
Verification of GALS Systems by Combining
Synchronous Languages and Process Calculi

Hubert Garavel1 and Damien Thivolle1,2

1 INRIA Grenoble - Rhône-Alpes
655 avenue de l’Europe

38 330 Montbonnot Saint Martin – France
{Hubert.Garavel,Damien.Thivolle}@inria.fr

2 Polytechnic University of Bucharest
Splaiul Independentei 313

060042 Bucharest – Romania

Abstract. A Gals (Globally Asynchronous Locally Synchronous) sys-
tem typically consists of a collection of sequential, deterministic compo-
nents that execute concurrently and communicate using slow or unreli-
able channels. This paper proposes a general approach for modelling and
verifying Gals systems using a combination of synchronous languages
(for the sequential components) and process calculi (for communication
channels and asynchronous concurrency). This approach is illustrated
with an industrial case-study provided by Airbus: a Tftp/Udp commu-
nication protocol between a plane and the ground, which is modelled
using the Eclipse/Topcased workbench for model-driven engineering
and then analysed formally using the Cadp verification and performance
evaluation toolbox.

1 Introduction

In computer hardware, the design of synchronous circuits (i.e., circuits the logic
of which is governed by a central clock) has long been the prevalent approach. In
the world of software, synchronous languages [17] are based on similar concepts.
Whatever their concrete syntaxes (textual or graphical) and their programming
styles (data flow or automata-based), these languages share a common paradigm:
a synchronous program consists of components that evolve by discrete steps,
and there is a central clock ensuring that all components evolve simultaneously.
Each component is usually deterministic, as is the composition of all compo-
nents; this assumption greatly simplifies the simulation, testing and verification
of synchronous systems.

During the two last decades, synchronous languages have gained industrial
acceptance and are being used for programming critical embedded real-time
systems, such as avionics, nuclear, and transportation systems. They have also
found applications in circuit design. Examples of synchronous languages are
Argos [24], Esterel [3], Lustre/Scade [16], and Signal/Sildex [1].

However, embedded systems do not always satisfy the assumptions under-
lying the semantics of synchronous languages. Recent approaches in embed-
ded systems (modular avionics, X-by-wire, etc.) introduce a growing amount
of asynchronism and nondeterminism. This situation has been long known in
the world of hardware, where the term Gals (Globally Asynchronous, Locally
Synchronous) was coined to characterise circuits consisting of a set of compo-
nents, each governed by its own local clock, that evolve asynchronously. Clearly,
these evolutions challenge the established positions of synchronous languages in
industry.

There have been several attempts at pushing the limits of synchronous lan-
guages to model Gals systems. Following Milner’s conclusion [28] that asyn-
chronism can be encoded in a synchronous process calculus, there have been
approaches [18, 23, 29, 19] suggesting ways to describe Gals systems using syn-
chronous languages; for instance, nondeterminism is expressed by adding auxil-
iary input variables (oracles), the value of which is undefined; a main limitation
of these approaches is that asynchronism and nondeterminism are not recog-
nised as first-class concepts, so verification tools often lack optimisations specific
to asynchronous concurrency (e.g. partial orders, compositional minimisation,
etc.). Other approaches extend synchronous languages to allow a certain degree
of asynchrony, as in Crp [2], Crsm [31], or multiclock Esterel [4], but, to
our knowledge, such extensions are not (yet) used in industry. Finally, we can
mention approaches [15, 30] in which synchronous programs are compiled and
distributed automatically over a set of processors running asynchronously; al-
though these approaches allow the generation of Gals implementations, they
do not address the issue of modelling and verifying Gals systems.

A totally different approach would be to ignore synchronous languages and
adopt languages specifically designed to model asynchrony and nondeterminism,
and equipped with powerful verification tools, namely process calculi such as
Csp [6], Lotos [21], or Promela [20]. Such a radical migration, however, would
not be so easy for companies that invested massively in synchronous languages
and whose products have very long life-cycles calling for stability in programming
languages and development environments.

In this paper, we propose an intermediate approach that combines syn-
chronous languages and process calculi for modelling, verifying, and evaluating
the performance of Gals systems. Our approach tries to retain the best of both
worlds:

– We continue using synchronous languages to specify the components of Gals
systems, and possibly sets of components, running together in synchronous
parallelism.

– We introduce process calculi to: (1) encapsulate those synchronous compo-
nents or sets of components; (2) model additional components whose be-
haviour is nondeterministic, a typical example being unreliable communi-
cation channels that can lose, duplicate and/or reorder messages; (3) in-
terconnect all parts of a Gals systems that execute together according to
asynchronous concurrency. The resulting specification is asynchronous and

can be analysed using the tools available for the process calculus being con-
sidered.

Regarding related work, we can mention [32], which translates Crsm [31] into
Promela and then uses the Spin model checker to verify properties expressed
as a set of distributed observers; our approach is different in the sense that it
can use synchronous languages just as they are, instead of introducing a new
synchronous/asynchronous language such as Crsm.

Closer to our approach is [9], which uses the Signal compiler to generate
C code from synchronous components written in Signal, embeds this C code
into Promela processes, abstracts hardware communication buses as Promela
finite Fifo channels, and finally uses Spin to verify temporal logic formulas. A
key difference between their approach and ours is the way locally synchronous
components are integrated into a globally asynchronous system. The approach
of [9] is stateful in the sense that the C code generated for a synchronous Signal
component is a transition system with an internal state that does not appear
at the Promela level; thus, they must rely upon the “atomic” statement of
Promela to enforce the synchronous paradigm by merging each pair of input
and output events into one single event. To the contrary, our approach is state-
less in the sense that each synchronous component is translated into a Mealy
function without internal state; this allows a smoother integration within any
asynchronous process calculi that has types and functions, even if it does not
possess an “atomic” statement — which is the case of most process calculi.

We illustrate our approach with an industrial case study provided by Airbus
in the context of the Topcased3 project: a ground-plane communication proto-
col consisting of two Tftp (Trivial File Transfer Protocol) entities that execute
asynchronously and communicate using unreliable Udp (User Datagram Proto-
col) channels. For the synchronous language, we will consider Sam [8], a simple
synchronous language (similar to Argos [24]) that was designed by Airbus
and that is being used within this company. Software tools for Sam are available
within the Topcased open-source platform based on Eclipse. For the process
calculus, we will consider Lotos NT [7], a simplified version of the interna-
tional standard E-Lotos [22]. A translator exists that transforms Lotos NT
specifications into Lotos specifications, thus enabling the use of the Cadp tool-
box [13] for verification and performance evaluation of the generated Lotos
specifications.

This paper is organised as follows. Section 2 presents the main ideas of our
approach for analysing systems combining synchrony and asynchrony. Section 3
introduces the Tftp industrial case study. Section 4 gives insights into the for-
mal modelling of Tftp using our approach. Section 5 reports on state space
exploration and model checking verification of Tftp models. Section 6 addresses
performance evaluation of Tftp models by means of simulation. Finally, Sec-
tion 7 gives concluding remarks and discusses future work.

3 www.topcased.org

2 Proposed methodology

This section explains how to make the connection between synchronous lan-
guages and process calculi. It takes the Sam and Lotos NT languages as par-
ticular examples, but the principles of our approach are more general.

2.1 Synchronous programs seen as Mealy functions

A synchronous program is the synchronous parallel composition of one or several
synchronous components. A synchronous component performs a sequence of dis-
crete steps and maintains an internal state s. At each step, it receives a set of m
input values i1, . . . , im from its environment, computes (in zero time) a reaction,
sends a set of n output values o1, . . . , on to its environment, and moves to its
new state s′. That is to say, it can be represented by a (usually deterministic)
Mealy machine [27] i.e., a 5-tuple (S, s0, I, O, f) where:

– S is a finite set of states,
– s0 is the initial state,
– I is a finite input alphabet,
– O is a finite output alphabet,
– f ∈ S × I → S × O is a transition function (also called a Mealy function)

mapping the current state and the input alphabet to the next state and the
output alphabet: f(s, i1...im) = (s′, o1...on).

When a synchronous program has several components, these components can
communicate with each other by connecting the outputs of some components to
the inputs of some other components. By definition of synchronous parallelism,
at each step, all the components react simultaneously. Consequently, the com-
position of several components can also be modelled by a Mealy machine. For
the synchronous Esterel and Lustre, a common format named OC (Object
Code) has been proposed to represent those Mealy machines.

2.2 The SAM language

To illustrate our approach, we consider the case of the synchronous language Sam
designed by Airbus, a formal description of which is given in [8]. A synchronous
component in Sam is an automaton that has a set of input and output ports,
each port corresponding to a boolean variable. A Sam component is very similar
to a Mealy machine. The main difference lies in the fact that a transition in Sam
is a 5-tuple (s1, s2, F , G, P), where:

– s1 is the source state of the transition,
– s2 is the destination state of the transition,
– F is a boolean condition on the input variables (the transition can be fired

only when F evaluates to true),
– G is a set of output variables (when the transition is fired, the variables of

G are set to true and the other output variables are set to false), and

– P is a priority integer value.

The priority values from transitions going out of the same state must be pairwise
distinct. If a set of input values enables more than one outgoing transition from
the current state, the transition with the lowest priority value is chosen, thus
ensuring a deterministic execution. Priority values are notational conveniences
that can be eliminated as follows: each transition (s1, s2, F, G, P) can be replaced
by (s1, s2, F

′, G) where F ′ = F ∧ ¬(F1 ∨ . . . ∨ Fn) such that F1, . . . , Fn are the
conditions attached to the outgoing transitions of state s1 with priority values
strictly lower than P .

Each state has an implicit loop transition on itself that sets all the output
ports to false and is fired if no other transition is enabled (its priority value is
+∞).

Fig. 1 gives an example of a Sam automaton. An interrogation mark precedes
the condition F of each transition while an exclamation mark precedes its output
variables list G. Priority values are attached to the source of the transitions.

s0

s1 s2

?B
!C

?A and B
!C,D

?A
!D

?B
!D

?A and not B
!C

1

2

1 2 1

Fig. 1. Example automaton in Sam

Sam supports the synchronous composition of components. A global sys-
tem in Sam has input and output ports. It is composed of one or several Sam
components. Communication between these components is expressed by drawing
connections between input and output ports, with the following rules:

– inputs of the system can connect to outputs of the system or inputs of
automata,

– outputs of automata can connect to inputs of other automata or outputs of
the system,

– cyclic dependencies are forbidden.

2.3 Translating SAM into LOTOS NT

In this section, we illustrate how a Sam automaton can be represented by its
Mealy function encoded in Lotos NT. For instance, the Sam automaton of
Fig. 1 can be encoded in Lotos NT as follows:

type State is

S0, S1, S2 -- this is an enumerated type

end type

function Transition (in CurrentState:State, in A:Bool, in B:Bool

out NextState:State, out C:Bool, out D:Bool) is

NextState := CurrentState; C := false ; D := false ;

case CurrentState in

S0 ->

if A then

NextState := S1; D := true

end if

| S1 ->

if A and B then

NextState := S0; C := true; D := true

elsif B then

NextState := S2; C := true

endif

| S2 ->

if A and not (B) then

NextState := S0; C := true

elsif B then

NextState := S0; D := true

end if

end case

end function

We chose Lotos NT rather than Lotos because Lotos NT functions are
easier to use than Lotos equations for describing Mealy functions and manipu-
lating data in general. The imperative style of Lotos NT makes this straight-
forward. Using Lotos algebraic data types would have been more difficult given
that Lotos functions do not have “out” parameters. In this respect, Lotos NT
is clearly superior to Lotos and other “traditional” value-passing process alge-
bras; this contributes to the originality and elegance of our translation. Also,
the fact that Lotos NT functions execute atomically (i.e., they do not create
“small step” transitions) perfectly matches the assumption that a synchronous
program reacts in zero time.

A Sam system consisting of several Sam automata can also be translated
to Lotos NT easily. Because cyclic dependencies are forbidden, one can find a
topological order for the dependencies between automata. Thus, a Sam system
can be encoded in Lotos NT as a sequential composition of the Mealy functions
of its individual Sam automata.

An alternative approach to translating a synchronous language L into
Lotos NT, if there exists a code generator from L to the C language, would
be to invoke the Mealy function (presumably generated in C code) directly from
a Lotos NT program as an external function (a feature that is supported by
Lotos NT). This way, our approach could even allow mixing of components
written in different synchronous languages.

2.4 Wrapping Mealy functions into LOTOS NT processes

Mealy
Functionextracting processingINPUT

MESSAGE
V1...Vn O1...On

values
extracted
from the
message

inputs of the
Mealy
function

I1...In processing V'1...V'n

outputs of
the Mealy
function

next statecurrent state

values used to
assemble the
output message

assembling OUTPUT
MESSAGE

values saved to be reused at next iteration

Fig. 2. A wrapper process in detail

In contrast with synchronous programs, components of asynchronous pro-
grams run concurrently, at their own pace, and synchronise with each other
through communications using gates or channels.

Our approach to modelling Gals systems in asynchronous languages consists
in encoding a synchronous program as a set of native types and functions in
a given process calculus. But the Mealy function of a synchronous program
alone cannot interact directly with an asynchronous environment. It needs to be
wrapped (or encapsulated) in a process that handles the communications with
the environment. This wrapper transforms the Mealy function of a synchronous
component into an Lts (Labelled Transition System). In our case, the Mealy
function is a Lotos NT function and the wrapper is a Lotos NT process.

The amount of processing a wrapper can do depends on the Gals system
being modelled. Fig. 2 shows the basic processing usually done within a wrapper:
extraction of the inputs, aggregation of the outputs, and storage of values for the
next iteration. In certain cases, the wrapper can also implement extra behaviours
not actually described by the Mealy function itself.

Once encapsulated in a wrapper process, the Mealy function corresponding to
a synchronous program can be made to synchronise and communicate with other
asynchronous processes using the parallel composition operator of Lotos NT.

3 The TFTP case study

This case study was provided by Airbus to the participants of the Topcased
project as a typical example of avionics embedded software. We first present a
summary of the principles of the standard Tftp protocol, then we describe the
adaptation of Tftp made by Airbus for plane/ground communications.

3.1 The standard TFTP protocol

Tftp [33] stands for Trivial File Transfer Protocol. It is a client/server protocol
in which several clients can send (resp. receive) a file to (resp. from) one server.
As it is designed to run over the Udp (User Datagram Protocol) protocol, the

Tftp protocol implements its own flow control mechanism. In order for the
server to differentiate between clients, each file transfer is served on a different
Udp port.

In a typical session, a client initiates a transfer by sending a request to the
server: RRQ (Read ReQuest) for reading a file or WRQ (Write ReQuest) for writing
(i.e. sending) a file. The files are divided into data fragments of equal size (except
the last fragment whose size may be smaller), which are transferred sequentially.
The server replies to an RRQ by sending in sequence the various data fragments
(DATA) of the file and to a WRQ by sending an acknowledgement (ACK). When the
client receives this acknowledgement, it starts sending the data fragments of the
file. Each data fragment contains an order index which is used to check whether
all data fragments are received consecutively. Each acknowledgement also carries
the order index of the data fragment it acknowledges, or zero it if acknowledges
a WRQ. A transfer ends when the acknowledgement of the last data fragment is
received.

The protocol is designed to be robust. Any lost message (RRQ, WRQ, DATA, ACK)
can be retransmitted after a timeout. Duplicate (resent because of a timeout)
acknowledgements are discarded upon receipt to avoid the Sorcerer’s Apprentice
bug [5]. The Tftp standard suggests the use of dallying, i.e. waiting for a while
after sending the final acknowledgement in case this acknowledgement is lost
before reaching the other side (that will eventually resend its final data fragment
after a timeout).

If an error (memory shortage, fatal error, etc.) occurs, the client or the server
sends an error message (ERROR) to abort the transfer.

3.2 The Airbus variant of the TFTP protocol

When a plane reaches its final parking position, it is connected to the airport
using an Ethernet network. The ground/plane communication protocol currently
in use is a very simple and certified to be correct. Airbus asked us to study a
more complex protocol, a variant of the Tftp, which might be of interest for
future generations of planes. The main differences with the standard Tftp are
the following:

– In the protocol stack considered by Airbus, this Tftp variant still runs
above the Udp layer but below an avionic communication protocol layer
(e.g. Arinc 615a). The files carried by the Tftp variant are frames of the
upper layer protocol.

– Each side of the Tftp variant has the ability to be both a client and a server,
depending on the upper layer requests.

– Each server communicates with one single client because there is a unique
Tftp instance reserved for each plane that lands in the airport. This removes
the need for modelling the fact that a server can serve many different clients
on as many different Udp ports.

In the rest of this paper, we will use the name Tftp to refer to this protocol
variant studied by Airbus.

The behaviour of a Tftp protocol entity was specified by Airbus as a Sam
system consisting of one Sam automaton with 7 states, 39 transitions, 15 inputs
and 11 outputs.

Airbus was interested in knowing how this Tftp variant would behave in
an unreliable environment, in which messages sent over the Udp layer could be
lost, duplicated, or reordered.

4 Formal specification of the case study

We have modelled a specification consisting of two Tftp protocol entities con-
nected by two Udp media. As shown in Fig. 3, the Tftp protocol entities are
two instances of the same Lotos NT process, whose behaviour is governed by
the Mealy function of the Sam Tftp automaton. We manually translated this
function into 215 lines of Lotos NT code (including the enumerated type en-
coding the states of the Sam automaton). The media are also two instances of
the same Lotos NT process that models the behaviour of Udp.

TFTP WRAPPER
Instance A

TFTP
transition
function

UDP MEDIUM
Instance 2

UDP MEDIUM
Instance 1

TFTP WRAPPER
Instance B

TFTP
transition
function

SEND_A

RECEIVE_A

RECEIVE_B

SEND_B

asynchronous
communication

channels

Fig. 3. Asynchronous connection of two TFTP processes via UDP media

We have defined two versions of the Lotos NT wrapper process encapsu-
lating the Tftp Mealy function. The basic Tftp process is the simplest one; it
is modelled after Airbus recommendations to connect two Tftp Sam automata
head-to-tail in an asynchronous environment. The accurate Tftp process is more
involved: it is closer to the standard Tftp protocol and copes with limitations
that we detected in the basic Tftp process.

4.1 Modelling the basic TFTP entities

The basic Tftp process, as shown by Fig. 4, is a simple wrapper (260 lines of
Lotos NT) around the Mealy function and does no processing on its own. The
idea behind this wrapper is to asynchronously connect output ports of one Tftp
automaton to corresponding input ports of the other side. Inputs of the Mealy
function that can neither be deduced from the input message nor from values
stored at the previous iteration are assigned a random boolean value.

A key issue with this design is how to determine if two successive data
fragments are different, or if they are the same fragment sent twice. For this

send_RRQ
send_WRQ
send_DATA

send_init_DATA
resend_DATA

send_init_ACK
resend_ACK

send_ERROR
stop_timer
arm_timer
next_state

send_ACK

RRQ
WRQ
DATA
ACK

ERROR

RANDOM

RECEIVE
MESSAGE

RRQ
WRQ
DATA
ACK

ERROR

RECEIVE
MESSAGE

MESSAGE TYPE
MESSAGE TYPE

TFTP
WRAPPER

receive_WRQ
receive_DATA

receive_old_DATA
receive_ACK

receive_ERROR
DATA_length_lt_512

receive_invalid_packet

request_accepted
eof

apply_RRQ
apply_WRQ

max_retries_reached
timeout

internal_error

receive_RRQ

current_state

TFTP
transition function

Fig. 4. Basic TFTP process

purpose, the Sam automaton has different input ports (receive DATA and
receive old DATA) and different output ports (send DATA and resend DATA).
However, the basic Tftp wrapper is just too simple to interface with these
ports in a satisfactory manner. For this reason, we had to refine this wrapper as
explained in the next section.

4.2 Modelling the accurate TFTP entities

We developed a more accurate Tftp wrapper process (670 lines of Lotos NT)
that receives and sends “real” Tftp frames (as defined in the Tftp standard).

In our model, we assume the existence of a finite set of files (each represented
by its file name, which we encode as an integer value) in which each Tftp process
can pick up files to write to or read from the other side. Each RRQ and WRQ frame
carries the name of the requested file. The contents of each file are modelled as
a sequence of fragments, each fragment being represented as a character. Each
DATA frame carries three values: a file fragment, an order index for the fragment,
and a boolean value indicating whether this is the last fragment of the file. Each
ACK frame carries the order index of the DATA frame it acknowledges, or zero if
it acknowledges a WRQ.

In order to fight state explosion in the latter phases, we restrict nondeter-
minism by constraining each Tftp process to select only those files belonging
to a “read list” and “write list”. Whenever there is no active transfer, a process
can randomly choose to send an RRQ request for the first file in its read list or a
WRQ request for the first file in its write list.

Besides the state of the automaton, additional values must be kept in mem-
ory between two subsequent calls to the Mealy function, for instance the name of
the file being transferred, the index value of the last data fragment or acknowl-
edgement received or sent, a boolean indicating whether the last data fragment
received is the last one, etc.

4.3 Modelling the UDP media

The two Lotos NT processes describing the Udp media are not derived from
a Sam specification: they have been written by hand.

These processes should reproduce accurately the behaviour of an Udp layer
over an Ethernet cable connecting the plane and the ground. As Udp is a
connection-less protocol without error recovery mechanism, any error that is
not detected and corrected by the lower networking layers will be propagated
to the upper layers (i.e., Tftp in our case). These errors are: message losses,
message reordering, and message duplications. Message losses are always pos-
sible, due to communication failures. Reordering of messages should be limited
in practice (as modern routers use load-balancing policies that usually send all
related packets through the same route), but we cannot totally exclude this pos-
sibility. Message duplications may only occur if the implementation of the lower
networking layers is erroneous, so we can discard this possibility.

We chose to model the medium in two different ways, using two different
Lotos NT processes. Both processes allow messages to be lost and have a buffer
of fixed size in which the messages are stored upon reception, waiting for delivery.
The first process models the case where message reordering does not happen.
It uses a Fifo as a buffer: messages are delivered in the same order as they
are received. The second process models the case where message reordering can
happen. It uses a bag as a buffer. We denote FIFO(n) (resp. BAG(n)) a medium
with a Fifo (resp. bag) buffer of size n. The Lotos NT processes for the Fifo
medium and the bag medium are respectively 24 and 27 line long.

4.4 Interconnecting TFTP entities and UDP media

To compose the Tftp protocol entities and the Udp media asynchronously as
illustrated in Fig. 3, we use the parallel operator of Lotos NT:

par RECEIVE_A, SEND_A -> TFTP_WRAPPER [RECEIVE_A, SEND_A]

|| RECEIVE_B, SEND_B -> TFTP_WRAPPER [RECEIVE_B, SEND_B]

|| SEND_A, RECEIVE_B -> UDP_MEDIUM [SEND_A, RECEIVE_B]

|| SEND_B, RECEIVE_A -> UDP_MEDIUM [SEND_B, RECEIVE_A]

end par

As we have two different Tftp processes and two different medium pro-
cesses, we obtain four specifications: basic Tftp specification with bag media,
basic Tftp specification with Fifo media, accurate Tftp specification with bag
media, and accurate Tftp specification with Fifo media.

5 Functional verification by model checking

In this section, we detail how to generate the state spaces for the specifications
and how to define correctness properties characterising the proper behaviour of
these specifications. Then, we discuss the model checking results obtained using
Cadp.

5.1 State space generation

Lotos NT specifications are automatically translated into Lotos specifications
(using the Lpp/Lnt2Lotos [7] compilers) which are, in turn, compiled into
Ltss (Labelled Transition Systems) using the Cæsar.adt [14] and Cæsar [10]
compilers of Cadp.

One important issue in model checking is the state space explosion problem.
Because of this, we restrict the buffer size n of the Udp media processes to small
values (e.g., n = 1, 2, 3...). In the case of the accurate Tftp we also limit the
size of each file to two fragments (this is enough to exercise all the transitions of
the Sam automaton) and we constrain the number of files exchanged between
the two Tftp protocol entities by bounding the lengths of the read and write
lists. To cover all the possibilities, we consider four scenarios:

– Scenario 1: Tftp entity A writes one file.;
– Scenario 2: Tftp entities A and B both write one file;
– Scenario 3: Tftp entity A writes one file and B reads one;
– Scenario 4: Tftp entities A and B both read one file;

Additionally, we make use of the compositional verification tools available in
Cadp to fight state explosion. Compositional verification is a divide and conquer
approach that allows significant reductions in time, memory, and state space
size. Applied to the Tftp case study, this approach consists in generating the
Ltss for all the four processes (two Tftp processes and two media processes),
minimising these Ltss according to strong bisimulation (using the Bcg Min tool
of Cadp), and composing them progressively in parallel (using the Exp.Open
and Generator tools of Cadp) by adding one Lts at a time.

For instance, on the example of basic Tftp specification with two BAG(2)
media, it took 7 minutes and 56 seconds on a 32-bit machine (2.17 Ghz Intel
Core 2 Duo processor running Linux with 3 GB of RAM), to directly generate
the corresponding Lts, which has 2,731,505 states and 11,495,662 transitions.
Using compositional verification instead, it only takes 13.9 seconds to generate,
on the same machine, a strongly equivalent, but smaller, Lts with 542,078 states
and 2,543,930 transitions only.

Practically, compositional verification is made simple by the Svl [12] script
language of Cadp. Svl lets the user write compositional verification scenarios at
a high level of abstraction and takes care of all low level tasks, such as invoking
the Cadp tools with appropriate command-line options, managing all temporary
files, etc.

Tables 1 and 2 illustrate the influence of the buffer size on the state spaces
of the basic and accurate Tftp specifications, respectively. In these tables, the
hyphen symbol (“−”) indicates the occurrence of state space explosion.

5.2 Temporal logic properties

After a careful analysis of the standard Tftp protocol and discussions with Air-
bus engineers, we specified a collection of properties that the Tftp specification

Medium
Minimised Medium Lts Entire Specification Generation
States Transitions States Transitions Time (s)

BAG(1) 13 60 20,166 86,248 10.49

BAG(2) 70 294 542,078 2,543,930 13.90

BAG(3) 252 1,008 6,698,999 32,868,774 54.89

BAG(4) 714 2,772 − − −
FIFO(1) 13 60 20,166 86,248 9.95

FIFO(2) 85 384 846,888 3,717,754 15.13

FIFO(3) 517 2,328 31,201,792 137,500,212 200.32

FIFO(4) 3,109 13,992 − − −

Table 1. Lts generation for the basic Tftp

Medium
Minimised Medium Lts Entire Specification Generation
States Transitions States Transitions Time (s)

BAG(1) 31 260 71,974 319,232 20.04

BAG(2) 231 1,695 985,714 4,683,197 27.44

BAG(3) 1,166 7,810 6,334,954 31,272,413 78.28

BAG(4) 4,576 28,655 − − −
FIFO(1) 31 260 71,974 319,232 20.29

FIFO(2) 321 2,640 1,195,646 5,373,528 29.26

FIFO(3) 3,221 26,440 18,885,756 85,256,824 174.15

FIFO(4) 32,221 264,440 − − −

Table 2. Lts generation for the accurate Tftp (scenario 1)

should verify. These properties were first expressed in natural language and then
translated into temporal logic formulas.

For the basic TFTP specification, we wrote a first collection of 12 prop-
erties using modal µ-calculus (extended with regular expressions as proposed
in [25]). These properties were evaluated using the Evaluator 3.5 model checker
of Cadp. We illustrate two of them here:

– The Tftp automaton has two output ports arm timer and stop timer that
respectively start and stop the timer used to decide when an incoming mes-
sage should be considered as lost. The following property ensures that be-
tween two consecutive stop timer actions, there must be an arm timer ac-
tion. It states that there exists no sequence of transitions containing two
stop timer actions with no arm timer action in between. The suffix “ A”
at the end of transition labels indicates that this formula holds for Tftp
protocol entity A. There is a similar formula for entity B.

[true* . "STOP_TIMER_A" . not ("ARM_TIMER_A")* .

"STOP_TIMER_A"] false

– When a Tftp protocol entity receives an error, it must abort the current
transfer. The following property ensures that receiving an error cannot be

followed by sending an error. It states that there exists no sequence of tran-
sitions featuring the reception of an error directly followed by sending an
error:

[true* . "RECEIVE_A !ERROR" . "SEND_A !ERROR"] false

For the accurate TFTP specification, the collection of 12 properties we
wrote for the basic Tftp specification can be reused without any modification,
still using Evaluator 3.5 to evaluate them. We also wrote a second collection
of 17 new properties that manipulate data in order to capture the messages
exchanged between the Tftp protocol entities. These properties could have been
written using the standard µ-calculus but they would have been too verbose.
Instead, we used the Mcl language [26], which extends the modal µ-calculus
with data manipulation constructs. Properties written in the Mcl language can
be evaluated using the Evaluator 4.0 [26] model checker of Cadp. We illustrate
two of these new properties below:

– Data fragments must be sent in proper order. We chose to ensure this by
showing that any data fragment numbered x cannot be followed by a data
fragment numbered y, where y < x, unless there has been a re-initialisation
(transfer succeeded or aborted) in between. This property is encoded as
follows:

[true* . {SEND_A !"DATA" ?X:Nat ...} . not (REINIT_A)* .

{SEND_A !"DATA" ?Y:Nat ... where Y < X}] false

– Resent write requests must be replied to, in the limits set by the value of the
maximum number of retries. The following formula states that for every write
request received and accepted, it is possible to send the acknowledgement
more than once, each time (within the limit of MAX RETRIES A) the write
request is received – the r {p} notation meaning that the regular formula r
must be repeated p times.

[not {RECEIVE_A !"WRQ" ...}* . {RECEIVE_A !"WRQ" ?n:Nat} .

i . {SEND_A !"ACK" !0 of Nat}

] forall p:Nat among {1 ... MAX_RETRIES_A ()} .

< (not (REINIT_A or {RECEIVE_A !"WRQ" !n})* .

{RECEIVE_A !"WRQ" !n} . {SEND_A !"ACK" !0 of Nat}

) {p} > true

5.3 Model checking results

Using the Evaluator 3.5 model checker, we evaluated all properties of the
first collection on all the Ltss generated for the basic and accurate Tftp spec-
ifications. Using the Evaluator 4.0 model checker, we did the same for all
properties in the second collection on all the Ltss generated for the accurate
Tftp specifications.

Several of the first collection of 12 properties did not hold on either the basic
or the accurate Tftp specifications. This enabled us to find 11 errors in the

Tftp automaton. From the two properties presented in Section 5.2 for the first
collection, the first held while the second did not.

The verification of the second collection of 17 properties specially written for
the accurate Tftp specifications led to the discovery of an additional 8 errors.
From the two properties presented in Section 5.2 for the second collection, the
first held while the second did not.

For both the basic and accurate Tftp specifications, we observed that the
truth values of all these formulas did not depend on the sizes of bags or Fifos.
Notice that, because Evaluator 3.5 and 4.0 can work on the fly, we could
have applied them directly to the Lotos specifications generated for the Tftp
instead of generating the Ltss first. Although this might have enabled us to
handle larger state spaces, we did not chose this approach, as we felt that further
increasing the bag and Fifo sizes would not lead to different results.

Regarding the amount of time needed to evaluate formulas, we observed that
it takes in average 35 seconds per formula on an Lts having 3.4 million states and
19.2 million transitions (basic Tftp specification) and 6.5 minutes per formula
on an Lts having 18.2 million states and 88 million transitions (accurate Tftp
specification).

In total, we found 19 errors, which were reported to Airbus and were acknowl-
edged as being actual errors in the Tftp variant. We also suggested changes in
the Tftp automaton to correct them. As stated in Section 3.2, it is worth notic-
ing that these errors only concern a prototype variant of Tftp, but not the
communication protocols actually embedded in planes and airports. While some
of these errors could have been found by a human after a careful study of the
automaton, some others are more subtle and would have been hard to detect
just by looking at the Tftp automaton: for instance, the fact that if both Tftp
entities send a request (RRQ or WRQ) at the same time, both requests are just
ignored.

6 Performance evaluation by simulation

In spite of the errors we detected, the Tftp automaton can always recover with
timeouts, i.e. by waiting long enough that the timer expires. However, these
extra timeouts and additional messages cause a performance degradation that
needed to be quantified.

There are several approaches to performance evaluation, namely queueing
theory, Markov chains (the Cadp toolbox provides tools for Interactive Markov
Chains [11]), and simulation methods. For the Tftp case study, we chose the
latter approach.

6.1 Simulation methodology with CADP

To quantify the performance loss caused by the errors, an “optimal“ model was
needed to serve as a reference. For this purpose, we wrote a Tftp Mealy function
in which all the errors have been corrected. We also produced, for each error e,

a Tftp Mealy function in which all the errors but e had been corrected, so as
to measure the individual impact of e on the global performance.

State space explosion does not occur with simulation. This allowed us to
increase the complexity of our models:

– The number of files exchanged was set to 10,000. Before each simulation,
these files are randomly distributed in the read and write lists of the Tftp.

– The file size was increased to be between 4 and 10 fragments. File fragments
are assumed to be 32 kB each. File contents are randomly generated before
each simulation. A simulation stops when all the files in the read and write
lists have been transferred.

– We used bag Udp media with a buffer size of 6.

We considered two simulation scenarios:

1. One Tftp protocol entity acts as a server and initiates no transfer. The
other acts as a client that reads files from and writes files to the server. This
is a realistic model of actual ground/plane communications.

2. Both Tftp protocol entities can read and write files. This is a worst-case
scenario in which the Tftp protocol entities compete to start file transfers.
This can happen under heavy load and Airbus engineers recognised it ought
to be considered.

To perform the simulations, we adapted the Executor tool of Cadp, which
can explore random traces in LOTOS specifications on the fly. By default, in
Executor, all transitions going out of the current state have the same prob-
ability of being fired. To obtain more realistic simulation traces, we modified
Executor (whose source code is available in Cadp) to assign different proba-
bilities to certain transitions. Namely, we gave to timeouts and message losses
(resp. to internal errors) a probability that is 100 (resp. 10,000) times smaller
than the probability of all other transitions. In the bag Udp media, older mes-
sages waiting in the buffers were given higher chance than newer messages to be
chosen for delivery.

To each transition, we also associated an estimated execution time, computed
as follows:

– The Udp media are assumed to have a speed of 1 MB/s and a latency of
8 ms.

– Receiving or sending an RRQ, a WRQ, or an ACK takes 2 ms (one fourth of the
latency)

– Receiving or sending a DATA takes 18 ms: 2 ms from the medium latency
plus half the time required to send 32 kB at 1 MB/s.

– For the timeout values, we tried 20 different values in total, ranging from
50 ms to 1 second, varying by steps of 50 ms.

– All other transitions have an estimated execution time of 0 ms.

For each error e, for both simulations scenario, and for each timeout value,
we ran ten simulations on the TFTP specification in which all errors but e had
been corrected. We then analysed each trace produced by these simulations to
compute:

– its execution time, i.e. the sum of the estimated execution times for all the
transitions present in the trace,

– the number of bytes transferred during the simulation, which is obtained
by multiplying the fragment size (32 kB) by the number of file fragments
initially present in the read and write lists.

Dividing the latter by the former gives a transfer speed, the mean value of which
can be computed over the set of simulations.

6.2 Simulation results

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0 100 200 300 400 500 600 700 800 900 1000

Tr
an

sf
er

 s
pe

ed
 (k

B/
s)

Timeout value (s)

All errors corrected
No error corrected

Fig. 5. Simulation results for scenario 1.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900 1000

Tr
an

sf
er

 s
pe

ed
 (k

B/
s)

Timeout value (s)

All errors corrected
No error corrected

All errors corrected except error 13a
All errors corrected except error 13d

Fig. 6. Simulation results for scenario 2.

For the simulation scenario 1, we observed (see Fig. 5) that the Tftp spec-
ification in which all the errors have been corrected performs 10% faster than
the original Tftp specification containing all the 19 errors.

For the simulation scenario 2, the original Tftp specification has a trans-
fer speed close to zero, whatever the timeout value chosen. This confirms our

initial intuition that the errors we detected prevent the Tftp prototype from
performing correctly under heavy load (this intuition was at the source of our
performance evaluation study for the Tftp). After all errors have been cor-
rected, the numerical results obtained for scenario 2 are the same as for the
simulation scenario 1. We observed that certain errors play a major role in de-
grading the transfer speed. For instance (see Fig. 6), this is the case with errors
13a (resp. 13c), which are characterised by the fact that the Tftp automaton,
after sending the last acknowledgement and entering the dallying phase, ignores
incoming read (resp. write) requests, whereas it should either accept or reject
them explicitly.

7 Conclusion

In this paper, we have proposed a simple and elegant approach for modelling
and analysing systems consisting of synchronous components interacting asyn-
chronously, commonly referred to as Gals (Globally Asynchronous Locally Syn-
chronous) in the hardware design community.

Contrary to other approaches that stretch or extend the synchronous
paradigm to model asynchrony, our approach preserves the genuine semantics of
synchronous languages, as well as the well-known semantics of asynchronous pro-
cess calculi. It allows us to reuse without any modification the existing compilers
for synchronous languages, together with the existing compilers and verification
tools for process calculi.

We demonstrated the feasibility of our approach on an industrial case study,
the Tftp/Udp protocol for which we successfully performed model checking ver-
ification and performance evaluation using the Topcased and Cadp software
tools. Although this case study was based on the Sam synchronous language
and the Lotos/Lotos NT process calculi, we believe that our approach is gen-
eral enough to be applicable to any synchronous language whose compiler can
translate (sets of) synchronous components into Mealy machines — which is al-
most always the case — and to any process calculus equipped with asynchronous
concurrency and user-defined functions.

Regarding future work, we received strong support from Airbus. Work has
already been undertaken to automate the translation from Sam to Lotos NT
and to verify another avionics embedded software system. We would also like
to compare our simulation results against results from “traditional” simulation
tools and to apply our approach to other synchronous languages than Sam.

Acknowledgements

We are grateful to Patrick Farail and Pierre Gaufillet (Airbus) for their con-
tinuing support and to Claude Helmstetter (INRIA/Vasy), Pascal Raymond
(CNRS/Verimag), and Robert de Simone (INRIA/Aoste), as well as the anony-
mous referees, for their insightful comments about this work.

References

1. Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Synchronous Pro-
gramming with Events and Relations: The SIGNAL Language and Its Semantics.
Sci. Comput. Program., 16(2):103–149, 1991.

2. G. Berry, S. Ramesh, and R. K. Shyamasundar. Communicating Reactive Pro-
cesses. In POPL’93, pages 85–98, New York, NY, USA, 1993. ACM.

3. Gérard Berry and Georges Gonthier. The Esterel Synchronous Programming Lan-
guage: Design, Semantics, Implementation. Science of Computer Programming,
19(2):87–152, 1992.

4. Gérard Berry and Ellen Sentovich. Multiclock Esterel. In CHARME’01, pages
110–125, London, UK, 2001. Springer-Verlag.

5. R. Braden. Requirements for Internet Hosts - Application and Support. RFC 1123,
Internet Engineering Task Force, October 1989.

6. S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A Theory of Communicating
Sequential Processes. Journal of the ACM, 31(3):560–599, July 1984.

7. David Champelovier, Xavier Clerc, and Hubert Garavel. Reference Manual of the
LOTOS NT to LOTOS Translator, Version 4G. Internal Report, INRIA/VASY,
January 2009.

8. Xavier Clerc, Hubert Garavel, and Damien Thivolle. Présentation du langage SAM
d’Airbus. Internal Report, INRIA/VASY, 2008. Available from TOPCASED forge:
http://gforge.enseeiht.fr/docman/view.php/33/2745/SAM.pdf.

9. Frederic Doucet, Massimiliano Menarini, Ingolf H. Krüger, Rajesh K. Gupta, and
Jean-Pierre Talpin. A Verification Approach for GALS Integration of Synchronous
Components. Electr. Notes Theor. Comput. Sci., 146(2):105–131, 2006.

10. Hubert Garavel. Compilation et vérification de programmes LOTOS. Thèse de
Doctorat, Université Joseph Fourier (Grenoble), November 1989.

11. Hubert Garavel and Holger Hermanns. On Combining Functional Verification and
Performance Evaluation using CADP. In FME’02, volume 2391 of LNCS, pages
410–429, Copenhagen, Denmark, July 2002. Springer-Verlag.

12. Hubert Garavel and Frédéric Lang. SVL: a Scripting Language for Compositional
Verification. In Myungchul Kim, Byoungmoon Chin, Sungwon Kang, and Dan-
hyung Lee, editors, Proceedings of the 21st IFIP WG 6.1 International Conference
on Formal Techniques for Networked and Distributed Systems FORTE’2001 (Cheju
Island, Korea), pages 377–392. IFIP, Kluwer Academic Publishers, August 2001.
Full version available as INRIA Research Report RR-4223.

13. Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2006:
A Toolbox for the Construction and Analysis of Distributed Processes. In CAV’07,
volume 4590 of LNCS, pages 158–163, Berlin, Germany, July 2007. Springer-Verlag.

14. Hubert Garavel and Philippe Turlier. CÆSAR.ADT : un compilateur pour les
types abstraits algébriques du langage LOTOS. In Rachida Dssouli and Gregor
v. Bochmann, editors, Actes du Colloque Francophone pour l’Ingénierie des Pro-
tocoles CFIP’93 (Montréal, Canada), 1993.

15. Alain Girault and Clément Ménier. Automatic Production of Globally Asyn-
chronous Locally Synchronous Systems. In EMSOFT ’02, pages 266–281, London,
UK, 2002. Springer-Verlag.

16. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Dataflow
Programming Language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

17. Nicolas Halbwachs. Synchronous programming of reactive systems. Kluwer Aca-
demic, 1993.

18. Nicolas Halbwachs and Siwar Baghdadi. Synchronous Modelling of Asynchronous
Systems. In EMSOFT ’02, pages 240–251, London, UK, 2002. Springer-Verlag.

19. Nicolas Halbwachs and Louis Mandel. Simulation and Verification of Asynchronous
Systems by Means of a Synchronous Model. In ACSD ’06, pages 3–14, Washington,
DC, USA, 2006. IEEE Computer Society.

20. G.J. Holzmann. The Spin Model Checker - Primer and Reference Manual. Addison-
Wesley, 2004.

21. ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization — Information Processing Systems — Open Sys-
tems Interconnection, Genève, September 1989.

22. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization — Information Tech-
nology, Genève, September 2001.

23. Paul Le Guernic, Jean-Pierre Talpin, and Jean-Christophe Le Lann. Polychrony
for System Design. Journal of Circuits, Systems and Computers. World Scientific,
12, 2003.

24. F. Maraninchi and Y. Rémond. Argos: an Automaton-Based Synchronous Lan-
guage. Computer Languages, 27(1–3):61–92, October 2001.

25. Radu Mateescu and Mihaela Sighireanu. Efficient On-the-Fly Model-Checking
for Regular Alternation-Free Mu-Calculus. Science of Computer Programming,
46(3):255–281, March 2003.

26. Radu Mateescu and Damien Thivolle. A Model Checking Language for Concurrent
Value-Passing Systems. In FM’08, number 5014 in LNCS, pages 148–164, Turku,
Finland, May 2008. Springer-Verlag.

27. George H. Mealy. A Method for Synthesizing Sequential Circuits. Bell System
Technical Journal, 34(5):1045–1079, 1955.

28. R. Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer Science,
25:267–310, 1983.

29. Mohammad Reza Mousavi, Paul Le Guernic, Jean-Pierre Talpin, Sandeep Kumar
Shukla, and Twan Basten. Modeling and Validating Globally Asynchronous Design
in Synchronous Frameworks. In DATE ’04, page 10384, Washington, DC, USA,
2004. IEEE Computer Society.

30. Dumitru Potop-Butucaru and Benôıt Caillaud. Correct-by-Construction Asyn-
chronous Implementation of Modular Synchronous Specifications. Fundam. Inf.,
78(1):131–159, 2007.

31. S. Ramesh. Communicating Reactive State Machines: Design, Model and Imple-
mentation. IFAC Workshop on Distributed Computer Control Systems, September
1998.

32. S. Ramesh, Sampada Sonalkar, Vijay D’Silva, Naveen Chandra, and B. Vijayalak-
shmi. A Toolset for Modelling and Verification of GALS Systems. In CAV ’04,
volume 3114 of LNCS, pages 506–509. Springer-Verlag, 2004.

33. K. Sollins. The TFTP Protocol (Revision 2). RFC 1350, Internet Engineering
Task Force, July 1992.

