
A Comparison of Two SystemC/TLM Semantics for Formal Verification

Claude Helmstetter
INRIA - LIAMA

Beijing 100080, China
claude@liama.ia.ac.cn

Olivier Ponsini
INRIA

38334 Saint-Ismier Cedex, France
olivier.ponsini@inria.fr

Abstract

The development of complex systems mixing hardware
and software starts more and more by the design of func-
tional models written in SystemC/TLM. These models are
used as golden models for embedded software validation
and for hardware verification, therefore their own valida-
tion is an important issue. One thriving approach con-
sists in describing the semantics of SystemC/TLM in a for-
mal language for which a verification tool exists. In this
paper, we use Lotos and the CADP toolbox as a unifying
framework to define and experiment with two possible se-
mantics for untimed SystemC/TLM, emphasizing either the
nonpreemptive semantics of SystemC or the concurrent one
of TLM. We also discuss and illustrate on a benchmark
the qualitative versus quantitative performance trade-off of-
fered by each semantics as regards verification. When as-
sociated with locks, our concurrent semantics appears both
to provide more flexibility and to improve the scalability.

1. Introduction

Parts of the hardware development process, e.g. the
synthesis task, usually require a description at the register
transfer level (RTL). However, RTL descriptions are long to
write and slow to simulate. This can be a significant draw-
back for other tasks — such as architecture exploration, em-
bedded software simulation, interconnect protocol valida-
tion or quality-of-service evaluation — that would benefit
from more abstract models of the real hardware.

Transaction-level modeling (TLM) [6] is intended to of-
fer this higher level of abstraction. It allows to describe the
architecture and the behavior of a system thanks to mod-
ules, concurrent processes and transactions through com-
munication channels. Transactions abstract data transfers
and synchronizations so as to accelerate both model design
and simulation. SystemC [15] is the most popular language
to describe TLM models of hardware and heterogeneous
systems, i.e. mixing hardware and embedded software. It

is a C++ library that includes a fast event-driven simula-
tion environment and allows to reuse C or C++ code. In
SystemC, transactions are implemented by method calls: a
process can access data in another module without requiring
any time-costly context switch in the simulator [6, 17].

SystemC/TLM models are used for functional testing of
embedded software, hardware RTL, or communication pro-
tocols. In these models, details about the real hardware can
be abstracted; most abstractions contain no timing informa-
tion at all. As golden reference models, the validation of
SystemC/TLM models themselves is a central issue. Formal
verification techniques are challenged by the lack of a for-
mal SystemC/TLM semantics, even for timed models [19].
The usual work-around is to give such a semantics by de-
scribing the translation of SystemC/TLM models into a for-
mal language well suited for verification.

1.1. Contributions

Comparing the existing semantics is difficult as they are
all based on different principles and representations, tar-
geting different levels of abstraction and SystemC subsets.
In this paper, we propose to use the language of tempo-
ral ordering specification (Lotos) and the construction and
analysis of distributed processes toolbox (CADP) as a uni-
form framework (formalism and tools) in order to focus
on the qualitative and quantitative comparison of two dif-
ferent semantics of untimed SystemC/TLM, namely a non-
preemptive one inspired from [13] and the concurrent one
from [16]. The first one mimics the simulation semantics
of SystemC by modeling faithfully the SystemC scheduler.
The second one focuses on TLM semantics and frees itself
from the SystemC simulation semantics, in order to improve
the faithfulness with respect to the real system. Indeed, the
simulation semantics is based on scheduler specificities that
parallel circuits usually do not implement for efficiency rea-
sons and that would prevent realistic executions from being
analyzed.

To define these semantics, we describe two translations
of untimed models into Lotos. We restrict our presentation

to the translation of SystemC and TLM specific features and
do not discuss translation of generic C++ code.

Moreover, we compare these semantics on a benchmark
extracted from [18]; this will also allow us some compar-
ison points with this third semantics of SystemC/TLM ex-
pressed in Promela.

1.2. Related works

Many SystemC semantics, defined as translations of Sys-
temC features into a formal language, have already been
published. Generally, the choice of the target language is
motivated by the tools available for this language and their
performances according to the kind of properties to prove.
Moreover, to different levels of abstraction can correspond
different subsets of SystemC.

For example, [3, 7] consider verification of hardware
SystemC descriptions at the RTL and gate levels. Another
semantics for low-level descriptions given in [1] is dedi-
cated to the development of correct-by-construction Sys-
temC programs thanks to the B method. Some other works
target TLM, such as [14] where SystemC programs are
manually translated into finite state machines. On the con-
trary, the tool chain [13] translates automatically TLM mod-
els into synchronous automata with variables; moreover, it
provides some simple abstraction techniques (e.g. abstract
address representation). More abstraction techniques are
described in [12] together with a translation into labeled
Kripke structures.

As TLM models are inherently asynchronous [6], ded-
icated formalisms coming with optimized tools for asyn-
chrony have been investigated. For instance, Lotos [10], an
asynchronous process algebra based on rendez-vous mech-
anism, for which the CADP [5] toolbox provides enumera-
tive techniques for verification, has been used to validate the
STBus interconnect [20]. More recently, Petri nets [11] and
Promela [18] have been used to encode SystemC programs.
The approach in [16] further acknowledges that asynchrony
of TLM models should not be restrained by the simulation
semantics of SystemC and proposes a distinctive concurrent
semantics of TLM/SystemC descriptions.

1.3. Structure of the paper

After an overview of SystemC, TLM, Lotos and CADP
in Section 2, we present a first encoding corresponding to
the preemptive semantics of SystemC/TLM in Section 3.
We propose a second encoding for the concurrent semantics
of TLM in Section 4. Some experiments are specific to each
encoding; these are presented at the end of Sections 3 and 4.
We compare both encodings in Section 5, in order to check
their correctness, and to evaluate their scalability. We recall
the highlights of our work and conclude with Section 6.

2. System modeling and verification

In this section, we give a quick overview of the lan-
guages, libraries, and tools used in this work.

2.1. SystemC and the TLM library

SystemC is a C++ library that provides classes and ma-
cros to describe the architecture (sc module, sc port...)
of heterogeneous systems and their behavior thanks to pro-
cesses (sc thread...) and synchronization mechanisms
(sc event...). The static architecture is built by execut-
ing the elaboration phase, which instantiates modules and
binds their ports.

Next, the SystemC simulator schedules the SystemC pro-
cesses. A SystemC process is either eligible or running or
waiting for a SystemC event. There is at most one running
process at a time. A process moves from eligible to running
when it is elected by the scheduler. The elected process ex-
plicitly suspends itself when executing a wait instruction.
If the running process notifies an event, then all processes
waiting for this event move from waiting to eligible; note
that SystemC events are not persistent and so the execution
of a notify before a wait can lead to a deadlock.

In the present paper, we consider only the untimed asyn-
chronous subset of SystemC, which is used for the design of
functional models of Systems-on-Chip at the system-level
(TLM). Fixed durations and δ-cycles should not be used in
pure functional models as their use may hide some realistic
behaviors [8, 9].

We call SystemC transition an atomic section of code
from the SystemC scheduler point of view. A transition may
execute zero, one or more accesses to shared objects (e.g.
events and shared variables).

The TLM library built upon SystemC provides a transac-
tion mechanism that allows a process of an initiator module
to call methods exported by a target module. Names and
attributes of exported methods depend on the protocol. In
general, there are at least methods read and write, but
the protocol for transactions modeling interrupts can be re-
duced to only one method without argument. An example
is given by Figure 4 (Section 3.2).

2.2. Lotos and the CADP toolbox

Process algebras allow to specify the observable behav-
ior of distributed systems with terms combining behaviors
and algebraic operators. Formal reasoning about the behav-
ior of systems is then possible by applying algebraic laws.
In the standard process algebra Lotos [10], systems are a
set of interacting and communicating concurrent behaviors.
The following introduces the syntax and semantics of Lo-
tos.

In Lotos, data values, data operations, and data struc-
tures are defined by abstract data types. Types are defined
by sorts, operations on sorts and equations describing the
properties of the operations. For instance, booleans and nat-
ural numbers are in the standard type library of Lotos.

Interaction and communication between two or more
behaviors involve instantaneous rendez-vous synchroniza-
tions on gates. Term “G ; B” expresses the rendez-vous
on gate G followed by behavior B. Data is exchanged
during rendez-vous through offers allowing either emis-
sion of a value V (!V) or reception in a variable X of
sort S (?X:S). A rendez-vous on a gate with offers
only occurs if all the participating behaviors present the
same number of offers, with compatible sorts for recep-
tions and the same value for matching emissions. “B1

|[G1, . . . , Gn]| B2” is the parallel composition of B1

and B2 synchronizing on the gates G1, . . . , Gn; pure in-
terleaving “B1 ||| B2” is the special case where there is
no gate to synchronize on. Term “hide G1, . . . , Gn in
B” makes the gates G1, . . . , Gn appearing in B unobserv-
able and unavailable for synchronization with other behav-
iors. “B1 [] B2” is a choice and behaves either like B1

or like B2. “B1 >> accept X1:S1, . . . , Xn:Sn in B2”
is a sequence where behavior B1, on successful termina-
tion, can use the operator exit(V1, . . . , Vn) to pass val-
ues V1, . . . , Vn of sorts S1, . . . , Sn to B2 through variables
X1, . . . , Xn. In CADP, the sequence operator involves a
rendez-vous on an implicit termination gate between pro-
cesses B1 and B2. “[E]-> B” is a guard conditioning
the execution of B to the truth value of boolean expression
E. Term “let X:S=V in B” defines variable X of sort
S initialized to value V for use in behavior B. Finally,
“process P [G1, . . . , Gn](X1:S1, . . . , Xn:Sn): E
:= B endproc” encapsulates a behavior B in a recur-
sive process P , where E is either exit(S1, . . . , Sn) or
noexit and defines the sorts of the values returned on suc-
cessful termination.

The semantics of a Lotos specification is formally de-
fined by a state graph, also called an LTS (labeled transi-
tion system) – i.e. a set of states, and transitions labeled by
gates and offers between states. CADP [5] includes a com-
piler from Lotos to LTS and many tools exploiting the LTS
for simulation, model checking of modal µ-calculus formu-
lae, equivalence checking, test generation, and performance
evaluation.

However, methods based on LTS face the state space ex-
plosion problem. CADP addresses this problem with sev-
eral techniques, among which on-the-fly and compositional
approaches have been used in this paper. On-the-fly verifi-
cation allows to explore the parts of an LTS relevant to the
verified formula, without completely generating the LTS. In
a compositional approach, the different parts of a system
are generated separately, possibly with an interface repro-

ducing the constraints of the environment. Then, each part
is reduced according to equivalence relations, and recom-
posed with the other reduced parts using parallel and hiding
operators. This usually leads to an LTS smaller than the one
generated directly from the entire system. Moreover, the
approach can also be used in combination with on-the-fly
verification.

The tools of CADP can easily be combined in concise
verification scenarios written in the script verification lan-
guage (SVL) [4]. SVL offers high-level operators hiding
the intricacies of format conversions and of command-line
tools and options. For compositional verification, several
strategies are predefined:

• “leaf reduction” applies a given reduction to the leaves
of parallel composition operators in a behavior;

• “root leaf reduction” applies leaf reduction and then
reduces also the result;

• “node reduction” is similar to leaf reduction with the
addition that the given reduction is also applied to the
result of each parallel composition operator.

By way of illustration, for each predefined compositional
reduction strategy, Figure 1 presents the reduced parts (de-
noted by red operators) of (A |[...]| B) |[...]|
C, where A, B and C are behaviors without parallel operator.

red(B)

red(C)

|[...]|

|[...]|

red(A)

(a) leaf

red(B)

red(|[...]|)

|[...]| red(C)

red(A)

(b) root leaf

red(B)red(A)

red(|[...]|)

red(C)red(|[...]|)

(c) node

Figure 1. Predefined reduction strategies

3. Lotos encoding of SystemC/TLM

In the following, the word “thread” refers to SystemC
processes and “process” is reserved for Lotos processes, in
order to avoid any ambiguity.

3.1. Presentation of the encoding

SystemC threads and scheduling SystemC threads may
contain long sections of atomic code grouping together
many transactions. The Lotos language does not provide
a native mechanism for long atomic sections. We chose to

reuse the idea of a centralized scheduler that has been pro-
posed first by Matthieu Moy in LusSy [13].

In the Lotos model, we define at least one Lotos process
for each SystemC thread, plus one global process model-
ing the scheduler. The scheduler synchronizes the (Lotos
processes modeling the SystemC) threads through the gates
elect and yield, as described by Figure 2. One thread
identifier (Pid) is associated with each thread. The Lotos
code corresponding to a SystemC transition must be encap-
sulated between an elect gate, which allows the thread to
run, and a yield gate, which allows the scheduler to elect
another thread.

Our scheduler process implements the same functional-
ity as the shared variable M of the Promela encoding de-
scribed in [18].

elect ?x:Pid;

yield;

scheduler thread P

thread Q

|[elect,yield]|

|[elect,yield]|

elect !q;

yield; . . .
[2nd SystemC transition]
yield; elect !q;
[1st SystemC transition]

Figure 2. Synchronizing through a scheduler

SystemC events Here, we present an encoding of Sys-
temC events such that there is no restriction on the number
of threads that can wait or notify an event.

Each event is represented by a Lotos process. An event
saves the list of thread identifiers that are waiting for it.
When an event receives a wait request from a thread, it
adds the thread identifier to its waiting list. When it receives
a notify request, it enables all the threads of its waiting
list and clears the list. The encoding is detailed by Fig-
ure 3. Gate notifyA corresponds to the call of the notify
method in SystemC, whereas gate notifyZ corresponds
to the return of this method and avoids that the thread execu-
tion interleaves with the execution of the Lotos sub-process
enable_all.

SystemC modules and transactions We give here one
possible encoding of transactions. This encoding allows to
describe each SystemC module in a separate Lotos process,
independently of its context.

A SystemC module contains threads, shared objects (e.g.
events) and exported target methods (or transaction meth-
ods). Each of these elements is represented in Lotos by a
process. All these processes are instantiated inside another
Lotos process that represents the SystemC module itself.

A transaction method “F” is modeled such as a nor-
mal SystemC thread, but it starts with the rendez-vous
“F_request ?x:Pid”, and ends with the rendez-vous
and recursive call “F_response !x; F[...]”. On
the initiator side, the call of the transaction “port.F();”
in SystemC is translated by “F_request !my_pid;
F_response !my_pid;”. Sending the thread identifier
is mandatory to execute wait statements inside the transac-
tion, since wait and enable gates take the thread iden-
tifier as offer. Other parameters of the transaction can be
added as offers of gate F_request, and the return values
as offers of gate F_response. We give an example of this
encoding in the next section.

The behavior of this encoding is not faithful with respect
to SystemC semantics in the following case: if a thread is
suspended on a wait instruction inside a transaction, then
other threads that call the same transaction method will be
blocked until the first thread resumes and exits the trans-
action. [18] suggests to duplicate a transaction method as
many times as possible concurrent accesses; that implies to
bind statically the number of concurrent calls and may lead
to an increase of the model size. This can be done for our
Lotos encoding too.

3.2. Presentation of the chain benchmark

We evaluate this encoding on the benchmark proposed
in [18], whose works are the closest to ours. This bench-
mark consists of a chain of interrupt transmitter modules,
whose length is parametrized by n. Modules communicate
through transactions, and threads synchronize with events.

Figure 4 presents the SystemC original benchmark for
n = 1. To increase n, one adds a transmitter module be-
tween the last transmitter and module Sink. There are al-
ways n + 2 SystemC threads (methods named initiate,
compute, and complete) and n + 1 events (private at-
tribute e of each module except Source). Each target mod-
ule (Transmitter and Sink) exports a method f to the previ-
ous initiator module (Source or Transmitter) through a pair
of TLM ports, symbolized on Figure 4 by a triangle in a
square.

Figure 5 presents the architecture of the Lotos encoding.
Each box represents a Lotos process, and the arrows with
gate names represent the synchronizations between them.
The content of each process is not described on this figure,
but follows exactly the rules detailed in Section 3.1.

3.3. Experiments

We present here experiments on this SystemC/TLM se-
mantics that cannot be directly compared with the semantics
we present in next section. Comparison of the two seman-
tics is the subject of Section 5.

enable]|

|[wait,

scheduler

notifyA;

[]
wait ?x:Pid;

event[. . .](x+waiting)

enable all[enable](waiting)
>> notifyZ; event[. . .](empty)

thread W

is encoded by:

yield;
enable !w;
elect !w;

wait !w;

“wait(e);”
thread N

is encoded by:
notifyA;
notifyZ;

“e.notify();”

notifyZ]|

|[notifyA,

|[elect,yield]||[elect,yield]|

event[. . .](waiting:Pid list)

Figure 3. Generic encoding of SystemC events in Lotos with scheduler

wait(e); assert(false);
}

Transmitter

void initiate() {

}
port.f();

Source

void compute() {
wait(e); port.f();
}

Sink
void f() {e.notify();}

void complete() {

void f() {e.notify();}

Figure 4. The chain benchmark for n = 1

False property evaluation We use the evaluator tool to
check if the transition assert false of module
Sink is always accessible. Since the given property is
false, evaluator returns a diagnostic with enough infor-
mation to replay the counter-example with the original
program and an interactive SystemC scheduler.

True property evaluation Also, we check a property in-
volving the exploration of the whole model state space.
This property consists in showing that from any state a
given inexistent transition leads to no valid state.

Direct LTS generation Next, we generate the full explicit
labeled transition system. Once finished, we minimize
the generated LTS using branching equivalence and
hiding all but elect and assert false gates.

Compositional LTS generation At last, we use the SVL
scripting language for compositional verification [4].
The idea is to generate the LTS of subsystems, and to
reduce them before connecting them together. When
we connect two modules, we hide their communica-
tions (fi_request and fi_response gates). Re-
ductions modulo tau-confluence (faster) or branching

equivalence (smaller result) allow to remove most of
the internal transitions corresponding to hidden gates.

We tried many scripts; our best SVL script computes suc-
cessive prefixes of the module chain, according to the iter-
ation rule below (the suffix .bcg indicates LTS stored as
CADP binary-coded graphs):

"Source_Ti.bcg"=
partial tau-confluence reduction of
hide fi_request, fi_response in

(scheduler|[elect,yield]|Ti)
|[fi_request, fi_response]|
"Source_Ti−1.bcg"

where Source_T0 is the source module, Ti, 1 ≤ i ≤ n,
is the i-th transmitter module, and Tn+1 is the sink module.
This script is similar to node reduction (cf. Figure 1c) but
the process scheduler is used to constrain the generation
of each composite process Ti, thus reducing the composite
LTS size. As shown in [2], this use of process scheduler
as a context constraint is allowed since the process is deter-
ministic, free of internal actions, and part of the context.

Table 1 presents the results (“nc” stands for “not com-
pleted” and denotes an operation that exceeded the memory
or the tool capacity). All tests have been performed on a
2 GHz AMD opteron with access to 4 Go RAM (maximum
addressable) running Linux. The “max. state number” entry
gives the size of the largest LTS produced during composi-
tional generation; “state number after minimization” is the
size of the LTS minimized for the branching equivalence.

Globally, the results are nearly as good as the goto en-
coding of [18], whereas the presented encoding is more
similar to their normal encoding (shared variable to force
atomicity). Evaluation of the false property works well,
even for n big, e.g. 10.71 s for n = 20. The composi-
tional LTS generation with on-the-fly reductions reduces ef-
fectively the state number of the biggest intermediate LTS,
and so the memory consumption. Compositional generation
is slower than direct generation but it allows to generate the
full LTS for bigger values of n. We confirmed experimen-
tally with the bisimulator tool that the two techniques for
LTS generation return equivalent LTS.

|[notifyA,Z]|

compute

f

event e

|[wait,enable]|

|[notifyA,Z]|

f

event e

Sink

|[elect,yield]||[elect,yield]|

Transmitter

initiate

complete

assert false

f1 response]|
|[f1 request,

f2
res

po
ns

e]|

|[
f2

req
ue

st,

Source

scheduler

|[wait,enable]|

|[elect,yield]|

Figure 5. Nonpreemptive Lotos encoding of the chain benchmark for n = 1

Table 1. Results of the experiments with the nonpreemptive semantics
n = 3 7 11 15 17 19

false prop. eval. 1.88 s 2.13 s 3.02 s 4.99 s 6.44 s 8.2 s
true prop. eval. 1.8 s 7.28 s 118.78 s 2,443.77 s nc nc
direct LTS gen. 2.11 s 2.46 s 4.37 s 60.3 s 757.79 s nc
state number 455 11,511 249,847 5,046,263 22,282,231 nc

compositional gen. 14.96 s 27.02 s 43.69 s 185.72 s 976.04 s 8,293.02 s
max. state number 81 2,305 53,249 1,114,113 4,980,737 22,020,097
state number after

minimization 48 768 12,288 196,608 786,432 3,145,728

4. Lotos encoding of concurrent TLM

TLM is not tied to SystemC and, in particular, to its
simulation semantics based on a nonpreemptive scheduler.
On the contrary, the definition of TLM in [6] refers to
asynchronous concurrent processes running independently,
except for otherwise explicitly defined synchronizations.
Moreover, in practice, the nonpreemptive assumption of
the SystemC simulation semantics may not hold for the
real system hardware implementation and, thus, jeopar-
dize all the verification effort invested in the SystemC/TLM
model. Indeed, a nonpreemptive scheduler introduces im-
plicit atomic sections hiding most of the issues regarding
concurrent accesses to shared resources. Therefore, poten-
tial erroneous behaviors of the real system may not be re-
vealed by SystemC simulation and formal methods comply-
ing with the SystemC simulation semantics.

As a consequence, verification of TLM models written in
SystemC would benefit from the support of the concurrent
semantics of TLM. To this end, it is needed to distinguish
between SystemC as a description language for TLM mod-
els and SystemC as a simulation kernel. Such a distinction
is drawn in [16] which describes a translation from TLM
models written in SystemC into Lotos with respect to the
concurrent semantics of TLM. In this section, we apply the
principles of this translation to the encoding of the chain
benchmark in Lotos.

4.1. Removal of the scheduler

Once the concept of scheduler removed from the Lotos
model, concurrency between processes is only ruled by the
semantics of the Lotos parallel operators, which coincides
with the TLM semantics (i.e. concurrent execution of inde-
pendent processes synchronizing explicitly).

SystemC events In the absence of a scheduler, we can-
not reproduce the handling of events as done by the Sys-
temC simulation kernel. For instance, a process has now
no state “eligible”: a process is either waiting for an event
or executing. Hence, on notification of the waited event, a
waiting process immediately resumes its execution. This is
implemented by a rendez-vous on gate resume between
the event handler and the waiting process, as illustrated in
Figure 6. If several processes have to be resumed, the event
handler resume them in a nondeterministic order. More-
over, since resumed processes may start interacting with
other processes immediately, a notification should be non-
blocking so that the execution of the notifying process can
interleave freely with other processes without waiting for
the last process to be resumed.

Several events can be handled by the same Lotos pro-
cess, as in Figure 6. This requires one waiting list for each
event and an additional offer on gates notify and wait
to identify the involved event.

[]

notify ?e:Event;

wait ?e:Event ?x:Pid;

resume all[resume](waitinge)

events[. . .](x+waitinge,. . .)

>> events[. . .](emptye,. . .) wait !e !w;
resume !w;

”wait(e);”
|[wait,

resume]|

thread W

is encoded by:|[notify]|

events[. . .](waitinge:Pid list,. . .)

notify !e;

thread N
”e.notify();”

is encoded by:

Figure 6. Event handling without scheduler

Locks In [16] was also introduced the idea of using locks
to control asynchronism in the Lotos model. A lock allows
to specify a resource that processes should access mutually
exclusively. This resource could be the whole model, as
with the SystemC scheduler, or, with a finer granularity so
as to meet specific verification needs, resources could be en-
tire modules or single transactions. The implementation of
a lock handler is not very different from that of the sched-
uler in Section 3.1 which is a special case of a unique global
lock acquired by each process before executing and released
on wait or termination — this will be exemplified by the
experiments in Section 5.1. The lock handler process pro-
poses two rendez-vous: one for acquiring the lock, when a
process needs to access to the corresponding resource; and
a second one for releasing the lock, so that the resource can
be accessed by other processes.

4.2. Transactions as process calls

We apply in this section the alternative translation for
transactions described in [16]. This variant is not proper to
the encoding without scheduler and could be applied to the
previous one with scheduler.

The principle is that a process F encoding a transaction
method of a target module is called by the initiator of the
transaction instead of being encapsulated in the target and
synchronized with the initiator. In the initiator, the call is
followed by the sequence operator (>>) allowing to pass
results to the remaining behavior of the initiator.

Compared to the encoding of Section 3, this avoids the
duplication of F and of its gates according to the number of
initiators, and it also replaces the two rendez-vous on gates
F request and F response by one rendez-vous on the
implicit termination gate when F terminates. As an opti-
mization, most often, this rendez-vous on the termination
gate can be removed by inlining in the initiator the code
of F instead of calling F. However, weakening encapsula-
tion may compromise the efficiency of the compositional
approach which benefits from grouping in subcomponents
processes synchronized together.

For instance, in the chain benchmark, the transaction
method void f() is translated into a process, without pa-
rameter or return value, “f[notify] : exit”, whose

sole action is a rendez-vous on gate notify. The trans-
action itself, port.f() in SystemC, is translated into a
call to process f, “f[notify] >> . . .”, in the initiator
thread. As a result, the transaction is now part of the be-
havior of the initiator thread and does not appear anymore
inside the target module, as shown in Figure 7. Besides, a
single process events handles all the events of the system,
as described in Section 4.1.

assert false

Source

complete

SinkTransmitter

computeinitiate

events

|[notify,wait,resume]|

|[notify,
|[wait,wait,

resume]| resume]||[notify]|
||| |||

Figure 7. chain benchmark encoding in Lo-
tos without scheduler for n = 1

4.3. Experiments

We have proceeded to the same experiments as with the
nonpreemptive encoding (Section 3.3). The results are sum-
marized in Table 2. The first group of results refers to the
encoding of transactions by process calls, whereas in the
other, transactions are inlined in the initiator. We observe a
clear advantage for models with inlined transactions: size of
LTS is greatly reduced, and hence evaluation of nontrivial
properties is faster, or indeed possible for n = 19.

Compared to the encoding with scheduler, both encod-
ings without scheduler produce smaller LTS by direct gen-
eration. This result is due on the one hand to the encoding
itself (e.g. transaction translation), and on the other hand
to the chain benchmark. Indeed, in this benchmark, each
thread does only one action in the atomic sections delimited
by the scheduler, as a consequence, removing these atomic
sections as done by the encoding without scheduler does

Table 2. Results for the encoding without scheduler
n = 3 7 11 15 17 19

called
transac-

tions

false prop. eval. 1.45 s 1.56 s 1.79 s 2.03 s 2.18 s 2.28 s
true prop. eval. 1.58 s 5.69 s 101.73 s 2,419.16 s 17,165.4 s nc
direct LTS gen. 1.59 s 1.7 s 3.02 s 40.09 s 392.24 s nc
state number 288 8,704 204,800 4,325,376 19,398,656 nc

compositional gen. 12.41 s 19.4 s 28.25 s 83.83 s 340.81 s 2,601.64 s
max. state number 77 1,281 28,673 589,825 2,621,441 11,534,337
state number after

minimization 47 767 12,287 196,607 786,431 3,145,727

inlined
transac-

tions

false prop. eval. 1.35 s 1.45 s 1.71 s 1.9 s 2.12 s 2.17 s
true prop. eval. 1.4 s 2.08 s 11.71 s 166.73 s 686.93 s 3,201.37 s
direct LTS gen. 1.55 s 1.57 s 1.98 s 4.4 s 15.34 s 89.63 s
state number 77 1,277 20,477 327,677 1,310,717 5,242,877

not involve a model with more behaviors and should not
produce, all things being equal, bigger LTS.

Evaluation of the properties was done on-the-fly and
with generation of a diagnostic explaining the truth value
of the properties. Times for true property evaluation are in-
creased by asking for a diagnostic (we observed up to more
than 30 times): indeed, in this case, the diagnostic is the
full LTS of the model. On-the-fly evaluation proved to be
faster than verifying the property on the whole LTS, when
taking into account the time to generate the LTS. Above all,
on-the-fly evaluation still enabled verification of false prop-
erties when generation of the LTS had failed.

For compositional generation, we applied the SVL pre-
defined leaf reduction strategy, and then minimized the re-
sult for the branching equivalence. We chose to hide all
rendez-vous except those corresponding to waits, event no-
tifications, and the observed gate assert false. The
SVL script for a behavior B is then:

"B.bcg" = branching reduction of
leaf
partial tau-confluence reduction of
hide all but
assert_false, notify, wait in B

The time reported for compositional generation includes
the branching minimization too. Compositional generation
with the same strategy gives exactly the same results for
models with inlined transactions as for models with called
transactions. With respect to direct generation, composi-
tion leads to smaller LTS with called transactions but not
with inlined transactions. As this example shows, an ef-
fective compositional approach requires a good expertise to
devise a strategy fitting a specific Lotos model otherwise
than by trial and error. As regards execution time, compo-
sitional generation is slower than direct generation, but the
huge size of the LTS can outweigh this better performance
of direct generation, e.g. for n = 17.

5. Comparison of both encodings

In this section, we compare the encodings with and with-
out scheduler we have presented. The first qualitative com-
parison aims at showing which encoding is the most mean-
ingful and faithful for a verification task. The second com-
parison shows how the encoding influences the time needed
by the verification tools.

In order to compare the Lotos encodings of the chain
benchmark, we need to define the common actions that
will be observed in all the models and hide all other ac-
tions specific to one of them. For instance, gates elect
and yield appear only in the nonpreemptive encoding and
have no direct equivalent in the encoding without sched-
uler. To this end, we add to each thread, just before termi-
nation, a rendez-vous on gate output !pid. In addition
to provide a common observable action, it introduces in the
threads of the chain benchmark a second action, after the
transaction, which leads to different system behaviors ac-
cording as the threads are interleaved or executed as atomic
sections.

We developed three models of the benchmark with out-
puts. The first model, Ms, is based on the encoding with
scheduler; the second one, Mc, is based on the encoding
without scheduler where transactions are inlined; the last
one, Ml, modifies Mc by adding a global lock that is ac-
quired and released so as to reproduce the behavior of the
SystemC scheduler (mutual exclusion of thread executions).

5.1. Inclusion and equivalence of models

Intuitively, an execution with the nonpreemptive seman-
tics is also possible with the concurrent semantics. We
use the bisimulator tool of CADP to verify this hypothe-
sis. We have shown that, for the branching equivalence, the
encoding with scheduler is included in the encoding with-
out scheduler, and not vice versa. This means that, for the

chain with outputs benchmark TLM model, the behaviors
exhibited with the nonpreemptive semantics is a strict sub-
set of the behaviors exhibited by the concurrent semantics.

However, if we introduce a global lock in the encoding
without scheduler, gates acquiring and releasing the lock
exactly correspond to gates elect and yield in the en-
coding with scheduler, as confirmed by the branching equiv-
alence result between the encoding with scheduler and the
encoding without scheduler but with a global lock. This re-
sult could be shown for the branching equivalence but not
for the strong equivalence. This can be explained by the
hidden gates only present in the nonpreemptive encoding
(e.g. F request and F response) and by the enforced
atomicity between a notification and a resume in the non-
preemptive encoding.

Table 3 gives the execution times for the comparison of
the LTS obtained for the chain with outputs benchmark,
when all gates except output are hidden, from the Lotos
model with scheduler (Ms), without scheduler (Mc), and
without scheduler but with a global lock (Ml). The compar-
ison was done on the minimized LTS without generating a
diagnostic.

Table 3. Model comparison execution times
n = 3 7 11 15

Ms .branching Mc 0.4 s 0.9 s nc nc
Ms 6&branching Mc 0.7 s 6 s 350 s nc
Ms 'branching Ml 0.6 s 0.7 s 18.2 s 27,557.8 s

5.2. Influence of encodings on scalability

For each model, Table 4 exposes the size and generation
time of the LTS for the direct and compositional approaches
when hiding all gates except output.

As expected on the benchmark with outputs, the concur-
rent semantics of Mc exhibits more behaviors than the non-
preemptive one of Ms: this explains the bigger minimized
LTS of Mc. However, the better encoding of Mc leads to
smaller LTS by direct generation.

In Ml, the addition of the global lock generates bigger
LTS than Mc, up to the point this is outweighed by the sup-
plementary behaviors of Mc. But more importantly, direct
generation for Ms and Ml produce LTS similar in size.

This means that the encoding without scheduler allows
to show more realistic behaviors of the model than the en-
coding with scheduler, and to reproduce this latter encoding
as a particular case, without being more costly as regards
direct generation of LTS. Indeed, for n = 19, we could pro-
duce a LTS only for Ml, not for Ms (because this encoding
requires more bytes to store each state).

Compositional generation of Ms seems more effective
than that of Mc thanks to a better encapsulation of event and

transaction mechanisms (cf. Section 4.2), e.g. it allows to
obtain the minimized LTS with n = 17 for Ms, but not for
Mc. Nevertheless, this has to be moderated by the greater
intrinsic complexity of Mc, and by the state number ratio
between the minimized LTS and the largest LTS produced
during composition, which is close for the two models and
not always in favor of Ms, e.g. for n = 15. For Mc and Ml,
the chosen compositional approach reduces the number of
states in the same proportion: the largest composed LTS is
around 10% smaller than the directly generated LTS.

6. Conclusion and further work

In this paper, we used the benchmark proposed in [18]
to compare two semantics of TLM models written in Sys-
temC. The first semantics is based on the nonpreemptive
simulation semantics of SystemC, whereas the second one
refers to the concurrent semantics of TLM. We contributed
the encoding in Lotos of the nonpreemptive semantics, we
proposed inlined transactions as an optimization of the ex-
isting concurrent semantics encoding, we defined a variant
of the benchmark, and we translated the two versions of the
benchmark with each encoding.

Then, we formally showed on the example of the bench-
mark that the nonpreemptive semantics of SystemC was
strictly included in the concurrent one of TLM. We also
showed that the concurrent semantics generalize the non-
preemptive one as the former is a particular case of the latter
where a global lock is used. Remarkably, this generalization
came with a better performance of the CADP tools, even on
very large LTS (near 100 million states).

Thus, our encoding of the concurrent semantics of TLM,
associated with locks, provides both flexibility in specifying
the level of asynchrony between processes desired for ver-
ification, and performance since, on the benchmarks, this
encoding scales as well, if not better than other encodings
yet restricted to the behaviors covered by the SystemC sim-
ulation semantics.

This work also shows that CADP and Lotos provide
an adequate setting for experimenting with concurrent lan-
guage semantics. One major benefit of CADP is the nu-
merous integrated tools to generate and handle even very
large LTS. Especially, the bisimulator tool is crucial to for-
mally compare models with different semantics. We experi-
mentally verified the effectiveness of the compositional and
on-the-fly approaches with SVL and CADP. The former al-
lowed to generate an LTS when direct generation had failed,
and the latter to verify properties on models for which gen-
eration of an explicit LTS was not possible at all. Compared
to the performances obtained with SPIN in [18], CADP
seems to scale slightly better when we take advantage of
the compositional approach.

Locks combined with the concurrent semantics allow to

Table 4. Results for the LTS generation of the three models
n = 3 7 11 15 17 19

Ms

direct LTS gen. 2.24 s 2.68 s 4.57 s 74.62 s 1359.54 s nc
state number 485 12,021 258,037 5,177,333 22,806,517 nc

compositional gen. 16.02 s 29.27 s 49.19 s 291.95 s 2,237.06 s nc
max. state number 96 2,560 57,344 1,179,648 5,242,880 nc
state number after

minimization 47 767 12,287 196,607 786,431 nc

Mc

direct LTS gen. 1.6 s 1.74 s 3.27 s 50.61 s 445.51 s nc
state number 288 8,704 204,800 4,325,376 19,398,656 nc

compositional gen. 12.07 s 19.09 s 146.93 s 75,741 s nc nc
max. state number 256 7,680 180,224 3,801,088 nc nc
state number after

minimization 64 1,536 32,768 655,360 nc nc

Ml

direct LTS gen. 1.48 s 1.71 s 2.48 s 37.21 s 451.16 s 8,552.94 s
state number 412 11,260 253,948 5,242,876 23,330,812 102,760,444

compositional gen. 11.27 s 17.41 s 29.74 s 275.19 s 1,784.72 s 16,464.3 s
max. state number 365 9,981 225,277 4,653,053 20,709,373 91,226,109
state number after

minimization 47 767 12,287 196,607 786,431 3,145,727

explore the trade-off between performance and exhaustive-
ness of the verification. We are currently investigating this
approach on a real industrial case study modeled in Sys-
temC and involving more than 20,000 lines of C and C++
code.

References

[1] D. Cansell, D. Méry, and C. Proch. Modelling SystemC
scheduler by refinement. In ISOLA, Sept. 2005.

[2] S. C. Cheung and J. Kramer. Context constraints for com-
positional reachability analysis. ACM Transactions on Soft-
ware Engineering and Methodology, 5(4):334–377, 1996.

[3] R. Drechsler and D. Große. Reachability analysis for formal
verification of systemc. In DSD, pages 337–340. IEEE, Sept.
2002.

[4] H. Garavel and F. Lang. SVL: a scripting language for com-
positional verification. In FORTE, pages 377–392, Aug.
2001.

[5] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP
2006: A toolbox for the construction and analysis of dis-
tributed processes. In CAV, volume 4590 of LNCS, pages
158–163, July 2007.

[6] F. Ghenassia, editor. Transaction-Level Modeling with Sys-
temC. TLM Concepts and Applications for Embedded Sys-
tems. Springer, June 2005.

[7] D. Große and R. Drechsler. CheckSyC: an efficient property
checker for RTL SystemC designs. In ISCAS, volume 4,
pages 4167–4170, May 2005.

[8] C. Helmstetter. Validating Models of Systems-on-a-Chip
in the Presence of Nondeterministic Schedulings and Loose
Timings. PhD thesis, INPG, 2007.

[9] C. Helmstetter, F. Maraninchi, and L. Maillet-Contoz. Test
coverage for loose timing annotations. In FMICS, pages
100–115, Aug. 2006.

[10] ISO-8807. Lotos, a formal description technique based on
the temporal ordering of observational behaviour, 1989.

[11] D. Karlsson, P. Eles, and Z. Peng. Formal verification of
SystemC designs using a petri-net based representation. In
DATE, pages 1228–1233, Mar. 2006.

[12] D. Kroening and N. Sharygina. Formal verification of
SystemC by automatic hardware/software partitioning. In
MEMOCODE, pages 101–110. IEEE, July 2005.

[13] M. Moy, F. Maraninchi, and L. Maillet-Contoz. LusSy: an
open tool for the analysis of systems-on-a-chip at the trans-
action level. Design Automation for Embedded Systems,
10(2–3):73–104, Sept. 2005.

[14] B. Niemann and C. Haubelt. Formalizing TLM with com-
municating state machines. In FDL, pages 285–292, Sept.
2006.

[15] Open SystemC Initiative. SystemC v2.1 Language Reference
Manual (IEEE Std 1666-2005), 2005.

[16] O. Ponsini and W. Serwe. A schedulerless semantics of
TLM models written in SystemC via translation into LO-
TOS. In FM, volume 5014 of LNCS, May 2008.

[17] OSCI SystemC TLM 2.0, draft 2 for public review, 2007.
[18] C. Traulsen, J. Cornet, M. Moy, and F. Maraninchi. A Sys-

temC/TLM semantics in Promela and its possible applica-
tions. In SPIN Workshop, pages 204–222, July 2007.

[19] M. Y. Vardi. Formal techniques for SystemC verification. In
DAC, pages 188–192, June 2007.

[20] P. Wodey, G. Camarroque, R. Hersemeule, and J.-P. Cousin.
LOTOS code generation for model checking of STBus based
SoC: the STBus interconnect. In MEMOCODE, pages 204–
213. IEEE, June 2003.

