance:
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function SIN (X:REAL):REAL

function HEAD (L:LIST):ITEM raises EMPTY_LIST

process BUFFER [INPUT, OUTPUT:PACKET]

type ORDERED_ITEM is ... with <, <=, >, >= end type

Following the ideas proposed in Anna [LvKBO87], Larch [GHG+93],
Eml [KST97], the interfaces in Lotos NT can be enriched with properties, i.e., anno-
tations expressing the expected semantics of functions and processes. At present, we
consider three different kinds of properties [GM96]:

• algebraic properties: introduced by the “eqns” keyword, they allow an axiomatic
characterization of data, exactly as ActOne equations, for which they provide a
replacement (thus providing some form of backward compatibility with Lotos).
Naturally, equations have to be extended in order to characterize situations in
which exceptions are raised.

• behaviour properties: introduced by the “rels” keyword, they use behavioural
equivalences and preorders (e.g., bisimulations) to characterize the behaviour of
processes. The list of supported relations can be extended as needed, in particu-
lar, to include timed bisimulations.

• temporal properties: introduced by the “forms” keyword, they use temporal logic
(or µ-calculus formulas) to characterize the behaviour of processes. As regards the
choice of an appropriate temporal logic, [GM96] proposes Actl [NV90], although
other choices are possible.

function HEAD (L:LIST):ITEM raises EMPTY_LIST

process BUFFER [INPUT, OUTPUT:PACKET]

eqns

HEAD (NIL) raises EMPTY_LIST

forall X:ITEM, L:LIST, HEAD (CONS (X, L)) = X;

rels

hide INPUT, OUTPUT:PACKET in BUFFER [INPUT, OUTPUT] end hide = stop

mod OBSERVATION_EQUIVALENCE

forms

BUFFER [INPUT, OUTPUT] |= <true> true -- absence of deadlock
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Compared to the constructive definitions of functions and processes, properties
are purely declarative. They are useful for requirement capture, design with iterative
refinement, and documentation of formal descriptions.

Of course, there is no decision procedure for verifying properties (this problem is
undecidable in general). Therefore, properties are only checked with respect to syntax
and static semantics (i.e., identifier bindings, typing, etc.). Yet, one can imagine com-
puter tools that would extract properties from Lotos NT descriptions and attempt
to check their correctness in defined particular cases.

Interfaces can be combined together by means of import and renaming. An interface
must be self-contained, i.e., every identifier used in an interface should be defined either
in the interface itself, or in an imported interface, or in some predefined library.

A module may contain (constructive) definitions of types (together with their con-
structors), functions, and processes. Like interfaces, modules can also contain declar-
ative properties.

An relation is defined to express under which conditions a module implements a
given interface. For instance: each constructor declared in the interface must be imple-
mented by a corresponding constructor defined in the module, whereas each function
defined in the interface can be implemented either by a constructor or a function; each
type declared as finite in an interface must be implemented by a non-recursive type,
etc. A given interface can be implemented by several modules and, reciprocally, a given
module can be seen through several interfaces (thus leading to the concept of views).

The list of objects exported by a module can be restricted by specifying an interface
for this module: only the objects declared in the interface will be visible outside the
module (selective export). This interface is optional: by default, every object defined
in the module is exported.

Modules can be combined together by means of import, selective import (i.e., the
contents of the imported module are filtered by an interface), and renaming.

Modules can also be parameterized by interfaces, resulting in generic modules to
be instantiated by other modules. This genericity mechanism improves over Lotos:
for instance, processes can be parameterized by formal types, or even formal processes.
This was already possible in [BL95], but Lotos NT brings even more flexibility by
introducing partial types (i.e., a notion of subtyping in instantiation). As in Ada
and Lotos, the actualization is handled statically by substituting actual parameters
to formal ones in the body of the generic modules to be instantiated. The dynamic
semantics is defined only for fully instantiated modules.

Conclusion

Roughly speaking, the first generation of description languages for concurrent systems
can be divided in two classes: mathematical formalisms (among which process algebras
play a prominent role), and design languages intended for industry engineers, which
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often lack semantic foundations. We believe that it is high time for a second genera-
tion of Formal Description Techniques, semantically based upon process algebras, but
clearly oriented towards computer scientists and practical applications.

In this paper, we presented a few ideas to improve the Iso standard Lotos [ISO88b]
by combining features from process algebraic and classical programming languages.
These ideas have been submitted to Iso and some of them have been accepted for
integration in the forthcoming E-Lotos standard [Que98]. In parallel, we are working
on the definition of a simpler language named Lotos NT, which is reaching comple-
tion at Inria Rhône-Alpes (an early version of Lotos NT was used for an industrial
case-study [SM97]), and a prototype compiler/model-checker is currently under devel-
opment. We expect Lotos NT to be:

• Expressive enough: Lotos should be a strict subset of Lotos NT, the latter
bringing new features such as partial functions (exceptions), generalized parallel
operators, time, coroutines, priorities, etc.

• Easy to implement: process algebras and algebraic data types are notoriously
difficult to implement, although efficient approaches are possible, e.g. for
Lotos [Gar89, GS90]. In comparison, Lotos NT should be much easier to
implement, because an important part of it (at least the data part) can be di-
rectly mapped to algorithmic languages (e.g., Ada, C, C++, Java, etc.) for
which efficient compilers already exist.

• Easy to learn: we tried to keep the syntax and semantics of Lotos NT as
simple as possible. Each construct can be justified by clear expressiveness or
user-convenience reasons. Compared to Lotos, significant progresses towards
simplicity have been achieved:

– As regards syntax, cryptic algebraic symbols have been avoided as much
as possible; behaviour operators have been syntactically “bracketed” with
“end” keywords to avoid ambiguities, as suggested in [Bri88]. Readability
was a major design concern, so as to refute the common misconception
“formal” means “unreadable”.

– Contrary to description languages that embody two different languages for
the description of data and behaviours (e.g., Lotos, µCrl, Sdl), a maximal
unification between the data and behaviour part has been achieved: many
language constructs are common and the data part can even be considered
as a subset of the behaviour part.

– As regards the data part, abstract data types, which were found inappro-
priate by most users, have been replaced with constructive types borrowed
from functional languages and functions defined in a standard, imperative
style.
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– The behaviour part of Lotos was also simplified by removing its most con-
fusing features for beginners: the functional style for dealing with variables
was replaced with an imperative one, thus allowing state variables to be
modelled directly; the two different sequential composition operators (ac-
tion prefix and enabling) have been merged into a single one; the binary
parallel operator was extended to a simpler, more general one; etc.

From our teaching experience, we notice that “lazy” students, who do not take time
to learn Lotos properly, spontaneously tend to write Lotos NT descriptions when
asked to produce Lotos ones! We consider this situation as a strong indication that
our approach is pertinent. In an ideal Formal Description Technique, only difficult
concepts (such as non-determinism, synchronization, communication, real-time, etc.)
would require explanations, the remaining constructs (conditionals, assignments, loops,
etc.) being standard.
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thesis, University of Liège, November 1996. Collection of Publications of the
Faculty of Applied Sciences, Nr 171.

[Pep94] P. Pepper. The Programming Language Opal — Implementation Language.
Technical Report, Fachbereich Informatik, Technische Universität Berlin, Febru-
ary 1994.



H. Garavel, M. Sighireanu

[Plo81] G. D. Plotkin. A structural approach to operational semantics. DAIMI FN-19
FN-19, Computer Science Department, Aarhus University, 1981.

[QA92] J. Quemada and A. Azcorra. Structuring Protocols with Exception in a LOTOS
Extension. In Proceedings of the 12th IFIP International Workshop on Protocol
Specification, Testing and Verification (Orlando, Florida, USA). IFIP, North-
Holland, June 1992.

[Que98] Juan Quemada, editor. Committee Draft on Enhancements to LOTOS (E-
LOTOS). ISO/IEC FCD 15437, April 1998.

[RdMS95] R. Roth, J. de Meer, and S. Storp. Data specifications in modular LOTOS. In
T. Bolognesi, J. van de Lagemaat, and C. Vissers, editors, LOTOSphere: Soft-
ware Development with LOTOS, pages 467–479. Kluwer Academic Publishers,
1995.

[SBL+91] R. Strom, D. Bacon, A. Lowry, A. Goldberg, D. Yellin, and S. Yemini. Hermes: A
Language for Distributed Computing. Series in Innovative Technology. Prentice-
Hall, Englewood Cliffs, NJ, USA, 1991. ISBN 0-13-389537-8.

[Sco86] G. Scollo. Some Facilities for Concise Data Types in LOTOS. Technical Report,
EspritP410 SEDOS/C1/WP13/T, May 1986.

[SG96] Mihaela Sighireanu and Hubert Garavel. On the Definition of Modular E-
LOTOS. VASY Report, INRIA, December 1996. Input document [GR2] to the
ISO/IEC JTC1/SC21/WG7 Meeting on Enhancements to LOTOS (1.21.20.2.3),
Grenoble, France, December, 9–11, 1996.

[SG97] Mihaela Sighireanu and Hubert Garavel. A Proposal for Coroutines in E-
LOTOS. VASY Report, INRIA, July 1997. Input document [HEL2] to the
ISO/IEC JTC1/SC21/WG7 Meeting on Enhancements to LOTOS (1.21.20.2.3),
Helsinki, Finland, July, 14–18, 1997.

[SM97] Mihaela Sighireanu and Radu Mateescu. Validation of the Link Layer Protocol
of the IEEE-1394 Serial Bus (“FireWire”): an Experiment with E-LOTOS. In
Ignac Lovrek, editor, Proceedings of the 2nd COST 247 International Workshop
on Applied Formal Methods in System Design (Zagreb, Croatia), June 1997. Full
version available as INRIA Research Report RR-3172.

[Sto91] Silke Storp. Integration of Standard Data Types into LOTOS. Master’s thesis,
Offene Kommunikations Systeme (OKS), Berlin, June 1991.

[Sun96] Sun Microsystems Inc. Java Language Specification. Addison Wesley, first edi-
tion, 1996.

[Wir83] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, Berlin, 1983.

[WWF87] D. Watt, B. Wichmann, and W. Findlay. ADA Language and Methodology.
Prentice-Hall, 1987.


