
PDMC 2004 Preliminary Version

Distributed On-the-Fly Equivalence Checking

Christophe Joubert and Radu Mateescu 1
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Abstract

On-the-fly equivalence checking consists in comparing two Labeled Transition Sys-
tems (Ltss) modulo a given equivalence relation by exploring them in a demand-
driven way. Since it avoids the explicit construction of Ltss, this method is able to
detect errors even in systems that are too large to fit in the memory of a computer.
In this paper, we aim at further improving the performance of on-the-fly equivalence
checking using several machines connected by a network. We propose DSolve, a
new algorithm for distributed on-the-fly resolution of Boolean Equation Systems
(Bess), which enables equivalence checking modulo various relations characterized
in terms of Bess. DSolve serves as verification engine for the distributed ver-
sion of Bisimulator, an on-the-fly equivalence checker developed within the Cadp

verification toolbox using the Open/Cæsar environment. Our experimental mea-
sures show quasi-linear speedups and a good scalability of the distributed version
of Bisimulator w.r.t. its sequential version.

1 Introduction

Equivalence checking is a verification technique that consists in comparing the
description of a system behavior (e.g., a protocol) with the description of its
desired behavior (e.g., a service) modulo a suitable equivalence relation. Nu-
merous equivalence relations (strong [24], branching [25], observational [22],
τ ∗.a [11], safety [8], etc.) were defined on Labeled Transition Systems (Ltss),
which are the natural models for action-based description languages such as
process algebras. There are basically two approaches for checking the equiv-
alence of finite Ltss: globally, which requires the construction of the two Ltss
before verification, and locally (or on-the-fly), which allows the Ltss to be
constructed incrementally during verification. The on-the-fly approach has
the ability to detect errors even when the Ltss are too large to be constructed
explicitly, and therefore is more suitable for analyzing large systems.
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During the past two decades, many sequential algorithms for global equiv-
alence checking were designed and implemented in verification tools (see [10]
for a survey). Most of these algorithms rely on partition refinement: starting
with a state partition containing a single equivalence class, they iteratively
refine it (by splitting classes which contain non equivalent states) until no
further distinction between classes is possible according to a given equiva-
lence relation. Recently, distributed global equivalence checking algorithms
were proposed [5,6], showing effective behavior on medium and large-sized
Ltss (dozens of millions of states and transitions). However, relatively little
research effort was devoted to on-the-fly equivalence checking algorithms.

The first algorithms proposed for on-the-fly equivalence checking [11] and
preorder checking [10] were based on the following principle: a forward, si-
multaneous exploration of the two Ltss is performed starting from their initial
states, until either some execution pattern showing non equivalence (coun-
terexample) is encountered, or the two Ltss have been entirely explored. An-
other approach for on-the-fly equivalence checking is based upon the char-
acterizations of equivalence relations in terms of Boolean Equation Systems
(Bess) [9,3], which allow to use efficient algorithms for on-the-fly Bes resolu-
tion [20]. In this way, the encoding of an equivalence relation and the Bes

resolution algorithm are clearly separated, allowing them to be implemented
and optimized independently. We followed this latter approach for devel-
oping the on-the-fly equivalence checker Bisimulator, which uses the generic
Cæsar Solve [20] Bes resolution library, built using the Open/Cæsar environ-
ment for on-the-fly Lts exploration [12] of the Cadp verification toolbox [13].

In this paper, we present the distributed version of Bisimulator, which
has been obtained by devising DSolve, an algorithm for distributed on-the-
fly Bes resolution. As far as we know, this is the first attempt to develop
a distributed on-the-fly equivalence checker. DSolve is similar in spirit with
the distributed model-checking algorithm proposed (in the setting of game
graphs) in [7]: it performs a distributed forward traversal of the dependency
graph of the Bes, combined with a backward propagation of stable variables
(i.e., whose final value has been computed). It was implemented to run on
commonly available loosely-coupled architectures such as networks of worksta-
tions (Nows) and clusters of Pcs. Our experiments show quasi-linear speedups
of DSolve and a good scalability of its performance w.r.t. the problem size.
DSolve was integrated to the generic Cæsar Solve library and therefore allows
to immediately obtain distributed versions of any other applications built us-
ing Cæsar Solve, such as alternation-free µ-calculus model-checking [20] and
τ -confluence reduction [23].

The remainder of the paper is organized as follows. Section 2 recalls the
definitions of Bess and the encodings of five widely-used equivalence relations
in terms of Bess. Section 3 describes in detail the DSolve algorithm and Sec-
tion 4 shows experimental data comparing the performance of the distributed
and sequential versions of Bisimulator. Finally, Section 5 gives some conclud-
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ing remarks and directions for future work.

2 Equivalence relations and boolean equation systems

An Lts is a quadruple M = (Q, A, T, q0), where: Q is the set of states, A
is the set of actions (Aτ = A ∪ {τ} also contains the invisible action τ),
T ⊆ Q × Aτ × Q is the transition relation, and q0 ∈ Q is the initial state. A
transition q1

a
→ q2 ∈ T means that the system can move from state q1 to state

q2 by executing action a. Given a language l ⊆ Aτ
∗, q1

l
→ q2 means that from

q1 to q2 there is a sequence of transitions whose concatenated actions form a
word of l. In the sequel, we consider two Ltss Mi = (Qi, A, Ti, q0i), i ∈ {1, 2}.

A Bes is a set of equations B = {Xi = Xi1 opi · · ·opi Xiki
}1≤i≤n, where

Xi are boolean variables and opi ∈ {∨,∧}. For efficiency of resolution, we
consider simple Bess [4], whose right-hand sides of equations are pure dis-
junctive or conjunctive formulas (boolean constants F and T are encoded as
empty disjunctions and conjunctions, respectively). The semantics of a Bes

is given by the maximal fixed point of the associated vectorial functional
Φ :

�
n →

�
n, Φ(b1, ..., bn) = ([[Xi1 opi · · ·opi Xiki

]][b1/X1, . . . , bn/Xn])1≤i≤n,
where [[ϕ]]δ is the interpretation of a boolean formula ϕ in a context δ that
assigns boolean values to variables. The theory underlying Bess is extensively
developed in [18].

Various equivalence relations between Ltss were characterized in terms of
Bess [9,3]. The table below shows the encodings of five widely-used equiva-
lences: strong [24], branching [25], observational [22], τ ∗.a [11], and safety [8].
Each relation is represented as a Bes whose variables Xp,q indicate whether
the states p ∈ Q1 and q ∈ Q2 are equivalent or not (a ∈ A and b ∈ Aτ ). For
each equivalence, the corresponding preorder (in grey) is obtained by deleting
either the 2nd conjunct (for strong, τ ∗.a, safety, and branching), or the 3rd and
4th conjuncts (for observational) in the right-hand sides of the equations.
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All Bess shown in the table above can be made simple (at the price
of a linear blow-up in size) by introducing additional variables such
that the right-hand sides of equations become either disjunctive, or con-
junctive formulas (e.g., the Bes for strong equivalence is transformed into
{Xp,q =

∧

p
b
→p′

Yp′,b,q ∧
∧

q
b
→q′

Zp,b,q′, Yp′,b,q =
∨

q
b
→q′

Xp′,q′, Zp,b,q′ =
∨

p
b
→p′

Xp′,q′}).

The on-the-fly resolution of the resulting Bess consists in solving the variable
Xq01,q02

(which denotes the equivalence of the initial states of the two Ltss)
by constructing the Bes incrementally; this amounts to a demand-driven ex-
ploration of both Ltss, since the formulas in the right-hand sides of equations
are evaluated by traversing the Lts transitions in a forward manner.

3 Distributed resolution algorithm

The architecture adopted for distributed Bes resolution consists of P worker

nodes of index i ∈ [1..P ] and one coordinator node of index 0, all nodes being
connected by a network. In addition to the distributed termination detection

(Dtd) task (shown on Fig. 2, Sec. 3.3), the coordinator is also responsible for
other activities, such as monitoring the progression of Bes resolution, collecting
statistics about the Bes structure, handling early termination requested by the
user or urgent termination caused by remote hardware or software failures.
These features are implemented by appropriate extensions of DSolve (omitted
in Fig. 1).

The DSolve algorithm is devised in terms of the boolean graph (V , E, L) [2]
defined as follows: V = {X1, ..., Xn} is the set of vertices (boolean variables),
E = {(Xi, Xj)|Xj ∈ {Xi1, ..., Xiki

}}1≤i≤n is the set of edges (dependencies
between boolean variables), and L : V → {∧,∨}, L(Xi) = opi is the vertex
labeling (boolean operator in the right-hand side of the equation). An instance
of DSolve runs on each worker (task partitioning) and data (boolean variables)
is distributed among workers by means of message passing according to a
static hash function h : V → [1..P ] as defined in [14]. Solving a Bes on-the-fly
(i.e., computing the value of a variable Xk) consists in performing a forward
exploration of the boolean graph starting at Xk, intertwined with a backward
propagation of variables whose value is F (these variables are stable, since
they reached their final value in a maximal fixed point computation). The
resolution terminates either when Xk is stabilized to F (a counterexample was
found), or when the graph portion reachable from Xk is entirely explored (the
two Ltss are equivalent).

3.1 Bes resolution

Three aspects are covered by Fig.1: Bes resolution, communication, and ter-
mination detection. Bes resolution is defined by the following primitives:

DSolve. Each worker i executes an instance of DSolve on its own data struc-
tures. No variables are shared among processes. After a phase of initializa-
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1: function DSolve(x, (V, E, L), h, i) :� is
2: if h(x) = i then
3: if L(x) = ∨ then
4: c(x) := |E(x)|
5: else
6: c(x) := 1
7: endif;
8: d(x) := ∅; Wi := {x}; Si := {x}; Bi := ∅
9: else

10: Wi := ∅; Si := ∅; Bi := ∅
11: endif;
12: termi := inactivei := F; senti := recvi := 0;
13: while ¬termi do
14: if Bi 6= ∅ then
15: while Bi 6= ∅ do
16: xi := choose(Bi);
17: Bi := Bi \ {xi};
18: forall wi ∈ d(xi) do
19: if h(wi) = i then
20: Stabilize(wi, xi)

21: else
22: Sending(h(wi), Evl(wi, xi))
23: endif

24: endfor;
25: d(xi) := ∅
26: endwhile
27: elsif Wi 6= ∅ then
28: xi := choose(Wi);
29: Wi := Wi \ {xi};
30: forall yi ∈ E(xi) do
31: if h(yi) = i then
32: Expand(xi, yi)

33: else
34: Sending(h(yi), Exp(xi, yi))
35: endif
36: endfor
37: else
38: if ¬inactivei then
39: inactivei := true;
40: senti := senti + 1;
41: Send(coord, Idl(senti − recvi))
42: endif;
43: Receive(senderi, msgi);

44: Read(senderi, msgi)

45: endif
46: endwhile;
47: return c(x) = 0
48: end

49: procedure Sending(nodej , msgj) is
50: while ¬ISend(nodej , msgj) ∧ ¬termi do
51: if IReceive(senderi, msgi) then
52: Read(senderi, msgi)

53: else
54: WaitEvent({0..P}, nodej)

55: endif
56: endwhile;
57: senti := senti + 1
58: end

59: procedure Expand(xi, yi) is
60: if yi /∈ Si then
61: Si := Si ∪ {yi};
62: d(yi) := ∅;
63: if L(yi) = ∨ then
64: c(yi) := |E(yi)|
65: else
66: c(yi) := 1
67: endif;
68: if c(yi) 6= 0 then
69: Wi := Wi ∪ {yi}
70: endif
71: endif;
72:

73: if c(yi) = 0 then
74: if h(xi) = i then

75: Stabilize(xi, yi)
76: else
77: Bi := Bi ∪ {yi};
78: d(yi) := d(yi) ∪ {xi}
79: endif
80: else
81: d(yi) := d(yi) ∪ {xi}
82: endif
83: end

84: procedure Stabilize(wi, yi) is
85: c(wi) := c(wi) − 1;
86: if c(wi) = 0 then
87: if L(yi) = ∧ then
88: s(wi) := yi

89: endif;
90: Bi := Bi ∪ {wi};
91: termi := c(x) = 0
92: endif
93: end

94: procedure Read(senderi, msgi) is
95: recvi := recvi + 1;
96: if senderi 6= coord ∧ inactivei then

97: inactivei := false;
98: senti := senti + 1;
99: Send(coord, Act)
100: endif;
101: case msgi is
102: Evl(xi, yi) →
103: Stabilize(xi, yi)

104: Exp(xsenderi
, yi) →

105: Expand(xsenderi
, yi)

106: Ack(stamp) →
107: if inactivei then
108: senti := senti + 1;
109: Send(coord, Ack(stamp))
110: endif
111: Trm → termi := true
112: endcase
113:end

Fig. 1. Distributed local resolution of a Bes using its boolean graph
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tion (lines 2-11), three activities take place: backward propagation of stable
variables is given the highest priority (lines 14-26), then comes the forward
exploration of boolean graph (V , E, L) (lines 27-36), and finally the recep-
tion of remote data is achieved (lines 43-44). Bes resolution begins with the
initiator worker, of index i=h(x), which expands the globally known variable
of interest x ∈ V . Subsequently, the successor variables E(xi) generated by
expanding variables at a worker are distributed to specific workers accord-
ing to the hash function h (lines 27-36). If necessary, messages Exp(xi, yi)
are sent to remote workers with index h(yi) 6= i (line 34). During execution,
all workers receive variables sent by other workers (lines 43-44). Symmetri-
cally, stabilized variables (c(xi) = 0) at a worker are backward propagated
to predecessor variables d(xi) saved during expansion, whose correspond-
ing specific workers are determined by h (lines 14-26). For remote workers
(h(wi) 6= i), messages Evl(wi, xi) are sent (line 22). Bes resolution stops ei-
ther when x becomes stable (line 91), or all variables reachable from x have
been explored (line 111). DSolve returns the value of x (i.e., F if c(x) = 0).
Orthogonally to the Bes resolution, specific variable dependencies s(xi) are
saved during backward propagation of stable variables (line 88), in order to
generate a diagnostic (counterexample) in case the variable x is stabilized
to F (meaning that the two Ltss are not equivalent), following the approach
presented in [19].

Expand. The routine Expand is called to update local data structures for for-
ward exploration of the boolean graph: the working set Wi, the backward
stabilization set Bi, and the search set Si (lines 59-83).

Stabilize. The routine Stabilize stabilizes predecessor variables wi by decre-
menting the counter of unstable successors c(wi) and updates the stabiliza-
tion set Bi (lines 84-93).

3.2 Synchronization and communication

Apart from local computations, nodes exchange data by means of Receive

and Send operations, thus redistributing work for better processor utilization,
and for detecting termination of the distributed resolution. Adding to ini-
tial architectural choices (bidirectional channel between any two nodes, static
hash function for data distribution, and mono-threaded algorithm), we aim at
further improving the performance of DSolve resolution by using a communi-
cation layer that enables:

(i) reducing memory consumption;

(ii) maximizing the overlapping of communication and computations;

(iii) avoiding busy waiting on emission failures;

(iv) preventing deadlocks during communication between workers.

Point (i) can be solved by bounding the size of emission and reception
buffers. However, this requires to deal with emission and reception failures
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(point (iii)), due to full buffers or empty buffers. Point (ii) requires asyn-
chronous and non-blocking communication operations both in emission and
in reception. Point (iii) suggests the combination of non-blocking and block-
ing communication. Finally, point (iv) can be addressed by allowing blocking
communication only when workers are idle (i.e., no more local activity to be
done, Bi = Wi = ∅).

Since our goal was to obtain an implementation of DSolve which can be
easily integrated and released within the Cadp toolbox, we did not consider
general message-passing environments such as Mpi, but preferred instead to
use Cæsar Network, a fine-tuned loosely coupled distributed communication
library based on Unix sockets with bounded buffers and Tcp/Ip protocol devel-
oped according to a study made in [17]. By considering emission / reception
failures and full communication buffers, and by introducing both blocking and
non-blocking communication primitives, the complexity of the algorithm is
slightly increased. However, this enables a fine-grained flow control of commu-
nication and reduces memory consumption related to emission and reception
buffers.

The Cæsar Network primitives used by DSolve are the following:

• Receive (line 43) enables blocking reception of a message from a node;

• IReceive (line 51) enables immediate (i.e., non-blocking) reception, and re-
turns T if the message is received successfully, or F if the reception buffers
are empty;

• Send (line 41, 99 and 109) enables blocking emission of a message to a node;

• ISend (line 50) enables immediate (i.e., non-blocking) emission, and returns
T if the message is sent successfully, or F if the emission buffers are full;

• WaitEvent (line 54) enables blocking waiting on the detection of communi-
cation events on the local reception and emission buffers associated to nodes
in {0..P}.

3.3 Termination detection

The boolean variable termi is set to T when termination of the distributed
Bes resolution is detected. Conditions of termination are: either the variable
of interest x has been explicitly stabilized (c(x) = 0) during backward propa-
gation of stable variables, or the boolean graph has been completely explored,
i.e., all local working sets of variables are empty (∀i ∈ [1..P ].Wi = Bi = ∅),
and no more messages are transiting through the network. The first condition
is detected by the initiator worker, whose index is h(x), when back propagat-
ing boolean values up to x (line 91). The second condition requires a Dtd

algorithm.

We have used an algorithm derived from a combination of Dtd algorithms
[16] and [21]. Our Dtd algorithm relies upon the coordinator node (of index
coord=0), which is usually the end-user node from which the distributed Bes
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114:procedure Coordinator is
115: trm status := DETECT ;
116: sent := recv := 0;
117: stamp := 0;
118: total msg := nb idle := nb ack := 0;
119: forall i in [1..P ] do
120: nb msg(i) := 0
121: endfor;
122: while trm status 6= TERM do
123: case trm status is
124: CONF → while bcast node ≤ P ∧
125: ISend(bcast node, Ack(stamp)) do
126: bcast node := bcast node + 1;
127: sent := sent + 1
128: endwhile
129: STOP → while bcast node ≤ P ∧
130: ISend(bcast node, T rm) do
131: bcast node := bcast node + 1
132: endwhile;
133: if bcast node > P then
134: trm status := TERM
135: endif
136: endcase;
137: if trm status = DETECT then
138: Receive(msg, sender);
139: ReadCoord(msg, sender)
140: elsif IReceive(msg, sender) then
141: ReadCoord(msg, sender)
142: endif
143: endwhile
144:end

145:procedure ReadCoord(m, s) is
146: recv := recv + 1;
147: case m is
148: Act → nb idle := nb idle − 1;
149: total msg := total msg − nb msg(s);
150: if trm status = CONF then
151: trm status := DETECT
152: endif
153: Idl(k) → nb msg(s) := k;
154: nb idle := nb idle + 1;
155: total msg := total msg + nb msg(s);
156: if total msg = −(sent − recv)
157: ∧ nb idle = P then
158: trm status := CONF ;
159: bcast node := 1; nb ack := 0;
160: stamp := stamp + 1
161: endif
162: Ack(k) → if k = stamp then
163: if trm status = DETECT then
164: if total msg = −(sent − recv)
165: ∧ nb idle = P then
166: trm status := CONF ;
167: bcast node := 1; nb ack := 0;
168: stamp := stamp + 1
169: endif
170: elsif trm status = CONF then
171: nb ack := nb ack + 1;
172: if total msg = −(sent − recv)
173: ∧ nb ack = P then
174: trm status := STOP ;
175: bcast node := 1
176: endif
177: endif
178: endif
179: endcase
180:end

Fig. 2. Termination detection algorithm (coordinator node)

resolution is launched.

The Dtd consists of two phases: detection of global inactivity by the coor-
dinator (i.e., trm status=DETECT ), and confirmation of local inactivity by
all workers (i.e., trm status=CONF ). On each worker as well as on the coor-
dinator, two counters senti (or sent) and recvi (or recv) keep the number of ex-
changed messages in emission and in reception. When a worker i becomes idle,
it sends an Idl(senti − recvi) message to the coordinator (lines 38-42). When
it goes back to activity, the worker sends an Act message to the coordinator
(lines 96-100). The coordinator keeps track for each worker i of the amount of
messages transmitted minus those received (nb msg(i), line 153). Thus, when
the coordinator detects that all workers are idle (i.e., ∀i ∈ [1..P ].inactivei=T

and nb idle=P ), it also verifies that no messages are still in transit (i.e., in-
variant total msg=

∑P

i=1
(senti − recvi) and total msg+(sent−recv) = 0). If

both conditions are respected (lines 156-157), then a phase of inactivity con-
firmation, indexed by a counter stamp, is started. The coordinator broadcasts
to all workers an Ack(stamp) message (lines 124-128), thus flushing possible
residual messages transiting between workers and the coordinator. Each inac-
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tive worker acknowledges the reception of an Ack(stamp) message by sending
back the same Ack(stamp) message to the coordinator (lines 106-110). If a
worker is active upon reception of an Ack(stamp) message, it simply ignores
it. In that case, an Act message from that worker must eventually arrive to
the coordinator. Finally, the coordinator detects the global termination if it
receives P Ack(stamp) messages (i.e., nb ack = P , lines 162-178). It can then
broadcast this termination detection (i.e., trm status=STOP ) to all workers
(lines 129-135).

3.4 Correctness and complexity

Our distributed Bes resolution algorithm is based on the theory of boolean
graphs underlying the sequential algorithms [2,26]. It is composed of two
intertwined graph traversals (forward and backward), whose worst-case time
complexity is O(|V |+|E|). The same bound applies for memory complexity,
because of the dependencies d(y) stored during graph exploration. Assuming
a perfect partition function, the message complexity is O(2 · |E| · (P − 1)/P ),
the worst-case being obtained with two messages (expansion and stabiliza-
tion) exchanged per edge. Theoretically, our Dtd algorithm has a complexity
O(|E|), but practically it reveals to be very efficient, with only 0.01% of total
exchanged messages used for termination detection. Indeed, the coordinator
has a sufficiently accurate and up to date image of the distributed computation
status to perform the DTD with a small number of attempts.

4 Implementation and experiments

Our implementation of DSolve and Coordinator (8500 lines of C code) has
been integrated to the generic Bes resolution library Cæsar Solve [20] devel-
oped using the Open/Cæsar environment [12]. Hence we immediately obtained
a distributed version of the Bisimulator [20] on-the-fly equivalence checker
of the Cadp verification toolbox [13], which uses Cæsar Solve as verification
engine. This tool architecture is highly modular, allowing to separate the
front-end (encoding of the equivalence relations as Bess) from the back-end
(Bes resolution). To compute the successors of a boolean variable Xp,q denot-
ing the equivalence of states p and q modulo a given relation, the front-end,
which is called sequentially and independently on each worker, explores the
two Ltss forward starting at p and q, according to the definition of that re-
lation (see the table in Section 2). Note that for weak equivalence relations
(branching, observational, τ ∗.a, safety), the front-end must perform transitive
closures on τ -transitions in both Ltss.

We have carried out an extensive set of experiments on a cluster of 20
Xeon 2.4 GHz Linux Pcs, with 1.5 GB of main memory, interconnected by a
Gigabit network. The Ltss considered were mainly extracted from the Vlts

benchmark suite [1], which is designed to be a reference criterion for scientific
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assessment of algorithms and tools operating on large graphs, such as dis-
tributed equivalence checkers. Only a dozen of experiments that took at least
few seconds of computation are shown in this section. Note that to obtain
an accurate image of the performances, in the experimental results described
below we excluded the fixed costs of system-dependent activities (loading of
code on remote nodes, initialization of connections, and copying of Lts files),
and we kept only the costs of distributed resolution and termination detection.
We performed each experiment ten times. Each point on each curve represents
the average of the eight values corresponding to the measurements obtained
excluding the maximum and minimum values.

4.1 Speedup

One way to quantify the efficiency of a parallel algorithm is to compute the
absolute speedup S = T1/Tp by using as baseline the uniprocessor time T1

for the best known uniprocessor (sequential) algorithm, and the time Tp with
P workers. Fig. 3 shows experimental data comparing the performance of
the distributed version of Bisimulator (based on DSolve) and its sequential
version (based on a breadth-first search algorithm of Cæsar Solve). For each
equivalence relation R and Lts M , the experiments concern the comparison
modulo R of M with MR, its minimized version w.r.t. R. The choice of
this comparison was motivated by two reasons: (a) it reproduces a situation
frequently encountered in practice, when a designer specifies both the sys-
tem behavior (protocol) and its external behavior (service), which correspond
here to M and MR; (b) it represents a worst-case behavior for on-the-fly
equivalence checking, since the algorithm must explore the Bes (and the two
Ltss) entirely before deciding the equivalence of M and MR. We also per-
formed various experiments comparing non-equivalent Ltss: in all cases, both
the distributed and sequential versions of Bisimulator were extremely fast in
discovering counterexamples.

Strong equivalence. Fig. 3(a) shows the speedups obtained for strong equiv-
alence checking with distributed Bisimulator on a set of examples, ordered by
increasing sizes, from 9.757 · 103 states and 24.352 · 103 transitions (dle10)
to 8.082 · 106 states and 42.933 · 106 transitions (vasy 8082 42933). Strong
equivalence is well-suited for distribution: there is very few time spent in the
front-end (no transitive closure on τ -transitions needed), and curves show
linear speedups from low (still better than the sequential times) to nearly
optimal. Moreover, speedup gets better when the Lts size increases. For
example, the sequential check of experiment BRPm3n30 (Bounded Retrans-
mission Protocol with 3 retransmissions and packet length 30, i.e. 5.957 · 106

states, 9.225 · 106 transitions) took 332.53 seconds, whereas the parallel check
with 13 workers took 29.06 seconds (speedup 11.5).

τ

�

.a and safety equivalences. Fig. 3(b) shows the speedups obtained for τ ∗.a
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equivalence on a similar set of examples to the one used for strong equivalence
(safety equivalence shows a similar behavior). The computations of these
equivalences involves extensive transitive closures on τ -transitions (performed
sequentially by the front-end present on each worker) and very small Bess in
the case of Ltss containing many τ -transitions.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  2  4  6  8  10  12  14  16  18  20

S
pe

ed
up

Number of workers

dle10
vasy_65_2621
vasy_66_1302

dle03
vasy_157_297

b57
vasy_574_13561

vasy_720_390
fw6

BRPm3n25
BRPm3n30

vasy_8082_42933
Ideal speedup
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(b) τ ∗.a equivalence
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(c) Observational equivalence

Fig. 3. Speedup for three equivalences

Hence, the speedups observed are
lower than for strong equivalence,
and start to be high on large Ltss
such as vasy 8082 42933, where
speedup grows up to 8.22 with 13
workers.

Branching and observational

equivalences. Fig. 3(c) shows the
speedups obtained for observational
equivalence (branching equivalence
shows a similar behavior). Con-
trary to τ ∗.a and safety equiva-
lences, the Bess encoding observa-
tional and branching equivalences
are much larger, and therefore dis-
tributed resolution has a stronger
impact on performance. Hence
the curves show generally better
speedups, in particular for Ltss with
few τ -transitions or deterministic
behavior, such as vasy 65 2621,
where speedup grows up to 7.86
with 13 workers.

Global observations can be
drawn w.r.t. the nature of Ltss be-
ing checked. Three factors influ-
ence the performance of distributed
Bisimulator: size of Ltss, percent-
age of τ -transitions, and degree
of nondeterminism. Hence, when
neither τ -transitions nor nondeter-
minism are present in the Ltss,
then good speedups are achieved for
all equivalence relations, as shown
by experiments vasy 1112 5290,
vasy 574 13561, vasy 65 2621, or

vasy 8082 42933. On the contrary, an increased percentage of τ -transitions
results in low speedups for τ ∗.a and safety equivalences (because of expensive

11
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front-end computations), but still good speedups for strong and observational
equivalences (because of important Bes sizes), as illustrated by experiments
BRPm3n30 on Fig. 3. Similarly, increasing both nondeterminism and per-
centage of τ -transitions yields large Bess. In this cases, only strong equiva-
lence can terminate in reasonable time (less than 45 minutes in sequential)
and shows high speedups with experiment b57 on Fig. 3(a). Weak equiva-
lences either could not terminate (e.g., observational equivalence for b57), or
they showed no speedup (e.g., τ ∗.a and safety equivalence for b200).

4.2 Scalability

Interesting insights into DSolve characteristics are provided by the above ex-
perimental measures together with the scalability results shown on Fig. 4.
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Each curve on Fig. 4 represents
the time needed for experiment
BRPm3nK (Bounded Retransmis-
sion Protocol with 3 retransmissions
and packet length K varying from 4 to
35) using strong equivalence on a fixed
number P of Xeon workers (between 3
and 20). The linear progression of the
curves indicates that DSolve is well-
adapted to increases in problem size,

making an efficient use of memory and Cpu. As for another large example,
DSolve handles the strong equivalence checking of experiment b200 (Alter-
nating Bit Protocol with 200 different messages), whose generated Bes size is
2.4 ·108 variables, in about 24 minutes with 15 workers, whereas the sequential
Bes resolution fails to achieve it due to current implementation restrictions on
Bes size (maximum of 1.6 · 107 variables).

4.3 Memory

We have shown that performance is reasonable with respect to run times.
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Fig. 5. Memory w.r.t. problem size

However, memory limitation of exist-
ing sequential algorithms is the main
motivation for distribution. Fig. 5
sustains by practical experiments that
DSolve makes an efficient use of mem-
ory. It presents results obtained for
strong equivalences on a dozen of Vlts

benchmarks sorted by increasing size,
from 9 · 103 states, 25 · 103 transitions
to 8·106 states, 43·106 transitions Ltss
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and with increasing number of nodes (from 2 to 20). We take into account
only the data structures used by the DSolve algorithm, which include the hash
tables used for storing boolean variables, and by the Cæsar Network library,
which include communication buffers. The impact of adding more workers is
rather low, which is shown by a ratio, between total distributed memory con-
sumption and corresponding sequential memory consumption, that is hardly
increasing. The bigger is the Lts to be checked, the lower is the ratio.

5 Conclusion and future work

We presented DSolve, a new algorithm for on-the-fly distributed resolution of
Bess using several machines connected by a network. DSolve serves as verifica-
tion engine in the distributed version of Bisimulator, an on-the-fly equivalence
checker developed within the Cadp toolbox [13] using the Open/Cæsar envi-
ronment for Lts exploration [12]. The experiments we carried out on a Pc

cluster using benchmark examples and five widely-used equivalence relations
showed quasi-linear speedups and a good scalability of the distributed version
w.r.t. the sequential version of Bisimulator.

The implementation of DSolve is application-independent and was inte-
grated in the generic Cæsar Solve library [20], which already provides four
different sequential algorithms for on-the-fly Bes resolution. We are currently
using DSolve to obtain distributed versions for other applications built us-
ing Cæsar Solve, such as alternation-free µ-calculus model-checking [20] and
τ -confluence reduction [23]. We also plan to extend Bisimulator with other
equivalence relations, such as Markovian bisimulation [15].
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