
Distributed Local Resolution of Boolean Equation Systems

Christophe Joubert and Radu Mateescu

INRIA Rhône-Alpes / VASY

655, av. de l’Europe, F-38330 Montbonnot St Martin, France
E-mail:{Christophe.Joubert,Radu.Mateescu}@inrialpes.fr

Abstract

Boolean Equation Systems (BESs) allow to represent
various problems encountered in the area of propositional
logic programming and verification of concurrent systems.
Several sequential algorithms for global and localBES res-
olution have been proposed so far, mainly in the field of veri-
fication; however, these algorithms do not scale up satisfac-
torily as the size ofBESs increases. In this paper, we pro-
pose a distributed algorithm, calledDSOLVE, which per-
forms the local resolution of aBES using a set of machines
connected by a network. Our experiments for solving large
BESs using clusters ofPCs show linear speedups and a
scalable behaviour ofDSOLVE w.r.t. its sequential coun-
terpart.

1. Introduction

Boolean Equation Systems (BESs) [10] are sets of fixed
point equations having boolean variables in their left-hand
sides and boolean formulas (built using disjunctive and con-
junctive operators) in their right-hand sides. BESs provide
a useful representation for various problems encountered
in different frameworks, such aspropositional logic pro-
gramming(satisfiability of Horn clauses [9]) andverifica-
tion of concurrent systems(equivalence checking [2], model
checking [1], and partial order reduction [13]). There are es-
sentially two ways to perform the resolution of a BES: ei-
therglobally(the values of all variables must be computed),
which requires the construction of the whole BES before
resolution, orlocally (the value of one variable of interest
must be computed), which allows an incremental construc-
tion of the BES during resolution. As the size of BESs in-
creases, local resolution scales up better w.r.t. memory con-
sumption, since only the BES portion necessary for solving
the variable of interest must be stored.

During the last decade, several sequential algorithms
were proposed for global [3, 5, 1] or local [1, 14, 11] BES

resolution, some of them being optimized to reduce the

memory consumption for BESs with particular forms [11].
All these algorithms have a linear worst-case complexity
in the size of the BES (number of variables and operators).
However, for solving large BESs, such as those produced
from verification problems involving industrial-scale con-
current systems (which may yield BESs with hundreds of
millions of variables), the memory of currently available se-
quential computers is no longer sufficient. A natural way for
scaling up the capabilities of BES resolution is to use par-
allel computers, which can increase memory and CPU re-
sources by one or two orders of magnitude.

In this paper, we propose a distributed algorithm, named
DSOLVE, for the local resolution of BESs on standard
loosely-coupled parallel computers, such as clusters of PCs
or networks of workstations (NOWs). DSOLVE was de-
signed in terms ofboolean graphs(dependency graphs be-
tween boolean variables), which were also used for design-
ing several sequential BES local resolution algorithms [1,
11]. To ensure genericity and portability, DSOLVE was im-
plemented as an application-independent C library (which
can be used as back-end for solving specific problems rep-
resented in terms of BES resolution), using standard com-
munication mechanisms (TCP/IP sockets). An extensive set
of experiments performed on very large BESs with various
forms showed that DSOLVE behaves extremely well w.r.t.
its sequential counterpart given in [11].

Related work.The only distributed resolution algorithm we
are aware of [4] is specialized for model checking proper-
ties expressed in a fragment of the modalµ-calculus. This
algorithm operates ongame graphs, whose vertices (resp.
edges) represent configurations (resp. moves) in two-player
games; however, it could be rephrased in terms of boolean
graphs. The experimental results reported in [4] show effec-
tive speedups forµ-calculus formulas of particular forms,
but do not give sufficient insight on the behaviour of the al-
gorithm when applied to problems other than model check-
ing.

Outline of the paper.Section 2 defines BESs and their asso-
ciated boolean graphs used to devise resolution algorithms.
Section 3 presents the DSOLVE algorithm and Section 4

gives experimental results illustrating its behaviour on large
BESs. Finally, Section 5 gives some concluding remarks
and outlines directions of future work.

2. Boolean Equation Systems

A Boolean Equation System (BES) [10] defined over a
setX of boolean variables is a set{xi = opiXi}1≤i≤n of
fixed point equations, wherexi ∈ X , Xi ⊆ X , andopi ∈
{∨,∧}. The right-hand sides of equations denote pure dis-
junctive or conjunctive formulas defined over a subset of
variables: for instance,∨{x1, x2, x3} is an abbreviation for
x1∨x2∨x3. The boolean constantT (resp.F) is represented
as∧∅ (resp.∨∅). This class of BESs, calledsimple BESs
[3], is convenient for devising efficient resolution algo-
rithms, while still being general: any BES containing com-
binations of disjunctions and conjunctions in the right-hand
sides of equations can be made simple (at the price of a lin-
ear increase in size) by factoring pure disjunctive and con-
junctive subformulas using additional variables and equa-
tions. Given a variable assignmentδ = [b1/x1, ..., bn/xn],
which associates boolean values to variables, the semantics
of a boolean formulaopi{xi1, ..., xik} w.r.t. δ is defined as
[[opi{xi1, ..., xik}]] δ = δ(xi1) opi · · · opi δ(xik). The se-
mantics[[{xi = opiXi}1≤i≤n]] of a BES is the least fixed
point of the associated functionalΦ :

�
n →

�
n defined as

Φ(b1, ..., bn) = 〈[[opiXi]] [b1/x1, ..., bn/xn]〉
1≤i≤n (the ab-

sence of negations in boolean formulas ensures the mono-
tonicity of Φ and the existence of its least fixed point).

Resolution algorithms can be devised in a more intu-
itive way by usingboolean graphs[1]. Given a BES {xi =
opiXi}1≤i≤n, its associated boolean graphG = (V, E, L)
is defined as follows:V = {x1, ..., xn} is the set of ver-
tices (boolean variables),E = {(xi, xj) | xj ∈ Xi}
is the set of edges (dependencies between boolean vari-
ables), andL : V → {∨,∧}, L(xi) = opi is the vertex
labeling (each vertex is labeled by the boolean operator in
the right-hand side of the corresponding equation). It was
shown in [1, 14] that solving a BES locally (i.e., computing
the value of a variablexk) amounts at finding a subgraph
(V ′, E′, L′) containingxk and a markingm : V ′ →

�

which are bothstable(for eachy ∈ V ′, m(y) corresponds
to the BES solution) andclosed(for eachy ∈ V ′, m(y)
does not depend on vertices outsideV ′).

Figure 1 shows a BES, its corresponding boolean graph,
and a subgraph (enclosed in the grey area) computed by
a local resolution algorithm (black and white vertices de-
note T and F variables, respectively). Such an algorithm
consists typically of a forward exploration of the boolean
graph starting at a variable of interestxk, intertwined with
a backward propagation of stable variables (whose val-
ues areT), which stops either whenxk becomes stable,
or the whole portion of the graph reachable fromxk has

∨

∧ ∧ ∨x5 x6

x2 x3

x4

x1

∧

x3 = x2 ∧ x5 ∧ x6

x1 = x2 ∨ x3

x2 = x4 ∨ x5

x4 = x4 ∧ x5

x5 = T

x6 = x3 ∨ x1

∨

Figure 1. A BES, its boolean graph, and the
result of a local resolution for x1

been explored. Various exploration strategies (e.g., depth-
first [1, 11], breadth-first [11], chaotic [14], etc.) can be
used, yielding resolution algorithms with a linear time and
space worst-case complexity. However, these sequential al-
gorithms and the resources of currently available computers
do not scale up for large BESs (containing over108 vari-
ables, see Section 4), and therefore distributed solutionsbe-
come necessary.

3. Distributed Local Resolution

Hereafter, we consider that our parallel machine is com-
posed ofP computers, numbered from0 to P − 1, also
callednodes, each having its own processor and memory.

Our data allocation is done using a static hash function
h : V → [0, P -1], which distributes boolean variables
equally among nodes. Also, we assume a strongly con-
nected network topology between nodes, since each node
will work and communicate symmetrically with every other
node. In addition to theP processes performing the dis-
tributed BES resolution, we introduce a specialcoordinator
process, which provides a user interface for BES resolution
(configuration, launching, collection of statistical data, ter-
mination detection). Although its algorithm (omitted here
due to space limitations) is independent from the BES res-
olution, the coordinator is in a privileged position, sinceit
has a global view of the computation. In particular, this en-
ables distributed termination detection (DTD) of BES res-
olution using as many messages as traditional asymmetric
DTD mechanisms [12].

In BES resolution, each node is responsible for explor-
ing a part of the boolean graph (see Figure 2). The basic
tasks are the forward exploration of edges in the boolean
graph (expansion) and the back-propagation of stable vari-
ables (stabilization). The tasks executed on a node are in-
dependent and asynchronous w.r.t. those executed on other
nodes, and therefore can be parallelized efficiently. The use
of a static hash functionh ensures a good load balancing,
but does not necessarily preserve data locality, i.e., does
not minimize dependencies between boolean variables as-

1 3
∧

2

x6

∨

x4

∧x3

∧

communication network

x1

∨

x2

∨
x5

Figure 2. The result of a local distributed res-
olution for x1 with 3 nodes

signed to different nodes, which induce exchanges of mes-
sages (a dynamic load balancing scheme would improve lo-
cality, but at the cost of additional messages and synchro-
nization points). To achieve a good overlapping between
communications and computations, we use non-blocking
asynchronous communication, which avoids synchroniza-
tion points, and we statically define a fine-grained priority
between both activities.

Figure 3 presents the DSOLVE distributed algorithm for
local BES resolution. The main function DSOLVE takes as
input the variable of interestx, the boolean graph(V, E, L)
corresponding to the BES, the static hash functionh, the
index i of the current node (i ∈ [0, P -1]), and it returns
the boolean value ofx. Two auxiliary procedures EXPAND

and STABILIZE take boolean variables as inputs, and update
the data structures used for expansion and stabilization, re-
spectively. After a phase of initialization of local data struc-
tures (lines 2-8), the function loops until termination. Each
loop computes one of the three following tasks, whose pri-
orities are given by the cascading if-then-else:stabilization
of variables by back-propagation (lines 10-18),expansion
of unstable variables (lines 19-24), andreceptionof mes-
sages denoting requests for stabilization or expansion (lines
25-33). In the sequel, we describe each of these tasks in de-
tail.

Initialization. Several local data structures are needed to ei-
ther compute or store boolean variables and the information
attached to them. A counterc(y) indicates the number of
unstable successors of variabley that must be stabilized in
order to stabilizey itself. For a variabley, c(y) is initialized
with its number of successors|E(y)| if y is an∧-variable, or
with 1 otherwise (lines 3-4). A variabley is stable(meaning
its value isT) whenc(y) = 0. A setd(y) ⊆ V contains the
predecessor variables ofy already encountered (backward
dependencies). This information will be used when prop-
agating values of stabilized variables. Three sets are used
by nodei for exploring the boolean graph: thesearch set
Si ⊆ V stores all boolean variablesxi visited by nodei

1: function DSOLVE(x, (V, E, L), h, i):� is
2: if h(x) = i then
3: if L(x) = ∧ then c(x) := |E(x)|
4: else c(x) := 1 endif;
5: d(x) := ∅; Wi := {x}; Si := {x}; Bi := ∅
6: else
7: Wi := ∅; Si := ∅; Bi := ∅
8: endif;
9: while NOTTERMINATED do

10: if Bi 6= ∅ then
11: while Bi 6= ∅ do
12: xi := choose(Bi); Bi := Bi \ {xi};
13: forall wi ∈ d(xi) do
14: if h(wi) = i then STABILIZE(wi)
15: else SEND(h(wi), Evl(wi)) endif
16: endfor;
17: d(xi) := ∅
18: endwhile
19: elsif Wi 6= ∅ then
20: xi := choose(Wi); Wi := Wi \ {xi};
21: forall yi ∈ E(xi) do
22: if h(yi) = i then EXPAND(xi, yi)
23: else SEND(h(yi), Exp(xi, yi)) endif
24: endfor
25: else
26: RECEIVE(msgi, senderi);
27: case msgi is
28: Evl(xi) → if c(xi) 6= 0 then
29: STABILIZE(xi)
30: endif
31: Exp(xsenderi

, yi) →
32: EXPAND(xsenderi

, yi)
33: endcase
34: endif
35: endwhile;
36: return c(x) = 0
37: end

38: procedure EXPAND(xi, yi) is
39: if yi /∈ Si then
40: Si := Si ∪ {yi}; d(yi) := ∅;
41: if L(yi) = ∧ then c(yi) := |E(yi)|
42: else c(yi) := 1 endif;
43: if c(yi) 6= 0 then Wi := Wi ∪ {yi} endif
44: endif;
45: if c(yi) = 0 then
46: if h(xi) = i then STABILIZE(xi)
47: else SEND(h(xi), Evl(xi)) endif
48: else
49: d(yi) := d(yi) ∪ {xi}
50: endif
51: end

52: procedure STABILIZE(wi) is
53: c(wi) := c(wi) − 1;
54: if c(wi) = 0 then Bi := Bi ∪ {wi} endif
55: end

Figure 3. Distributed local resolution of a BES
using its boolean graph

(h(xi) = i), theworking setWi ⊆ Si stores all the vari-
ables waiting to be expanded, and thebackward stabiliza-
tion set Bi ⊆ Si \ Wi stores all stable variables to be
propagated along backward dependencies. The overall res-
olution process is started by theinitiator node with index
i = h(x), which is responsible for handling the variable of
interestx (lines 2-5).

Expansion.The forward exploration of the boolean graph
consists in expanding new local boolean variables. A vari-
able xi is extracted from the working setWi (line 20),
which contains only unstable variables (∀xi ∈ Wi · c(xi) 6=
0). The outgoing edges ofxi and corresponding succes-
sor variablesyi are then computed (line 21). If the hash
function h determines thatyi must be handled by a re-
mote node of indexh(yi) (line 23), then an expansion
messageExp(xi, yi) is sent to that node. Otherwise (line
22), local data structures are updated by calling procedure
EXPAND(xi,yi), whose call invariant is:c(xi) 6= 0 ∧ xi ∈
V ∧yi ∈ V ∧h(yi) = i. If yi has not been already visited, it
is added to the set of visited variablesSi (lines 39-44) and
its counterc(yi) is set up as stated above (lines 41-42). If
yi is a∧-sink or was previously stabilized (lines 45-47), its
value (which isT) is propagated to local predecessors ofyi

by calling procedure STABILIZE (xi), and to remote prede-
cessors by sending a stabilization messageEvl(xi). Other-
wise, backward dependenciesd(yi) are updated with vari-
ablexi (line 49).

Stabilization.The backward exploration of the boolean
graph consists in propagating the values of stabilized vari-
ables along backward dependencies. For each stable vari-
able xi ∈ Bi, its value (which isT) is propagated to
each predecessor variablewi ∈ d(xi) (lines 11-18). If
wi is stored on a remote node, a stabilization message
Evl(wi) is sent to the node of indexh(wi) (line 15). Other-
wise, local data structures are updated by calling procedure
STABILIZE (wi), whose call invariant is:c(wi) 6= 0 ∧ wi ∈
Si. The counter of unstable successorsc(wi) is decremented
(line 53) and, ifwi becomes stable, it is added to the set
of stable variablesBi (line 54). Finally, stabilization elim-
inates dependencies between boolean variables (line 17) to
reduce memory consumption.

Reception.Symmetrically to the transmission of messages
during stabilization and expansion (lines 15 and 23), there
is an activity handling the reception of messages. Depend-
ing on the message label (line 27), the received edge is
processed with procedure STABILIZE (line 29) or EXPAND

(line 32).

Distributed termination detection.The variable
NOTTERMINATED is set to F when distributed termi-
nation of the BES resolution is detected. Conditions of ter-
mination are: either the variable of interestx has been sta-
bilized (c(x) = 0) during backward propagation (line 53), or

the boolean graph has been completely explored, i.e., all lo-
cal working sets of variables are empty (∀i ∈ [0..P -1] · Wi

= Bi = ∅) and no more messages are transiting through
the network. The first condition is detected by theinitia-
tor node, whose index ish(x), when back propagating val-
ues up tox. The second condition involves a DTD. Our DTD

algorithm is based on two broadcast waves of global inac-
tivity detection, between the coordinator and the resolution
processes.

Complexity.Our distributed algorithm is based on the the-
ory of boolean graphs underlying the sequential algorithms
[1, 14]. It is composed of two intertwined graph traversals
(forward and backward), whose worst-case time complex-
ity is O(|V |+|E|). The same bound applies for memory
complexity, because of the dependenciesd(y) stored during
graph exploration. The message complexity isO(|E|), the
worst-case being obtained with two messages (expansion
and stabilization) exchanged per edge. Theoretically, our
termination detection algorithm has a complexityO(|E|),
but practically it reveals to be very efficient with only0.01%
of total exchanged messages used for termination detection.

4. Implementation and Experiments

Our implementation of DSOLVE (7 500 lines of C code)
is currently being integrated into the generic BES resolu-
tion library CÆSAR SOLVE (9 300 lines of C code) [11],
available under SOLARIS, L INUX , and WINDOWS operat-
ing systems. The CÆSAR SOLVE library is built using the
generic OPEN/CÆSAR environment [7] for on-the-fly ex-
ploration of transition systems, which is itself part of the
CADP verification toolbox [8]. The DSOLVE implementa-
tion uses a generic communication library (4 000 lines of C
code) based on TCP/IP sockets. This communication layer
allows a fine control of memory consumption, by tuning the
size of communication buffers appropriately.

Platform architecture. To make an efficient use of the
memory (since the workload is distributed equally among
nodes by the static hash function), we assume that all nodes
are homogeneous in terms of operating systems, proces-
sor and memory. Our experiments have mostly been car-
ried out on a cluster of17 XEON 2.4 GHz PCs, with1.5 GB

of RAM , running LINUX , and interconnected by a1 Giga-
bit network. We also made a few experiments on a cluster of
216 PENTIUM III 733 MHz PCs, with256 MB of RAM , run-
ning LINUX , essentially for scalability measures, as well as
on a local network of SUN workstations for development
purpose.

Random generation of BESs. In order to test our imple-
mentation of DSOLVE, we developed a random BES solver
tool (400 lines of C code) that provides the successor func-

true / false

communication

random BESsolver

(TCP/IP sockets)

(implicit boolean graph (.c))

coordinator

libraries

network

nodes

C compiler

OPEN/CÆSAR
and CÆSAR SOLVE

(.exe)

BES
random

BES

BES
random

(.exe)

random

(.exe)

BES

solver

solver solver solver

2 31

random

(.exe)

Figure 4. The random BES solver tool

tion of a BES (edges going out of a variable in the boolean
graph) characterized by a set of parameters. Figure 4 shows
the programming interface and the runtime environment al-
lowing to distribute the local resolution of a BES gener-
ated randomly. It is the role of the coordinator to duplicate
and launch the executable program over all nodes. The ran-
dom BES solver provides a very accurate way of measur-
ing DSOLVE performances, since the cost of computing the
successor function is negligible w.r.t. distributed BES res-
olution. Moreover, an appropriate tuning of the parameters
allows to build a wide variety of BESs, including those en-
countered in specific application areas, such as verification
(equivalence checking, model checking, partial order reduc-
tion) and Horn clause resolution. The parameters used for
defining a class of BESs are: percentage of variable kind al-
ternation, i.e., proportion of∧ (resp.∨) variables going out
of a ∨ (resp.∧) variable; percentage of boolean constants
in the BES; minimum number of variables; and average
boolean equation length (branching factor of the boolean
graph). According to the above parameters, boolean vari-
ables (represented as integers) and their kinds (∧, ∨) are
generated randomly by means of a seed also given as a pa-
rameter to the BES generation.

Speedup. Given a BES local resolution problem, ifTs is the
time taken by a sequential algorithm to solve the problem,
andTP is the time taken by DSOLVE for the same prob-
lem on a parallel machine withP nodes, the speedupSP

is Ts/TP . The sequential BES resolution algorithm we use
is one of the algorithms proposed in [11], which is based
on a BFS exploration strategy similar to the one used by
DSOLVE.

Figure 5 shows the speedups obtained for three different
classes of BESs. Speedups are computed on the basis of real
distributed execution time, i.e., including the initialization
phase (file copies, set up of communication channels, cre-
ation of data structures). Moreover, one of the nodes is used
as coordinator process in addition to its resolution task. The
results shown in Figure 5 have been obtained with boolean
equations whose right-hand sides contain10 variables on
average, and a BES size varying from104 to 1.6 · 107 vari-
ables.

Figure 5(a) represents the BES class on which DSOLVE

achieves the best speedup. It is characterized by0% of vari-
able kind alternation and0% of boolean constants. Since
no constants are present in the BES, no stabilization oc-
curs, and the BES resolution reduces to a forward explo-
ration of the entire boolean graph. Each curve on Figure 5(a)
gives the speedup for a given problem using an increasing
number of XEON nodes (from3 to 17). It can be seen that
speedup increases with BES size and becomes superlinear
for 6 · 106 variables. This can be explained by the fact that
both DSOLVE and the sequential algorithm in [11] use hash
tables to store sets of boolean variables, with a search com-
plexity O(N/H), whenH is the number of entries (col-
lision lists) in the hash table, andN the number of vari-
ables present in a table. Hence, updating hash tables dur-
ing DSOLVE execution takes(|E|/P) · ((|V |/P)/H) =
(|E| · (|V |/H))/P 2 operations, since the set of dependen-
ciesE was divided equally inP subsets, whereas it takes
|E| ·(|V |/H) operations in the sequential algorithm. There-
fore, for large problems (i.e.,|V | >> H , e.g.,6 · 106 vari-
ables) and for a high number of nodes (i.e., division by a
high factorP 2), the speedup becomes superlinear. Updat-
ing the hash tables of variables during sequential resolution
becomes more expensive than communication overhead of
distributed resolution. We believe that a similar behaviour
will occur with other data structures (e.g., balanced search
trees).

Figure 5(b) represents a class of BES with 100% of
variable kind alternation (i.e., each∨-variable has only
∧-successors, and vice-versa), and10% of boolean con-
stants. This class corresponds to the verification of non-
deterministic systems (equivalence checking [11] and par-
tial order reduction [13]), and also to Horn clause reso-
lution [9]. Speedup is slightly lower than for 5(a), be-
cause boolean constants induce stabilization (hence addi-

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10 12 14 16 18

S
pe

ed
up

Number of nodes

2e+06
4e+06
6e+06
8e+06
1e+07
1e+06

100000
10000

1.2e+07
1.4e+07
1.6e+07

Ideal speedup

(a) 0% const., 0% alt. BES class

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16 18

S
pe

ed
up

Number of nodes

2e+06
4e+06
6e+06
8e+06
1e+07
1e+06

100000
10000

1.2e+07
1.4e+07
1.6e+07

Ideal speedup

(b) 10% const., 100% alt. BES class

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16 18

S
pe

ed
up

Number of nodes

2e+06
4e+06
6e+06
8e+06
1e+07
1e+06

100000
10000

1.2e+07
1.4e+07
1.6e+07

Ideal speedup

(c) 1% const., 2% alt. BES class

Figure 5. Speedup for 3 BES classes

tional messages) during BES resolution. Thus, the overall
communication cost in the distributed resolution is doubled,
since each expansion message will most likely induce a sta-
bilization message. However, back propagation of stable
variables is limited due to the100% alternation parameter,
which allows to propagate stabilized variables only on im-
mediate predecessors (e.g., a∨-variable stabilized toT will
not necessarily stabilize its∧-predecessors). Hence, both
sequential and distributed resolution have to explore most
of the BES and the sequential resolution is again penalized
when BESs become very large (speedup becomes superlin-
ear for BESs exceeding8 · 106 variables).

Figure 5(c) shows the BES class with lowest speedups.
The graph corresponds to BESs with 2% of variable kind
alternation and1% of boolean constants. Such BESs, con-
taining long paths of∨-variables ended byT constants
(∧-sinks), are often encountered in verification (equiva-
lence checking of deterministic systems and model check-
ing [11]). Hence, backward propagation of stable variables
can be very effective and often reaches the variable of inter-
est. The sequential algorithm implements an efficient prop-
agation mechanism (since all information about predeces-
sor dependencies is stored locally), whereas the cost of sta-
bilization messages in DSOLVE (which are as numerous
as expansion messages) cannot be overlapped by compu-
tation activities. This explains the low speedup obtained
with DSOLVE until a BES size of1.6 · 107 variables, where
it becomes close to linear, due to the overhead of search-
ing and putting variables in hash tables. We observe the
same behaviour for BESs characterized by any percentage
of variable kind alternation in]0, 100[and any percentage
of boolean constants in]0, 100[.

Scalability. Scalability can be expressed in terms of varia-
tion of processing speed (increasing the BES size on a fixed
set of nodes), or in terms of execution time (increasing the
number of nodes on a fixed BES size).

Figure 6 presents both scalabilities. Each curve repre-
sents the processing speed of boolean variables with a fixed
set of XEON nodes varying from3 to 17. Each point on
a curve is an instance of resolution for a BES size between
104 to 2.4 ·108 variables (y-axis), and whose execution time
varies from0.1 to 1 800 seconds (x-axis). The BESs consid-
ered have0% of boolean constants,0% of variable kind al-
ternation, and an average equation length of10. Points on a
same horizontal line represent a same problem instance.

The shape of the curves for large BESs is close to linear
(it does not converge immediately to a horizontal asymp-
tote) showing that the processing speed scales well with the
number of nodes. Increasing the number of nodes on a fixed
BESsize yields superlinear gains (see the discussion on Fig-
ure 5(a)). Hence, solving a BES with 100 million variables
will be more than two times faster on13 nodes than on7

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 0 200 400 600 800 1000 1200 1400 1600 1800

V
ar

ia
bl

es

Time (sec)

p=3
p=5
p=7
p=9

p=11
p=13
p=15
p=17

Figure 6. Scalability w.r.t. BES size and node
number

nodes. For the class of BES considered, DSOLVE handles
a BES with 240 million variables,1.2 billion transitions on
17 XEON nodes in less than28 minutes, whereas the se-
quential algorithm starts running out of memory around16
million variables on a single XEON node. The same BES

resolution has been made with81 PENTIUM nodes, and it
achieved similar results both in execution time and num-
ber of messages exchanged. The number of messages ex-
changed is about1.1 billion, among which100 thousand
messages are for termination detection. This communica-
tion cost is due to a lack of data locality induced by the
static hash function, and explains the shape of the scalabil-
ity curve, which is lower than linear.

It would be interesting to study the effect of the explo-
ration strategy on the scalability of DSOLVE, for instance by
considering a combination of sequential depth-first search
(performed locally by each node) and distributed breadth-
first search (performed globally by all nodes). We leave this
topic for future work.

Memory and communication cost. All our experiments
show a perfect load balancing achieved by the hash func-
tion (sets of boolean variables are equally divided among
theP nodes). The memory overhead due to distributed res-
olution is not significant compared to the memory allocated
for data: if Ms is the sequential memory cost, thenMP ,
the memory cost on each of theP nodes, is approximately
Ms/P . The communication cost can also be evaluated, as-
suming that messages are sent for each cross-dependency
(edge(x, y) ∈ E such thath(x) 6= h(y)). Since the hash
function h shares variables equally among nodes, it also
shares dependencies equally. Thus, the number of cross-
dependencies can be evaluated to((P -1)/P) · |E|, since
statistically only|E|/P transitions will be local. Hence, at

most((P -1)/P) · |E| expansion messages are exchanged,
and at most((P -1)/P) · |E| corresponding stabilization
messages.

5. Conclusion and Future Work

We have presented DSOLVE, a distributed algorithm
for local resolution of BESs, which runs on widely-used
loosely-coupled parallel machines such as PC clusters and
NOWs. An extensive set of experiments performed on large
BESs with various forms (including typical ones encoun-
tered in applications) revealed linear speedups, which even
become superlinear for large BESs of particular forms.
Moreover, speedups are stable w.r.t. the BES size and the
number of processors, therefore showing a good scalabil-
ity of DSOLVE. As far as we know, this is the first attempt
to devise a generic implementation of distributed local BES

resolution. We are currently applying DSOLVE for verifica-
tion of concurrent programs (equivalence checking, model
checking, and partial order reduction), which already al-
lowed to scale up verification capabilities to larger programs
than with currently available sequential tools.

We plan to continue our work along several directions.
Firstly, we will generalize the DSOLVE algorithm for the
case (encountered in model checking) of BESs having sev-
eral blocks of equations with acyclic inter-block dependen-
cies; this requires to handle the interleaving of several si-
multaneous resolutions. Secondly, we will develop and ex-
periment other applications of DSOLVE, e.g., resolution of
Horn clauses, for which succinct translations to BESs (lin-
ear BESsize w.r.t. the number of literals and operators in the
Horn clause) are available [9]. Finally, DSOLVE could be
extended for solving general systems of (monotonic) equa-
tions defined over complete lattices, with direct applications
in the field of abstract interpretation and data flow analy-
sis [6].

Acknowledgements

We are grateful to Nicolas Descoubes for implementing
the generic communication library used by the DSOLVE al-
gorithm.

References

[1] H. R. Andersen. Model checking and boolean graphs.Theo-
retical Computer Science, 126(1):3–30, April 1994.

[2] H. R. Andersen and B. Vergauwen. Efficient Checking of Be-
havioural Relations and Modal Assertions using Fixed-Point
Inversion. In P. Wolper, editor,Proceedings of the 7th Inter-
national Conference on Computer Aided Verification CAV ’95
(Liege, Belgium), volume 939 ofLecture Notes in Computer
Science, pages 142–154. Springer Verlag, July 1995.

[3] A. Arnold and P. Crubillé. A linear algorithm to solve fixed-
point equations on transition systems.Information Processing
Letters, 29:57–66, 1988.

[4] Benedict Bollig, Martin Leucker, and Michael Weber. Lo-
cal Parallel Model Checking for the Alternation Free Mu-
Calculus. In D. Bonaki and S Leue, editors,Proceedings of
the 9th International SPIN Workshop on Model checking of
Software (SPIN ’02), volume 2318 ofLNCS, pages 128–147.
Springer Verlag, 2002.

[5] R. Cleaveland and B. Steffen. A Linear-Time Model-
Checking Algorithm for the Alternation-Free Modal Mu-
Calculus. Formal Methods in System Design, 2:121–147,
1993.

[6] Christian Fecht and Helmut Seidl. An Even Faster Solver
for General Systems of Equations. In Radhia Cousot and
David A. Schmidt, editors,Proceedings of the 3rd Interna-
tional Symposium on Static Analysis SAS’96 (Aachen, Ger-
many), volume 1145 ofLecture Notes in Computer Science,
pages 189–204. Springer Verlag, September 1996.

[7] Hubert Garavel. OPEN/CÆSAR: An Open Software Archi-
tecture for Verification, Simulation, and Testing. In Bernhard
Steffen, editor,Proceedings of the First International Confer-
ence on Tools and Algorithms for the Construction and Anal-
ysis of Systems TACAS’98 (Lisbon, Portugal), volume 1384
of Lecture Notes in Computer Science, pages 68–84, Berlin,
March 1998. Springer Verlag. Full version available as IN-
RIA Research Report RR-3352.

[8] Hubert Garavel, Frédéric Lang, and Radu Mateescu. An
Overview of CADP 2001. European Association for Soft-
ware Science and Technology (EASST) Newsletter, 4:13–24,
August 2002. Also available as INRIA Technical Report RT-
0254 (December 2001).

[9] X. Liu and S. A. Smolka. Simple Linear-Time Algorithms
for Minimal Fixed Points. In Kim G. Larsen, Sven Skyum,
and Glynn Winskel, editors,Proceedings of the 25th Inter-
national Colloquium on Automata, Languages, and Program-
ming ICALP’98 (Aalborg, Denmark), volume 1443 ofLec-
ture Notes in Computer Science, pages 53–66. Springer Ver-
lag, July 1998.

[10] Angelika Mader. Verification of Modal Properties Using
Boolean Equation Systems. VERSAL 8, Bertz Verlag, Berlin,
1997.

[11] Radu Mateescu. A Generic On-the-Fly Solver for
Alternation-Free Boolean Equation Systems. In Hubert Gar-
avel and John Hatcliff, editors,Proceedings of the 9th Interna-
tional Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems TACAS’2003 (Warsaw, Poland),
volume 2619 ofLecture Notes in Computer Science, pages
81–96. Springer Verlag, April 2003. Full version availableas
INRIA Research Report RR-4711.

[12] J. Matocha and T. Camp. A taxonomy of distributed termi-
nation detection algorithms.Journal of Systems and Software,
43:207–221, 1998.

[13] Gordon Pace, Frédéric Lang, and Radu Mateescu. Calculat-
ing τ -Confluence Compositionally. In Jr Warren A. Hunt and
Fabio Somenzi, editors,Proceedings of the 15th International
Conference on Computer Aided Verification CAV’2003 (Boul-
der, Colorado, USA), volume 2725 ofLecture Notes in Com-
puter Science, pages 446–459. Springer Verlag, July 2003.
Full version available as INRIA Research Report RR-4918.

[14] B. Vergauwen and J. Lewi. Efficient Local Correctness
Checking for Single and Alternating Boolean Equation Sys-
tems. In S. Abiteboul and E. Shamir, editors,Proceed-
ings of the 21st ICALP (Vienna), volume 820 ofLecture
Notes in Computer Science, pages 304–315, Berlin, July 1994.
Springer Verlag.

