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655, avenue de l’Europe, 38330 Montbonnot-St-Martin (France)
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Conception au niveau système d’une architecture

multiprocesseurs CC-NUMA avec spécification formelle,

vérification, co-simulation et génération de tests

Résumé : L’application des méthodes formelles à la conception au niveau système de
composants matériels est un problème ouvert pour lesquel des études de cas concrètes
sont nécessaires. Nous présentons ici une expérience industrielle concernant l’application
de l’algèbre de processus Lotos (norme Iso 8807) à la conception de Polykid, une ar-
chitecture multiprocesseurs Cc-Numa (Cache Coherent – Non Uniform Memory Access)
développée par Bull. Les descriptions formelles développées pour Polykid ont servi à la
vérification basée sur les modèles en utilisant Cadp (Cæsar/Aldebaran Development
Package), à la co-simulation matériel-logiciel en utilisant l’outil Exec/Cæsar tool, ainsi
qu’à la génération automatique de tests exécutables en utilisant l’outil Tgv.

Mots-clés : algèbre de processus, architecture d’ordinateur, Cc-Numa, co-conception,
co-simulation, cohérence de caches, conception de matériel, conception système, génération
de code, génération de tests, Lotos, méthodes formelles, Numa, prototypage rapide,
spécification formelle, test de conformité, validation, vérification.
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1 Introduction

Hardware designers are confronted to important challenges due to the increasing complexity
of hardware systems, in addition to the permanent constraints of reducing costs and time-to-
market. These challenges can only be overcome by adopting higher level design approaches
combined with computer-aided tools that improve automation, enable teams to manage
complex designs, allow design blocks to be reused, and increase confidence in the correctness
of the implementation.

There are various levels in hardware design. A distinction should be made between the
uppermost design level (system level), which is mainly about the global design of an archi-
tecture and of the communication protocols between hardware entities, and the lower levels
(behavioural level, register transfer level, gate level) used to produce an implementation.

Today, the industrial practice for dealing with the lower levels is strongly established
and supported by commercial tools: the design of a circuit is typically described using a
hardware description language such as Vhdl [IEE93] or Verilog [IEE95]; this description
can be used for simulation, verification, automatic circuit synthesis, and testing.

On the opposite, the design of complex hardware systems at system level has not reached
the same degree of maturity and, in many respects, is still an open problem. Although it
is clear that higher-level formalisms with abstraction capabilities are needed to manage
the increasing complexity of hardware systems, there is no general consensus on the ap-
propriate formalisms to be used. A recent survey [LSVS00] on this issue reviews several
formalisms (models of computation) that are potential candidates for system level design,
such as discrete-event systems, dataflow process networks, Petri nets, synchronous/reactive
languages, synchronous/hierarchical Fsms (StateCharts), process algebras, distributed ab-
stract state machines, timed/hybrid automata, etc. Although certain candidates can easily
be dropped from the list because they do not match usage requirements or do not scale up
to large designs, the number of experiments is probably not large enough yet to have a clear
vision of the most suitable formalisms for system level design.

In this report, we present an industrial case study illustrating the application of formal
methods to the system-level design, validation, and testing of a multiprocessor architecture
named Polykid developed by Bull.

This case study was tackled in the context of the Vasy (Validation of Systems) project
of Dyade, the Bull-Inria Joint Venture for Advanced Research. Dyade focuses on tech-
nology transfer: Inria researchers and Bull engineers work together in common projects in
which the scientific results of Inria are applied to problems of interest to Bull. Each project
within Dyade must be funded by (at least) one business unit of Bull; this requirement is
meant to ensure the industrial relevance of the proposed work.

The three main scientific goals of this case study are:

� to assess the suitability of process algebras — specifically, the Lotos language [ISO88,
BB88] — for the design at the system level of industrial-size hardware architectures
and protocols;
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4 Garavel, Viho & Zendri

� to experiment the toolbox Cadp [FGK+96] (developed by Inria Rhône-Alpes and the
Verimag laboratory) for model-checking verification of hardware protocols;

� to extend the methods and algorithms of the test generation tool Tgv [FJJV96,
FJJ+97] (developed by Inria Rennes and the Verimag laboratory) originally de-
signed for telecommunication protocols described in Sdl, in order to use it also for
hardware systems specified in Lotos.

The Bull-Inria co-operation on formal methods for hardware systems started in 1995
with a feasibility study targeted at assessing the applicability of Lotos and Cadp to the for-
mal specification and verification of the PowerScale bus arbitration protocol [CGM+96].
The feasibility study convinced Bull engineers that model-checking verification could de-
tect design errors at an early stage in a product life cycle, and thus could be introduced in
the design of hardware protocols profitably.

Based on these positive results, it was decided to continue the collaboration on a different,
larger case study, the Polykid architecture. The work on Polykid described in the present
report differs from the previous feasibility study in several respects:

� The first motivation was to apply formal methods to an architecture under develop-
ment rather than to a frozen design already embedded in a commercial product (as
it was the case for the PowerScale protocol). This would imply stronger interac-
tions with Bull developers, as well as greater constraints to follow the technical and
marketing changes brought to the project.

� The second motivation was to go beyond mere model-checking verification in order to
encompass a broader part of the design life cycle. A more ambitious approach based
on formal methods was sought, which we can summarize as follows:

– At the system level design, the correctness of the architecture and associated
protocols was to be formally described using Lotos and verified using the model-
checking tools of Cadp;

– At the lower design levels, the correctness of the Vhdl implementation was to
be checked using the traditional methods used by Bull and the hardware design
community, including simulation and manual testing;

– But the goal was also to establish a connection between those different design
levels, namely by reusing the Lotos descriptions developed at system level for:
(1) producing software emulations of hardware components in order to perform
hardware/software co-simulation, (2) generating tests automatically in order to
check the Vhdl implementation or even the real circuit. Co-simulation and
automatic test generation are new means to create value from the introduction
of formal methods in the development.

This report is organized as follows. Section 2 gives an overview of the Polykid architec-
ture and of its cache coherency protocol. Section 3 deals with the formal specification and
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System Design of a CC-NUMA Multiprocessor Architecture 5

verification: it also justifies the choice of Lotos as a specification language for system level
design and presents the Cadp tools used in the Polykid experiment, as well as related work
on the verification of cache coherency protocols. Section 4 describes the technical approach
followed to produce a software emulation of the remote cache controller of Polykid and its
use for hardware/software co-simulation. Section 5 presents the principles of the Tgv tool,
the application of this tool for automatic test generation, and the execution of the generated
tests in the real Polykid testbench. Finally, Section 6 summarizes the main conclusions of
the Polykid study and suggests directions for future work.

2 Description of the CC-NUMA architecture and its

cache coherency protocol

2.1 CC-NUMA architectures and cache coherency protocols

Multiprocessor computers aim at obtaining high performances in a scalable way. Depend-
ing on the way processors exchange data, there are basically two kinds of multiprocessor
architectures: message-passing architectures, in which every processor has its own private
memory and communicates with the other processors by sending and receiving messages,
and shared memory architectures, in which all processors share a common address space.

A compelling feature of shared memory architectures is that existing sequential programs
need not be rewritten when switching from an uniprocessor to a multiprocessor machine.
One often distinguishes between two classes of shared memory multiprocessors: Uma (Uni-
form Memory Access) architectures — also known as Smp (Symmetric MultiProcessors),
in which every process can access every memory location in a fixed amount of time, and
Numa (Non Uniform Memory Access), in which memory is organized hierarchically, so that
some memory locations (e.g., processor local caches) can be accessed faster than others.
Numa architectures are of interest because they can potentially scale to a greater number
of processors than Uma ones.

For efficiency reasons, a data stored in memory might be replicated in several copies
stored in processor caches. The existence of multiple copies raises well-known issues (see,
e.g., [HP96] for an overview of coherency and consistency issues). A Numa architecture is
said to be cache coherent (noted Cc-Numa) if it maintains coherency between the various
copies of the same data. Depending on the topology of the architecture, there are two main
classes of cache coherency protocols:

� Bus snooping protocols work for multiprocessor systems organized around a bus. In
this approach, each processor continuously scrutinizes the bus to be aware of bus trans-
actions (e.g., read and write commands) issued by other processors. Most commercial
systems rely on the Mesi cache coherency protocol (see, e.g., [PH97, chapter 9]), which
is used in Intel’s Pentium Pro and Ibm’s PowerPC microprocessors notably.

The Mesi protocol implements a refined form of mutual readers-writers exclusion algo-
rithm: multiple processors are allowed to store in their caches local copies of memory
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Figure 1: The Polykid Architecture

objects, but only a single one should modify the object at a time; when reading an
object, processors must make sure that they access the most recent copy; additionally,
to reduce demand on bus bandwidth, processors must avoid memory accesses as much
as possible by exchanging and updating the contents of their respective caches. The
name Mesi stands for the names of the four possible states of cache contents: Modified,
Exclusive, Shared, and Invalid.

� Directory-based protocols can be used for networks of processors not connected to a bus,
a situation that prevents processors from snooping to acquire a global knowledge of the
transactions done. Instead, the cache coherency protocols maintain data structures
named directories that contain status information related to main memory objects for
which copies exist in the processor caches. For instance, directories can be used to
retrieve the set of processors that have a local copy of a given object. In scalable, cache
coherent architectures, directories are distributed with the processors and memories.

2.2 Overview of the POLYKID architecture

Polykid was an experimental Cc-Numa multiprocessor architecture developed by the Unix
Servers division of Bull in Pregnana (Italy). A working prototype of a Polykid machine
running the Aix operating system was built in 1998 and found to perform correctly. Al-
though this machine was technically operational, it was not made commercially available
due to marketing and timing considerations.

INRIA
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A Polykid machine consists of a scalable collection of modules (typically 4, 8, 16, etc.)
interconnected by a double ring network implementing the (lower layers of) the Sci (Scalable
Coherent Interface) [IEE92] standard, which is ubiquitous in high-end servers.

Each module of Polykid is built simply by reusing an existing Bull multiprocessor
machine already available (named Pegasus), in a slightly modified version with a reduced
number of processors. A Polykid module consists of 4 nodes connected by a data bus and an
address bus. The data is implemented as a crossbar , i.e., a 4×4 matrix of switches allowing
every processor to communicate directly with every other processor, thus providing a higher
bandwidth than with a standard bus. Amongst the 4 nodes, two are dedicated to the pro-
cessors, one is dedicated to the main memory and one is dedicated to Pci bus management
and input/output devices. Each processor node contains two PowerPC microprocessors
(model 620) connected by the standard PowerPC system bus. Each Polykid module is
thus a complete Smp machine supporting 4 processors (instead of 8 in a Pegasus machine).
A simplified schema of the Polykid architecture (in which nodes and crossbars are not
represented explicitly) is given on Figure 1.

As regards cache coherency, each module implements a Mesi protocol internally. To
achieve cache coherency between different modules (as the main memory is distributed
among the modules), the (optional) cache coherency features existing in Sci might have
been used; however, these features — specified as fragments of C code in the Sci standard
— were found to be difficult to implement in hardware.

Therefore, in order to maximize performance, the Polykid architects decided to retain
from Sci only the physical and logical layers (for which commercial chips were available),
but not the cache coherency layer. Instead, the Polykid architects designed their own
distributed, directory-based cache coherency protocol inspired from Stanford’s Dash archi-
tecture [LLGH89], the forerunner of Cc-Numa computers.

This cache coherency protocol is a key feature of the Polykid architecture. Each mod-
ule is equipped with a presence cache, i.e., a cached directory that maps all the memory
blocks cached outside the module, and a remote cache which, in order to improve per-
formance, stores locally the most recently used blocks retrieved from remote memories as
well as their current status (invalid, shared, or modified). The cache coherency protocol
of Polykid is directly implemented in hardware: Bull designed for this purpose a special
Asic (Application-Specific Integrated Circuit) named Rcc (Remote Cache Controller) that
is in charge of cache coherency. Each module has one Rcc circuit, physically located on the
interconnection board that establishes a bridge between the PowerPC system bus and the
Sci network.

Cache coherency protocols are inherently complex, and the Polykid protocol is no ex-
ception. Complexity comes from the asynchronous concurrency between the processors, the
hierarchical structure of the architecture (there are several modules, each module contain-
ing nodes containing themselves processors), the existence of several levels of cache, and the
many different situations that must be considered (especially, to handle collisions).

Consequently, the complexity of the Rcc described in Vhdl register transfer level was
important (300,000 gates approximately). Because of this complexity, and because the
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8 Garavel, Viho & Zendri

correctness of the cache coherency protocol was essential to a proper functioning of the
architecture, the designers of Polykid agreed that this protocol was the right target for
introducing formal methods in the design of their architecture.

3 Formal specification and verification

3.1 Introduction

As the reference specification of the Polykid architecture was only provided under textual
form, it was necessary to develop a formal description of the cache coherency protocol on
the basis of this reference informal specification. There were three main motivations for
producing such a formal description:

� to improve the understanding of the architecture and the quality of its reference doc-
umentation,

� to verify critical correctness properties (e.g., deadlock freeness, cache coherency, etc.)
using model-checking verification tools that can not work with informal specifications,

� to obtain an error-free formal description suitable for the test generation tool Tgv, as
this tool assumes that the formal description given as an input is a correct model of
the system to be tested.

It was then decided to use the language Lotos for the formal specification of the
Polykid cache coherency protocol. In the next section, we briefly present Lotos and
justify its choice for the Polykid project.

3.2 The Formal Description Technique LOTOS

Lotos is a Formal Description Technique for specifying communication protocols and dis-
tributed systems at a high abstraction level and with a strong mathematical basis. Developed
during 1981–1988 (especially in the framework of the European Esprit project Sedos), its
definition was standardized by Iso (International Organization for Standardization) in 1988
[ISO88]. Several tutorials for Lotos are available, e.g. [BB88, Tur93]. Lotos features two
clearly separated parts:

The data part, intended to the description of data structures, is based on the theory of
algebraic abstract data types, namely on the Act-One specification language [EM85,
dMRV92]. Data structures are described by sorts, which represent value domains, and
operations, which are mathematical functions defined on these domains. The meaning
of operations is defined by algebraic equations. Sorts, operations, and equations are
grouped in modules called types, which can be combined together using importation,
renaming, parametrization, and actualization. The underlying semantics is that of
initial algebras [EM85].

INRIA



System Design of a CC-NUMA Multiprocessor Architecture 9

The behaviour part, intended to the description of concurrent processes that synchro-
nize and communicate by message-passing rendezvous, is based on the process algebra
approach for concurrency, and combines the best features of the process calculi Ccs
[Mil80, Mil89] and Csp [Hoa85]. Lotos has a small set of basic operators repre-
senting the primitive concepts of concurrent systems: sequential composition, non-
deterministic choice, guard, parallel composition, etc. The language is fully compo-
sitional, as complex behaviours can be obtained by combining elementary ones using
these operators. As in most process algebras, the semantics of Lotos is formally de-
fined in terms of labelled transition systems [Par81] (or simply graphs), i.e., directed
graphs whose vertices denote the global states of the system and whose edges corre-
spond to the transitions permitted by the system.

At the very beginning of the Polykid project, the choice of Lotos was motivated
(in part) by the wish to establish a collaboration between Bull engineers seeking for the
benefits of formal methods and Inria researchers developing compilers and verification tools
for Lotos. From the experience gained during the Polykid project, we are still convinced
that this choice was correct. When considering the possible models of computation for
system level design (a survey can be found in [LSVS00]), many of them are not optimal for
cache coherency protocols:

� Traditional hardware description languages (such as Vhdl or Verilog) are not app-
propriate, even if they provide various abstraction levels, e.g., the behavioural style
of Vhdl. Because these languages are more oriented towards implementation rather
than specification, they are much too detailed for cache coherency protocols: in the
case of Polykid, the most primitive actions of the protocol are bus transactions and
network packet transfers, which should be described at a higher granularity level than
Vhdl, in which every signal change has to be specified at every clock cycle. As pointed
out in [CSB00], higher level formalisms with abstraction capabilities are required in
order to avoid such over-specification issues.

Also, the complexity of Polykid was beyond the capabilities of commercial tools
available for verifying Vhdl and Verilog designs: as mentioned in Section 2, the
estimated complexity of a single Rcc circuit is 300,000 gates and there are as many
Rccs as modules in the system. Additionally, the discrete-event model used in those
tools contains more information (e.g., timing information) than necessary for the ver-
ification of cache coherency.

� Languages with a synchronous semantics [Hal93] (such as Esterel, Lustre, Signal,
StateCharts, Cospan’s S/R model, etc.) are not appropriate for cache coherency
protocols, even if they can be useful to design other kinds of hardware systems. The
reason is that the global behaviour of a cache coherency protocol is concurrent, asyn-
chronous, and non-deterministic: every processor in every module decides to read and
write memory objects at its own rate, depending on the application program being
executed on this processor. Memory access requests are emitted in any order and
without correlation.
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10 Garavel, Viho & Zendri

� Languages based on communicating finite state machines connected by infinite Fifo
queues (such as Sdl or the Cfsm formalism of [LSVS00]) are not suitable. There
are indeed some Fifo queues in the Polykid architecture, but only of bounded size
(for instance, the PowerPC output queue may contain at most 8 bus transactions)
and not on every communication link. For those queues, blocking send and receive
primitives are required: a processor trying to get a transaction from an empty queue
or to put a transaction in a full queue must wait until the queue contents evolve, or
must do something else.

On the opposite, there are strong scientific reasons to use a process algebra such as
Lotos for the system level design of cache coherency protocols:

� Process algebras enable protocol description at a higher level than traditional hard-
ware description languages. Their underlying semantic model, i.e., labelled transition
systems, is simpler and more abstract than event-discrete systems. It is worth notic-
ing that other formalisms used for system level design (e.g., grammar-based methods,
abstract state machines, etc. [CSB00]) present important similarities with process
algebras, but the theoretical models and semantics of concurrency are perhaps more
elaborate in process algebras.

� The synchronization mechanism of Lotos, which combines rendezvous synchroniza-
tion and message-passing communication in the line of Hoare’s Csp, is well suited
for the specification of hardware entities such as processors, memory controllers, bus
arbiters, etc. (see [CGM+96] for an example). The electrical signals used to establish
communications between these components are easily described as rendezvous inter-
actions between Lotos processes. Moreover, the multiway rendezvous mechanism of
Lotos is general enough to express different communication mechanisms (such as (in-
finite or bounded) Fifo queues, prioritized access to a shared resource like a Pci or
Scsi bus, etc.) as derived cases.

� Cache coherency protocols often use more complex data structures than mere booleans,
integers, and enumerated types. For instance:

– the parameters of bus transactions are discriminated union types, the fields of
which vary in number and types;

– directory structures are arrays (or associative arrays) mapping memory blocks to
cache status information;

– Fifo queues are arrays or lists of elements, themselves of structured types.

Such complex data structures can be expressed using the algebraic abstract data types
of Lotos. Moreover, the Cæsar model-checker for Lotos included in the Cadp tool-
box is one of the very few model-checkers capable of handling dynamic data structures
(such as lists, trees, etc.) that rely on run-time memory allocation.

INRIA
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Besides these motivations closely related to cache coherency protocols, there are addi-
tional reasons for choosing Lotos, especially the fact that Lotos is a stable, international
standard, that process algebras have strong theoretical foundations enabling different de-
grees of verification (from model-checking to theorem proving) and using different approaches
(bisimulation relations, temporal logics, refinement and compositional verification, etc.).

For completeness, we can mention different approaches [FL93, ST93, HT00, YG98] in
which Lotos is used to specify hardware components at a much lower level than system level
(e.g., at gate level). Although these approaches compete directly with established hardware
description languages and associated verification methods, they can be useful for the design
and verification of so-called asynchronous circuits.

In the next section, we present the Cadp tools used to compile, execute, and verify the
Lotos descriptions developed for the Polykid architecture.

3.3 Verification tools and methodology

The existence of computer tools capable of checking formal specifications automatically and
efficiently is a positive factor for the dissemination of formal methods, especially in indus-
trial projects: this is the motivation behind the design of the Cadp tools used during the
Polykid project. These tools allow incremental degrees of correctness checking, with dif-
ferent limitations depending on the complexity of algorithms and the cost of data structures
involved:

� The first degree of checking is provided by the Cæsar.adt [Gar89] and Cæsar [GS90]
compilers. These two Lotos compilers share a common front-end part, which performs
syntactic and static semantics analysis of the Lotos specifications under study. Both
compilers are complementary and differ by their back-end parts: Cæsar.adt handles
the data part of Lotos descriptions, whereas Cæsar handles the behaviour part.

� The second degree of checking is obtained by translating the Lotos description into
executable C code using the Cæsar.adt and Cæsar compilers. The generated C code
can be used for several purposes (simulation, random execution, on the fly verification,
test generation, etc.) as it complies to the principles and application programming
interfaces of the Open/Cæsar software architecture [Gar98]. Amongst the many
Open/Cæsar application tools included in the Cadp toolbox, two have been used
intensively during the Polykid project:

– Xsimulator is a graphical, interactive simulator that allows step by step ex-
ecution of a Lotos description. This tool was used to find mistakes at the
specification level.

– Exhibitor is a verification tool that searches on the fly for execution sequences
matching a regular expression pattern. This tool was used to find erroneous
sequences leading to a coherency paradox in the cache protocol.

In practice, as regards the limitations:
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12 Garavel, Viho & Zendri

– There is almost no limitation with Cæsar.adt: all Lotos descriptions, whatever
their size, compile without problem, and the quality of the C code generated for
Lotos sorts and operations remains satisfactory in size and performance.

– In most cases, there is no limitation with Cæsar for C code generation, except
for some Lotos descriptions containing “too many” parallel processes and po-
tential synchronizations between these processes, a situation that occurred only
when modelling the entire Polykid architecture (see Section 3.4 below). This
limitation is inherent to the compiling algorithms of Cæsar, based on the trans-
lation of Lotos specifications into Petri nets extended with variables, conditions,
and actions [GS90]: when the number of process synchronizations increases, the
number of Petri net transitions increases as well.

– There is no limitation with Xsimulator, as this tool only stores in memory the
states visited since the initial state. On the opposite, the memory requirements of
Exhibitor strongly depend on the complexity of the state space and the regular
expression pattern to be searched: therefore, Exhibitor may run out of memory
if the state space is too large and if the regular expression does not constraint
the search enough.

� The third degree of checking is based on exhaustive model-checking verification. In
addition to producing executable C code for a Lotos description, Cæsar can also
generate the labelled transition system (or graph) corresponding to this description.
Due to the well-known state explosion problem, there are limitations on the sizes of
graphs that can be generated exhaustively. When this is possible, the graph obtained
can be verified using various model-checking techniques, notably bisimulation relations
and/or temporal logics.

For the verification of Polykid, we have mostly used the bisimulation approach sup-
ported by the Aldebaran [FM91] tool. Aldebaran allows to minimize a graph
modulo a bisimulation relation (e.g., strong bisimulation, observational equivalence,
etc.) or to compare two graphs modulo a bisimulation relation. The former functional-
ity is used to reduce the graphs produced by Cæsar to a smaller, yet equivalent form;
the latter is used to compare the graph modelling the system under study against
various graphs modelling the various properties to be verified.

However, for a complex system such as Polykid, the state explosion problem is likely
to occur, thus preventing graphs from being generated exhaustively. Fortunately, the
compositional verification techniques proposed in [KM97] provide an effective solution
to this problem.

In this approach, the Lotos specification to be verified is split into a set of communi-
cating processes, composed together using Lotos parallel operators and/or interface
constraints. The splitting of the specification and the definition of interface constraints
must be done manually. There are often several possibilities for splitting and inter-
face definition; the choice between them is based on heuristics and requires insight
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about the architecture of the system and the behaviour of its components. Then, each
process is translated into a graph separately, taking into account the interface con-
straints, which avoid generating parts of the state space that are not needed. Then,
Aldebaran is used to minimize each graph modulo a chosen bisimulation. Finally,
the minimized graphs are combined altogether in order to produce the graph corre-
sponding to the whole system. This compositional generation approach is implemented
in the Exp.open and Projector tools, which are part of the Cadp toolbox.

3.4 Main results

The formal specification and verification activities of the Polykid architecture in general,
and the cache coherency protocol in particular, took about 9.5 man×months between Febru-
ary 1996 and September 1997. During this period, the architecture and the protocol were
under design: the formal descriptions in Lotos produced for Polykid had to evolve regu-
larly, in order to keep track of the changes introduced by the architects of Polykid in their
textual reference specifications. Taking this constraint into account, the specification and
verification activities can be divided in three successive phases [Che97]:

� During the first phase (6 man×months), the protocol was under construction: many
features were not frozen, including the most delicate points (e.g., collision rules).

Two formal descriptions in Lotos specifications were produced. The first one (4,000
lines) dealt with the whole Polykid architecture. It was both extensive (describing
most of the components of the architecture) and very detailed (although incomplete).
It modelled a system with 4 modules, 2 processors per module with their local caches,
the remote cache level and 12 different memory addresses. Unfortunately, this descrip-
tion was too large (66 processes, 52 gates, and 12 operations) for being compiled by
the Cæsar compiler.

The second one (2,000 lines) focused on the cache coherency rules (without the collision
rules, not available at that time). It modelled a system with 3 modules, 2 processors
per module with their local caches, the remote cache level, 1 memory address, and
the input and output queues merged. It was possible to compile this description (1
process, 11 gates, and 117 operations) using the Cæsar compiler and to execute it step
by step using Xsimulator, but not to generate the corresponding graph. Moreover,
the description was still too detailed and not decomposable, so that compositional
verification was not applicable.

The main benefit of this first phase was to clarify undocumented concerns and to point
out potential issues (in this phase, it is difficult to speak about errors, as the reference
specification was neither stable, nor complete). About 55 questions were asked to
Polykid architects (40 orally and 15 in writing).

� During the second phase (1.5 man×months), the cache coherency protocol was com-
plete in draft versions, so that its formal description in Lotos was possible. About
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20 questions were asked to the Polykid architects to understand the last changes in
the protocol and to get additional information.

The formal description activity and the use of the Xsimulator and Exhibitor tools
enabled the detection of various several mistakes (e.g., typing errors and obvious omis-
sions), which could easily be solved by a reader familiar with the protocol, and about
which we do not report here. It also revealed 7 more serious issues, among which:

– 2 uncovered cases (i.e., some situations not handled by protocol rules, leading to
unclear consequences),

– 4 undocumented features (i.e., protocol rules that were implicitly assumed to be
implemented in the Vhdl code, but not documented, and that are needed to
guarantee a correct behaviour,

– 1 deadlock (typically, a read command that does not get the requested data).

� During the third phase (2 man×months), the cache coherency protocol was mature
and fairly stable. In order to obtain a Lotos description suitable for compositional
verification, a new, thorough analysis of the reference specification was undertaken,
raising about 10 questions to the Polykid architects. This work revealed 13 serious
issues, categorized as follows:

– 6 undocumented features,

– 1 deadlock,

– 6 data consistency violations (two different and valid copies of the same memory
location).

The Polykid architects modified the cache coherency protocol to fix these problems.
Then, two new Lotos descriptions (2,000 lines each) were built for the corrected
protocol. Noticing that 5 out of the 7 errors above (deadlock and data consistency
violations) would appear in a 2-module configuration without processor caches, these
Lotos descriptions were abstracted as much as possible to keep exhaustive verification
tractable. They modelled a Polykid system with 2 modules, 1 processor per mod-
ule without local cache, 2 distinct memory addresses (colliding in the module cache)
and distinct input and output queues described as 1-slot buffers. The two Lotos
descriptions differed by the number of bus operations permitted: 4 and 9, respectively.

These descriptions were small enough (10 processes, 11 gates, 39 operations) and
written in a decomposable way, so that compositional generation was tractable. The
graph corresponding to 4 bus operations had 59,379 states and 216,539 transitions,
and the graph corresponding to 9 bus operations had 230,561 states and 1,054,793
transitions. These graphs were obtained in 45 and 90 minutes, respectively, on a Sun
UltraSparc-1 workstation with a 144 Mhz processor and 256 Mbytes of RAM. On
each graph, it was verified that the following correctness properties were satisfied:

– no deadlock,
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– no coherency paradox due to collision rules,

– no coherency paradox due to memory aliasing.

In order to be sure that the model-checking approach was relevant, 2 of the 7 errors
detected during the formal modelling phase were introduced in the Lotos descrip-
tions: the verification tools detected these errors and produced appropriate diagnostic
sequences.

3.5 Conclusion

From the beginning, the formal specification and verification activities were considered as
being part of the design and development of the Polykid architecture. Although this is
a good example of the growing acceptance of formal methods in the industry, it should be
clear that maintaining the consistency between a textual reference specification and the cor-
responding formal description has a cost, and requires a tight interaction between the design
team and the verification team, especially if both teams are in different locations. Ideally,
this cost could be lowered if protocol designers would adopt formal methods themselves.

The use of a formal description technique such as Lotos for specifying cache coherency
protocols proved to be a valuable help for the design and debugging of the Polykid multi-
processor architecture: 20 serious problems were found, including 8 behavioural issues such
as deadlocks and consistency violations. Additionally, it helped to improve the quality of
the project documentation, by clarifying ambiguities and identifying implicit assumptions.

It is worth noticing that these errors were detected very early in the design cycle. Because
of their low probability of occurrence, some of these errors would certainly have been difficult
to detect, reproduce, and understand using traditional techniques based on simulation and
testing of the Vhdl implementation.

It should be stressed that this experiment is in no way a formal proof of total correctness,
because:

� it is performed on simplified, downsized configurations,

� the formal specifications could be erroneous,

� the list of properties to be verified could be erroneous or incomplete,

� the verification tools themselves could be erroneous.

In spite of these restrictions, it was agreed that the use of formal methods clearly in-
creased the quality of the design, by detecting errors and by showing that, after correction,
these errors would disappear from the modified versions of the cache coherency protocol.
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4 Co-simulation using software emulation of hardware

components

4.1 Introduction

Another important aspect of the Polykid experiment deals with software emulation of
hardware components.

When designing a large, complex multiprocessor architecture, it is desirable to have a
complete working prototype as soon as possible in order to check the proper functioning of
hardware and firmware, measure their performances, and enable operating system adapta-
tion and tuning. This prototype can be used to run various tests, a significant test being
the ability to boot, first the firmware, then the entire operating system successfully.

However, many different Asics are required for a Cc-Numa architecture. Due to unex-
pected delays in chip design and/or production, some of the circuits may not be ready on
time, thus delaying the availability of the prototype.

To overcome this problem, one can use the classical “hardware emulation” approach,
which consists in replacing an unavailable Asic by a dedicated machine that emulates the
netlist of the missing Asic. However, hardware emulation is not entirely satisfactory:

� it is very expensive, as the dedicated machine involves both specialized hardware,
namely Fpgas (Field Programmable Gate Arrays) and dedicated software for mapping
netlists to Fpgas;

� it is complex to configure, as netlists often do not fit on a single Fpga, thus have to
be split on several Fpgas, which is a tedious process;

� it is not yet powerful enough to tackle large circuits with several hundred thousands
of gates, so that Asics must be simplified in order to be emulated.

Our experiment took place during the build process for the first prototype of Polykid.
At this time, an essential Asic circuit, the Rcc (see Section 2) was not available. The goal
was to produce a software program that would emulate the behaviour of an Rcc circuit.

The intended execution environment for the software emulation was the following. In
each module, one PowerPC microprocessor was put in charge of executing the Rcc em-
ulator. This microprocessor did not run a full-fledged operating system, but only a simple
monitor. The code of the Rcc emulator was kept in a Flash Eprom and loaded into main
memory upon initialization of the system. The data structures of the emulator were mapped
into main memory. The other PowerPC microprocessors of the module kept their normal
role and were used to run test programs. The Rcc emulator communicated with its environ-
ment — the system bus and Sci network — using interrupts sent by a Tsp (Transponder)
circuit implementing the protocols for the system bus and Sci network. The role of this
circuit was to route bus transactions and network packets from/to the Rcc. The Tsp was
synthetized from Vhdl code and implemented on an Fpga.
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To take advantage of the existing Lotos specification of the cache coherency protocol
developed for verification purpose, it was decided to use Lotos for modelling the Rcc and
to rely on the Cæsar and Cæsar.adt compilers for generating C code automatically.

4.2 Main results

Several successive implementations of the Rcc emulator have been produced. The first
implementation consisted in 3,400 lines of Lotos code and 7,000 lines of C code (both
numbers including comments). The Lotos code contained most of the logic of the cache
coherency protocol, the data type part defining the states and transitions of the cache,
and their relation with bus transactions, and the behaviour part encapsulating the cache
coherency protocol into one sequential, deterministic process.

The hand-written C code implemented the interface between the Rcc emulator and
the Tsp: basically, it defined low-level data structures (such as bit fields, network packets,
bus signals, and input/output buffers to store network packets and bus signals), as well as
routines to access and modify these data structures. It also provided some Ansi C library
functions (such as malloc or printf) not available in the monitor environment.

To have the emulation work practically, it was necessary to establish a connection be-
tween the Rcc emulator and its hardware environment, i.e., to establish a connection be-
tween the Lotos description and the hand-written C code. This is an instance of a more
general problem: how to interface a formal description written in a process algebra such as
Lotos with its external environment? This problem is of practical importance, but there
are only a few related publications, even if process algebras have been often used for the
description of real-life systems or devices.

To the best of our knowledge, none of the approaches proposed in the literature for the
implementation of Lotos was found to be applicable to Rcc emulation.

Among the implementations of Lotos that address the problem of communication with
the environment, many of them implement a Lotos description as a collection of concurrent
tasks controlled by a centralized run-time scheduler, which manages the communications
between the tasks as well as the communications between tasks and the environment. These
solutions were not applicable to Rcc emulation, as the run-time scheduler relies on facilities
(such as the Unix lightweight processes [Dub89] or a reliable message transfer service [Sjö91])
that were not available for Rcc emulation: as mentioned above, the Rcc emulator was to
run on a PowerPC with only a monitor, which is much more primitive than an operating
system.

Another approach used in the Topo compiler [MdM88] consists in extending the Lotos
description with fragments of C code (called annotations) attached to rendezvous interac-
tions; an annotation is executed when the corresponding interaction occurs. This approach
was not found to be adequate for several reasons: communication with the environment
is obtained by side effects in annotations, which can compromise the correctness of the
whole if the C code written by the user is not “compatible” with the Lotos description;
moreover, the communication with the environment is very limited, as the environment can
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neither refuse an interaction permitted by the Lotos description, nor select between several
permitted interactions.

A third approach is implemented in the Cæsar.adt compiler, which allows to interface
Lotos code with hand-written C code. In the Lotos description, certain sorts and/or
operations can be declared as “external” using special syntactic annotations. The definition
of those external sorts and operations is not given in Lotos, but directly in C (as a col-
lection of types, functions, and/or macro-definitions). Cæsar.adt generates no C code for
external sorts and operations: it simply includes the C files that contain the hand-written
implementation provided by the user. Although this mechanism is flexible and practically
useful, it could not be used for Rcc emulation, because the C functions implementing exter-
nal Lotos operations cannot perform side effects (as Lotos operations themselves do not
modify the state of the system), and because all the communications between the Rcc and
its environment (i.e., the system bus and Sci network) were modelled using the behaviour
part of Lotos.

Therefore, a novel scheme was designed, which provides a general interface mechanism
between (the C code generated from) a Lotos description and its environment. This scheme,
called Exec/Cæsar, was fully implemented in the Cæsar compiler and made available to
the users of Cadp since 1997. The principles of Exec/Caesar are the following:

� Communication between the Lotos description and the environment takes places at
the external (i.e., visible) gates of the Lotos description, a gate being a point for
rendezvous interaction.

� For each external gate G, the user must provide a corresponding C function with the
same name G. In the case of the Rcc, these C functions implement the Tsp routines
that access the system bus and the Sci network.

� Each function G has parameters corresponding to the data sent and received on gate
G. In a first approximation, an output on gate G of an expression V (noted “G !V ”
in the Lotos description) will translate to a C function call “G (V)” (where V is a
call by value parameter) and an input on gate G of a value of sort S to be stored in
variable X (noted “G ?X:S” in the Lotos description) will translate to a C function
call “G (&X)” (where X is a call by address parameter to be modified in function G).

In fact, the calling conventions are slightly more complex, as Lotos allows to use the
same gate with several inputs and/or outputs (e.g., “G !V1 ?X : S !V2”); moreover,
the same gate G can be used several times with inputs/outputs that vary in number
and types. This difficulty is solved by passing additional parameters to function G,
which indicate the number, types, and mode (input or output) of parameters.

Another complication is due to the fact that the formal semantics of Lotos unifies
inputs and outputs in order to define rendezvous between more than two processes.
This problem was solved by modifying the Cæsar compiler in order to preserve the
distinction between inputs and outputs on the basis of the syntactic notations “!” and
“?” used in the Lotos description.
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The Exec/Cæsar scheme does not handle Lotos descriptions containing guarded
inputs of the form “G ?X:S [P]”, where P is a predicate defining the acceptable
values for X . Guarded inputs express value negotiation between the Lotos description
and its environment, a feature we believe to be of little practical interest on external
gates (at least, not needed for the Rcc emulation).

� Each function G associated to an external gate G must return a boolean value, which
is true if and only if the environment is ready to accept the rendezvous interaction on
gate G with the proposed parameters.

� For a given Lotos description, Exec/Cæsar generates a C program that behaves as
a non-terminating polling loop. In a given state, the program determines the set of
interactions permitted by the Lotos description (i.e., the set of transitions going out
of that state according to the formal semantics of Lotos). If the set is empty, the
program stops and signals a deadlock. Otherwise, it iterates on the elements of the set
repeatedly until one is accepted by the environment; a round-robin mechanism is used
to provide some fairness in the set enumeration order. For an interaction on an external
gate G, the program queries the environment by calling the corresponding function G

with appropriate parameters; the boolean result returned by the function determines
whether the interaction is accepted or not. For an interaction on a internal (i.e.,
hidden) gate, the program does not query the environment: this kind of interaction is
always accepted, as it models an internal branching decision rather than a rendezvous
with the environment. As soon as one interaction permitted by the Lotos description
is accepted by the environment, the program performs the corresponding transition
and moves to the next state.

The first version of the Rcc emulator was ready in March 1997. When installed in
the testbench environment at Bull Pregnana (Italy), the emulator was found to perform
correctly, but slowly: it took about 100 ms to execute one cache transition (which consists
of a sequence of 5–10 Lotos interactions). This speed was clearly insufficient, as booting
the Aix operating system on the testbench would have taken approximately one day, thus
slowing down the whole test process.

Two main reasons for this problem were identified: first, the C code generated by the
Cæsar compiler was not fast enough (this code was originally designed for model-checking
verification and targeted primarily at reducing memory footprint, not Cpu usage); second,
the PowerPC processor used in the testbench was running at a low frequence (15 MHz)
due to technical/economical constraints on the Polykid testbench. The fact that polling is
inherently Cpu-intensive was not a problem for Rcc emulation, as one PowerPC processor
was entirely dedicated to the execution of the Rcc.

As the Rcc emulation was on the critical path for the Polykid project, it was decided to
improve the behaviour part of the Lotos description by introducing hand-written C code.
First, only a single CPU-intensive process was rewritten in C. After this modification, the
time needed to execute one cache transition dropped to 1.5 ms. Then, the whole behaviour
part was rewritten in C and, after applying various optimizations based on the insight of
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the system (such as tailoring the round-robin policy, reducing the buffer sizes, changing
the communication mode between the Rcc and the Tsp), this time was further reduced to
0.5 ms. This final version of the Rcc emulator consisted of 1,500 lines of LOTOS code and
8,000 lines of C code. The data part of the Lotos description was kept unchanged, as the
C code generated by the Cæsar.adt compiler was fast enough.

The emulator was used to perform various test suites. Beyond unit testing of the Tsp
hardware and the library routines, the whole system was tested first at the monitor level,
then by booting the firmware, and finally the operating system. These experiences revealed
several bugs in the Rcc emulator code, in the Tsp hardware, and in the communication mode
between the Rcc emulator and the Tsp (for instance, interrupts were replaced by polling,
as they created deadlocks). Most notably, electrical problems with the PowerPC 620
processor were discovered and 3 new defects in the Polykid architecture were identified.
Finally, after solving these problems, it was made possible to boot the Aix operating system
on the testbench with 2 modules.

4.3 Conclusion

The development of the Rcc emulator was recognized as an important technological step
in the direction of hardware/software co-simulation: the Bull engineers involved in the
Polykid emulation project received a Bull Eureka Research and Development Award in
1997. The benefits of this experience are twofold:

� It demonstrates the feasibility and interest of combining software emulation and hard-
ware, so as to obtain cheaper and faster prototypes than those using hardware emula-
tion only.

� It enables the concurrent development of hardware, firmware, and operating system
software: it makes possible to test the firmware and software very early in the design
phase, even if some Asics are not ready.

This co-simulation approach fits well within a Lotos-based design methodology: parts of
an existing Lotos description developed for verification can be reused/adapted for software
emulation using the Exec/Cæsar technology.

It was unfortunate that in 1997, when Exec/Cæsar was released, the C code generated
from Lotos was not fast enough, so that the behaviour part of the Lotos description had
to be rewritten in C manually. Today, there are good reasons to be optimistic about the
feasibility of the approach:

� First, it should be noticed that the emulator was executed on a PowerPC processor
running at a very low frequency (15 MHz, later raised to 45 MHz): a processor running
at its normal clock speed would have given better results.

� In 1997, after a careful study of the C code generated by Cæsar to understand where
computation time was spent, several changes were brought to optimize the generated
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C code (such as moving invariant computations out of loops). In the particular case
if Rcc emulation, these optimizations led to speed improvement by a factor ranging
from 9 to 13. They also benefited to verification: combined with other improvements,
the speed of model generation increased by a factor ranging from 2 to 160 (all these
figures measured on an UltraSparc-1 workstation in Grenoble, not on the testbench
in Pregnana).

� In 1999, further improvements were brought to the Cæsar compiler, which reduced
significantly the size of the extended Petri nets generated from Lotos descriptions.
Due to these improvements, the size of the Petri net corresponding to the Rcc dropped
from 137 places, 222 transitions, and 83 variables to 64 places, 149 transitions, and 68
variables, thus leading to the generation of more compact and efficient C code.

5 Automatic test generation and execution

5.1 Introduction

The last part of the experiment consisted in generating tests to be applied on the real
implementation of Polykid. The challenge in this step was to demonstrate that the Tgv
tool, originally developed for conformance testing of communication protocols, could also be
used to generate tests for hardware architectures.

Following the methodology used at Bull for hardware testing, we started from an ex-
isting test plan document containing an informal description (in the form of tables with
comments) of the main test purposes to be used for Polykid (hereafter called the system
under test and noted Sut for short). The test plan was designed with a good knowledge of
the Polykid architecture and attempted to check situations considered to be “at risk”.

For instance, a test purpose describing an address collision situation is: “The module M1
requests for a Flush transaction on the block address A0. The block address A0 is in module
M0. Verify that the module M0 accepts the incoming Flush transaction. The CPU 0 of
module M0 executes a Rwitm on the same address. Check the immediate address collision
on block A0. Check also that the correct response is given by module M0 and verify the good
completion of the Flush transaction.”

The test plan served as a basis for producing tests using two complementary approaches:

manual test generation: in this approach (also called deterministic test generation),
tests are written by hand according to the test plan. The main limit of the approach
is the productivity of test writers.

random test generation: this approach consists in sending random sequences of stimuli
to the Sut. It can be improved by using software tools that guide random generation
towards some particular situations listed in the test plan; this is done essentially by
modifying the parameters of the stimuli. This approach has usually a low efficiency
(measured in terms of bugs found per number of simulated cycles); however, it has the
merit of creating unexpected high-traffic situations.
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Figure 2: The Sim1 testing environment

There is another limitation in the standard methodology: human intervention is needed
to check the outputs produced by the Sut in response to the commands sent by the tests
(the expected, correct outputs being specified in the test plan). Such checking is tedious,
expensive, and error-prone, as it is entirely based on informal specifications and on an
informal notion of conformance between the test plan and the Sut. Moreover, the test plan
can be erroneous itself, which questions the validity of the testing approach.

Automatic test generation addresses these various issues. In the next section, we present
the testing environment used for Polykid.

5.2 The testing environment

The testing environment of the Polykid architecture (named Sim1) is described on Figure 2.
It is composed of the Vhdl description of the system under test (a Polykid machine with 3
modules), the Vss (Vhdl Synopsys Simulator) event-driven simulation kernel, and a front-
end human interface (Vhdl Debugger).

In each module, there is one Bus Functional Model (Bfm) for each Cpu. A Bfm reads
stimuli from its input table, which contains a sequence of transactions to be executed by
the corresponding Cpu. As the internal format of input tables is not directly readable by
a human operator, an auxiliary program (named BfmGen) is used to fill each input table
from a corresponding input file, which is written manually, according to the informal test
purposes specified in the test plan. Therefore, a test consists in a collection of input files,
one per Cpu. A practical difficulty when writing input files is the synchronization of the
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Cpus. Synchronization is obtained by using barrier transactions, either for a single Cpu or
for all the Cpus, which prevents the Cpu(s) from processing any further transaction before
receiving responses for all the transactions already sent.

In response to input stimuli, the Vss writes output events to a file (named Probe.out
on Figure 2) at every clock cycle. The probe file contains for each module the sequence of
actions executed, as well as the status of the presence cache and remote cache. Probe files are
analyzed both visually (by comparing each line with the expected output informally specified
in the test plan) and automatically (using software checkers developed specifically for the
Polykid architecture, which allow some kind of automatic verification of the behavior of
the system).

From the test generation point of view, the whole testing environment can be seen as a
black box that reads input files and generates probe output files. Most of the testing activity
in the Sim1 environment takes place off-line (in batch) and consists of three successive steps:
(a) stimulating the system, (b) collecting the reactions, (c) analyzing the reactions and
emitting a verdict.

5.3 Principles of the TGV tool

Tgv [FJJV96, FJJ+97, JM97] is a tool for automatic test generation based on conformance
relations. To produce tests, Tgv needs two main inputs:

� The first input of Tgv is a reference executable description of the Sut, which can be
given in various languages. Before the Polykid experiment, Tgv was mostly used for
communication protocols described in Sdl or given as finite-state machines. During
the collaboration with Bull, Tgv was modified to accept Lotos descriptions, which
was easy since Tgv was, from the beginning, built on top of the language-independent
Open/Cæsar [Gar98] application programming interface. The input Lotos descrip-
tion is compiled using Cæsar.adt and Cæsar, which produce a C program containing
the Open/Cæsar primitives used by Tgv for state space exploration.

As the description given to Tgv is assumed to be a reference model of the Sut, it
should be strictly debugged and verified (for instance, as explained in Section 3) before
test generation.

� The second input of Tgv is a formal test purpose, represented as a finite automaton,
the states of which can be either normal, acceptance, or refusal states, and the tran-
sitions of which are labelled by input or output interactions. A test purpose can be
seen as an abstract view of the test case to be generated by Tgv. Acceptance states
tell Tgv that the current test sequence is complete. Refusal states tell Tgv to reduce
state space exploration by cutting those transitions leading to a refusal state.

In practice, Tgv often needs additional inputs:

� Depending on the properties to be tested, some interactions described in the Lotos
description can be found not important for the testing activity. These interactions can
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be abstracted by using a hiding file that informs Tgv that certain interactions are to
be considered internal to the system and, thus, cannot be observed in the generated
tests. Similarly, a renaming file passed to Tgv modifies the interactions according to
a set of substitutions based on regular expressions.

� Also, an input/output file given to Tgv allows to distinguish between input interac-
tions and output interactions. By default, the semantics of Lotos makes no difference
between inputs and outputs; however, the testing theory requires to make a clear dis-
tinction between controllable events (input stimuli from tester to Sut) and observable
events (output reactions from SUT to tester).

The output of Tgv is called a test case. A test case is a finite automaton, the states
of which carry no special information, and the transitions of which are labelled by input or
output interactions, and possibly by test verdicts (pass, fail, or inconclusive) which indicate
whether the Sut conforms to its formal specification [FJJV96]. Each path of this graph
describes a sequence of interactions (stimuli and reactions) between the tester and the Sut,
and ends with a test verdict.

Generation of test cases requires various graph traversal operations (abstraction, min-
imization, determinization, and test case synthesis), which are performed on the fly (i.e.,
without generating the entire state space first) using the Open/Cæsar technology. This is
a key feature of Tgv, which avoids, in many cases, the state explosion problem that makes
other test generation tools not applicable to complex systems.

Contrary to the batch approach often used in hardware testing (in which the Sut receives
all its stimuli first, the reaction being analyzed afterwards), the test cases generated by Tgv
are reactive, in the sense that the stimuli sent by the tester may depend on the reactions
of the Sut observed in response to previous stimuli. Reactive testing increases the quality
and coverage of tests, as more behaviors of the Sut can be tested.

5.4 Formalization of the system under test

To generate tests with Tgv for the Polykid architecture, a Lotos description representing
the Sut was needed. This description was obtained by reusing a Lotos description written
during the verification task (see Section 3.4) and adapting it to test generation by introducing
abstractions described below. Turning the Lotos description used for verification into a
test-oriented description took about 1 man×month.

The resulting description (about 2,000 lines of Lotos, one half for the data part, one half
for the behaviour part) featured a Polykid system with 3 modules, one PowerPC micro-
processor per module, two distinct block addresses located in module M0 and two distinct
data values. The main difference between this description and the original verification-
oriented description was the introduction of abstractions, for two main reasons:

� The first reason is related to the size and complexity of the Polykid architecture,
which are likely to provoke state explosion, even though the Open/Cæsar and Tgv
tools operate on the fly. Abstractions can be used as a way to reduce complexity by

INRIA



System Design of a CC-NUMA Multiprocessor Architecture 25

hiding irrelevant details of the architecture. A typical abstraction in cache coherency
protocols consists in merging sequences of events into a unique event. In a remote
transfer, by example, a request from the sender is always followed by an indication for
the receiver: both events can be merged.

� The second reason is that testing usually focuses on certain events only, so that other
events can be hidden. For instance, a local response transaction always follows a local
bus transaction although other events can take place between these two transactions.
In the test-oriented Lotos description, both transactions are modelled as a single
event, and all other events are hidden.

These abstractions do not affect the test verdicts, since during the execution of the
generated test cases, the same abstractions will also be applied to the probe output files
produced by the Sut (see later the Translator application in Section 5.7).

5.5 Formalization of the test purposes

Among the 7 groups of test purposes listed in the Polykid test plan, we chose to focus
on the groups 3 and 4 dealing with the cache coherency protocol implemented in the Rcc
circuit. It took 15 man×days to formalize all the test purposes in groups 3 and 4.

For instance, the test purpose given in Section 5.1 can be formalized as an automaton,
a subset of which is displayed on Figure 3.

One can easily recognize the transitions corresponding to the actions described in the in-
formal test purpose. For example, the first transition indicates that the module M1 requests
for a Flush transaction on the block address A0. Input transitions are marked with a “?”
symbol. State 5 is an acceptance state: when module M0 notifies the correct completion of
the transaction by sending a response (noted Net Resp Done) to module M1, state 5 is
entered and Tgv should consider that the test purpose is reached. Transitions labelled with
a “*” label stand for “any other label”. We do not represent the entire test purpose, which
also contains one refusal state and many transitions leading from states 0..4 to this refusal
state (a software tool was developed to produce these transitions automatically).

5.6 Automatic generation of test cases

For each test purpose listed in groups 3 and 4 of the Polykid test plan, we have generated
the corresponding test cases automatically using Tgv. In total, 75 tests have been generated,
most of which have more than 400 states and transitions. Because of this complexity, it is
unlikely that such test cases could have been written by hand, even by experts.

Generating all these tests took nearly 1 man×month. The only problem faced during
this task was the time taken by Tgv to produce test cases, ranging from less than 1 second
to 12 hours. This problem was due to the complexity of the Polykid architecture; to speed
up the test generation with Tgv, some test purposes were refined to be less general and less
abstract.
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0

1

2

3

4

5

?BUS_TRANS !M1 !FLUSH !A0 !PROCESSOR !FALSE

BUS_TRANS !M0 !FLUSH !A0 !RCC_INQ !FALSE

?BUS_TRANS !M0 !RWITM !A0 !PROCESSOR !FALSE

LMD_GET !M0 !OUTQI0 !A0 !A0 !RCC_INV !FLAG (FALSE, FALSE) !BCK_COLL

*

*

PACKET_TRANSFER !M0 !M1 !RESP_PACKET_TYPE !NIL_DATA !NETRESP_DONE !OUTQ0

Figure 3: A simplified test purpose

The Polykid experiment was the first in which Tgv has been used on the fly. The
practical interest of generating tests on the fly was clearly demonstrated, as it was impossible
to produce a state graph for the whole Polykid architecture.

During the experiment, the Tgv tool was improved in several ways:

� Refusal states were introduced in the test purposes;

� Test cases were extended: previously, test cases could only be directed acyclic graphs,
a constraint that appeared to be overly restrictive for testing certain functionalities of
Polykid. Tgv was enhanced to allow cycles in test cases, which reduced the number
of inconclusive verdicts and increased the test coverage.

This work was done by Inria-Rennes in 8 man×months.

5.7 Batch execution of test cases

Although the test cases generated by Tgv are reactive, the first goal was to implement
a batch testing environment for the execution of these test cases. The challenge was to
demonstrate to Bull engineers that the Tgv-based approach could replace the usual ap-
proach based on hand-written tests. For this purpose, a tester package was developed, which
is intented to automate the batch execution of tests in the Sim1 environment. The tester
package is represented on Figure 4 and consists of three applications:
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PROBE.VHD
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PC.C

REMOTE_

CC.VHD

NETWORK.C
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MODULE 1

MODULE 2
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SYNOPSYS

SIMULATION

ENVIRONMENT

VSS Kernel

VHDL Debugger

MODULE 0 MODULE 2MODULE 1

Input
Tables

BFM0 BFM0 BFM1 BFM0

EXCITATOR

TRANSLATOR ANALYSOR

PROBE_OUT

Translated probe-out

Implementation The abstract

VERDICT

The TESTER
PACKAGE

Three steps

1

2 3
of a test

System Under Test (SUT)

Infomation for
Testing

test case

Figure 4: The Polykid testing environment with the tester package

� Excitator converts the stimuli contained in a test case generated by Tgv (these
stimuli are transition labels, encoded in the Lotos syntax and making use of the
identifiers defined in the Lotos description of Polykid) into the input table format
readable by the Bfms. Once the conversion is done, Excitator proceeds to the
stimulation of the Bfms.

� Translator converts the probe output file produced by the Vss kernel into a sequen-
tial execution trace, the transition labels of which are encoded in the Lotos syntax.
During this conversion, Translator applies the same abstractions as those made on
the Lotos description.

� Analysor compares the trace produced by Translator against the test case gen-
erated by Tgv, and emits a test verdict.

For each test case, the three applications of the tester package are launched manually
and sequentially as indicated on Figure 4: first Excitator, second Translator, and third
Analysor.

Both Excitator and Translator take as input an Ixit (Implementation eXtra Infor-
mation for Testing) that describes the mapping between the abstract data type values of the
Lotos description and the real data values of the Sut. This level of genericity permitted
to reuse the tester package for another project without major effort. The development of
the tester package by Inria-Rennes took about 5 man×months; more details about the use
of the tester package for batch testing of Polykid can be found in [KVZ98].
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5.8 Reactive execution of test cases

The batch execution approach developed in a first step was not entirely satisfactory, because
the test cases generated by Tgv are reactive. In particular, some tests could not be executed
efficiently in batch mode. To keep the gain brought by the reactive nature of the tests
generated by Tgv, the tester package was enhanced to support reactive execution as well
as batch execution.

The main difference introduced by reactive execution with respect to batch execution
is that, for a given test case, the three applications of the tester package (Excitator,
Translator, and Analysor) are no longer launched only once, manually, and sequentially.
In reactive execution, the applications are launched automatically and repeatedly until a stop
condition is found:

� Excitator is invoked on every stimulus found in the test case;

� Translator is invoked at every clock cycle to translate output probe lines;

� Analysor implements a synchronous automaton product between the test case and
the Sut and performs checks at every clock cycle. For instance, if the Sut emits a
reaction that does not exist in the test case, Analysor report that the Sut does
not conform to its formal description. When Analysor reaches a test case transition
labelled with a test verdict, the test execution stops and the remaining output probe
lines are ignored.

The 75 test cases generated by Tgv have been executed in the Sim1 testing environment
using the tester package. The total time for executing all these tests was less than 20 hours
(with approximately 1000 cycles per test, 0.6 second per cycle, and 5 minutes for loading
and initializing the environment). For each test case, the overhead in simulation time due
to the presence of the tester package was found to be negligible.

The reactive execution of the tests generated by Tgv on the Polykid implementation
under test uncovered 5 bugs in the Vhdl code (mostly about address collision and updates
of the presence and remote caches). These bugs had not been caught by hardware testing
experts using the traditional methodology. This revealed that test coverage was insufficient
in the initial test plan, as some situations were not fully tested.

5.9 Conclusion

The work done during the Polykid case-study established that Tgv can be used to gen-
erate tests, not only for communication protocols described in Sdl, but also for hardware
architectures described in Lotos.

Practically, the proposed approach for generating tests using Tgv has one main benefit:
it reduces the high cost of testing by increasing automation. Once the Sut and test pur-
poses have been formalized, then test generation and test execution can be automated. The
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time spent in describing the Polykid architecture formally (mainly by reusing a Lotos de-
scription previously developed for verification) and formalizing the test purposes was totally
justified by the better quality of tests and the increased confidence in the implementation.

Technically, the proposed approach has the merit of introducing mathematical rigor in
the testing process: all the entities used in testing (formal specification, test purposes, test
cases, test verdicts, etc.), as well as the conformance relation between the Sut and its formal
specification, have a well-defined meaning and semantics.

6 Conclusions

This report demonstrates the feasibility and benefits of using formal methods for hardware
design at system level. More specifically, it illustrates how a language, Lotos, originally
intended to the formal description of communication protocols, together with tools developed
for verifying and testing communication protocols, can enhance significantly the industrial
approach to system-level design.

The report is based on a real-size application of formal methods in the development cycle
of Polykid, a prototype Bull multiprocessor Cc-Numa architecture. The experiment
focused on the most complex part of Polykid, the cache coherency protocol.

The Lotos language was used throughout the whole case-study. Because of its message-
passing semantics, Lotos was found to be suitable for describing system-level aspects of
multiprocessor architectures, such as bus transactions and network packet transfers. Its
process algebraic foundations enabled the use of abstractions and bisimulation reductions
to perform compositional verification. Lotos was used first to produce formal descriptions
of the cache coherency protocol (taking as a basis the reference documentation of Polykid
written in English). The Lotos descriptions were used later for several purposes:

� model-checking verification of key correctness properties on reduced configurations of
the protocol, in order to detect errors automatically and to increase confidence in the
design,

� generation of embedded code to obtain a software emulation of a hardware component,

� generation of test cases to check the correctness of the Vhdl implementation.

The proposed approach was effective in several respects:

� The formal specification and verification activities revealed 20 serious issues (among
which 8 behavioural errors) in the cache coherency protocol for a limited cost (9.5
man×months on the industrial side); these issues have been admitted (and fixed) by
the designers of Polykid. Although some of these errors might have been found also
by traditional methods such as simulation and testing, formal methods allowed an
earlier detection in the design cycle, thus reducing delays and costs.

� The code generation activity demonstrated the feasibility of Lotos-based hard-
ware/software co-simulation: by combining C code with Lotos code compiled using
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the Exec/Cæsar tool, a software emulation of an essential hardware component of
Polykid was obtained, which proved to function properly; the main limitation of the
approach was a performance issue, which is likely to be solved by recent tool improve-
ments.

� The test generation activity established that automatic test generation using the Tgv
tool was faster and more reliable than manual writing of deterministic tests; moreover,
Tgv gave better results than random test generation in terms of coverage and analysis
of test execution. It was also established that the use of Tgv would improve the current
testing methodology by formalizing the concepts of testing.

From the industrial side, it was acknowledged that the proposed approach for system-
level design was suitable for gaining a better understanding of the system, clarifying issues,
detecting design mistakes, improving the overall quality of the product, and reducing the
risk of delays. It was also acknowledged that formal methods could be introduced early in
the design, even before reference specifications are stabilized.

As for related work, a number of significant experiments on the computer-aided verifica-
tion of cache coherency protocols have already been published. In particular, we can mention
the verification of the Futurebus+ (a former Ieee standard, now withdrawn) protocol us-
ing the symbolic model-checker Smv [CGH+95], the verification of the Sci protocol using
the Murφ model-checker [SD95], the verification of the Hal S1 protocol [HFW97], the veri-
fication of the Sci protocol using the Nuprl theorem prover [FHS98], the verification of the
Flash protocol using the Pvs theorem prover [PD98], the verification of the Avalanche
protocols using the Spin model-checker [NG98], the verification of lazy caching and snooping
protocols using the Mocha model-checker [HQR99], the verification of a snooping protocol
using the symbolic model-checker Vis [SCJ+99], and the verification of Sgi’s Origin pro-
tocol using Smv [Eir00]. A survey of verification techniques for cache coherency protocols
can be found in [PD97]. Due to timing and cost constraints, it was not possible for us to
compare the performances of these verification tools with those of Cadp, as it would have
required to model Polykid in the various input languages used by these tools. A sketch of
comparison between Cadp and Murφ can be found in [Che97]; yet, a rigourous assessment
of different tools on the same cache coherency protocol remains to be done.

Our approach is novel in that it is not limited to verification: it also addresses other in-
dustrial needs, namely hardware/software co-simulation and testing. Moreover, we establish
that these different activities can be performed in a coherent framework, using a common
language and compatible tools. The Cadp and Tgv tools indeed provide a unique com-
bination of useful features ranging from interactive simulation, embedded code generation,
(compositional) model-generation, verification using bisimulations or temporal logics, test
generation, and test execution. All these features are consistently integrated together, by
means of the Open/Cæsar environment notably, which increase the acceptance by indus-
trial users. Recently, the integration was even made tighter, as Tgv is now a fully-fledged
component of Cadp.

Finally, the experiment with Polykid was found successful enough to launch a new
Bull-Inria collaboration, targeting at a new multiprocessor architecture currently devel-
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oped by Bull. In a near future, we expect that formal methods and associated tools will
become standard techniques for system-level design of complex systems.
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