
Translating FSP into LOTOS and Networks of Automata

Frédéric Lang1, Gwen Salaün2,1, Rémi Hérilier1, Jeff Kramer3, and Jeff Magee3

1Vasy project-team, Inria Grenoble Rhône-Alpes/Lig, Montbonnot, France
2Grenoble Institut National Polytechnique, Grenoble, France
3Department of Computing, Imperial College, London, UK

Abstract

Many process calculi have been proposed since Robin Milner and Tony Hoare opened the way more
than 25 years ago. Although they are based on the same kernel of operators, most of them are incom-
patible in practice. We aim at reducing the gap between process calculi, and especially making possible
the joint use of underlying tool support. FSP is a widely-used calculus equipped with Ltsa, a graphical
and user-friendly tool. Lotos is the only process calculus that has led to an international standard, and
is supported by the Cadp verification toolbox. We propose a translation of FSP sequential processes
into Lotos. Since FSP composite processes (i.e., parallel compositions of processes) are hard to encode
directly in Lotos, they are translated into networks of automata which are another input language ac-
cepted by Cadp. Hence, it is possible to use jointly Ltsa and Cadp to validate FSP specifications. Our
approach is completely automated by a translator tool.

1 Introduction

Process calculi (or process algebras) are abstract description languages to specify concurrent systems. The
process algebra community has been working on this topic for 25 years and many different calculi have been
proposed. Meanwhile, several toolboxes have been implemented to support the design and verification of
systems specified with process calculi. However, although they are based on the same kernel of operators,
most of them are incompatible in practice. In addition, there are very few bridges between existing verification
tools. Our goal is to reduce the gap between the different formalisms, and to propose some bridges between
existing tools to make their joint use possible.

We focus here on the process calculi FSP and Lotos. FSP [MK06] is an easy to learn process calculus
conceived to make specifications easy to write and concise. FSP is supported by Ltsa, a user-friendly tool
that compiles FSP specifications into finite state machines known as Ltss (Labeled Transition Systems),
visualising and animating Ltss through graphical interfaces, and verifying LTL properties. FSP/Ltsa are
quite widely-used: Magee and Kramer’s book on Concurrency [MK06], which presents FSP and Ltsa,
has sold over 15, 000 copies, courses using FSP/Ltsa are taught at numerous universities worldwide, and
a considerable number of research groups are using FSP/Ltsa in their research (589 citations in Google
Scholar as of January 2009).

On the other hand, Lotos is an ISO standard [ISO89], which has been applied successfully to many
application domains. Lotos is more structured than FSP, and then adequate to specify complex systems
possibly involving data types. Lotos is equipped with Cadp [GLMS07], a verification toolbox for asyn-
chronous concurrent systems distributed worldwide, which allows very large state spaces to be handled, and
implements various verification techniques such as model checking, compositional verification, equivalence
checking, distributed model checking, etc.

To sum up, the simplicity of FSP makes it more accessible to “newcomers” than Lotos, which requires
a better level of expertise. In addition, Cadp is a rich and efficient verification toolbox that can complement
basic analysis possible with Ltsa. We propose to translate FSP specifications into Lotos to enable FSP
users to access the verification techniques available in the Cadp toolbox. Since some FSP constructs for

1

composite processes are difficult to encode into Lotos (for instance synchronisations between complex labels
or priorities), they have been encoded into another input format of Cadp named Exp.Open 2.0 [Lan05]
(simply written Exp.Open in the sequel). Exp.Open allows networks of automata to be described using
general parallel composition operators, but also supports renaming, hiding and priorities.

Our goal is not to replace Ltsa, since Ltsa is convenient to debug and visualise graphically simple
examples, but to complement it with supplementary verification techniques such as those mentioned before.
Furthermore, we choose a high-level translation between process calculi, as most as possible, instead of
low-level connections with Cadp (through the Open/Cæsar application programming interface [Gar98] for
instance) because:

• We preferred to keep the expressiveness of the specification and then make the translation of most
behavioural operators easier;

• High-level models are necessary to use some verification techniques available in Cadp, such as compo-
sitional verification [GL01, Lan02, Lan05, Lan06];

• Verification of the generated Lotos code can benefit from the numerous optimisations implemented in
the Cæsar.adt and Cæsar [Gar89a, Gar89b, Gar90, GS06] compilers for Lotos available in Cadp,
which would be too expensive to re-implement for FSP.

We implemented the translation from FSP to Lotos/Exp.Open in a completely automated tool named
Fsp2Lotos (about 25,000 lines of code). This tool was validated on many examples (more than 10,000 lines
of FSP) to ensure that the translation is reliable. As regards semantics, our translation preserves strong
equivalence between processes.

The remainder of this article is organised as follows. Section 2 gives short introductions to Ltss, FSP,
Lotos, and Exp.Open. Section 3 presents formally the translation rules from FSP sequential processes
into Lotos and from FSP composite processes into Exp.Open. Section 4 presents the Fsp2Lotos tool and
its validation. Section 5 illustrates how Ltsa and Cadp can be used jointly on a simple system. Section 6
presents some related work. Section 7 provides concluding remarks.

2 Background

In this section, we present the underlying semantic model used in this work, namely Labeled Transition
Systems (Ltss) as well as the source language FSP and the target languages Lotos and Exp.Open of our
translator.

2.1 Labeled Transition Systems and Bisimulations

An Lts is a graph defined as a quadruple “(Q, A,→, q0)”, consisting of a set Q of states, a set A of symbols
called labels or actions, a labeled transition relation “→ ⊆ Q × A × Q”, and an initial state “q0 ∈ Q”. As
usual, we write “q1

a
−→ q2” instead of “(q1, a, q2) ∈ →”.

Following CCS, Lts is the semantic model underlying FSP, Lotos, and Exp.Open: to each process can
be associated an Lts that defines the behaviour of the process exhaustively. In addition, an Lts usually
has a special symbol that denotes an internal action of the process. This symbol is generally written τ in
theoretical work, and more concretely written “i” in Lotos/Cadp and “tau” in FSP/Ltsa.

The Lts model used in Ltsa also has a special sink state (i.e., a state without outgoing transitions)
modeling an error of the system, called error state. Such an error state can be encoded in the above Lts
model as a normal state that contains a single self-looping transition labeled by a special error symbol.

To decide whether two processes are equivalent, one has to compare the Ltss associated to each process.
To this aim, we follow the approach based on graph bisimulations. Of interest in this work are strong
bisimulation [Par81], which captures the fact that two processes have exactly the same behaviour, including
internal actions (τ -transitions), and branching bisimulation [vGW89], which captures the fact that two
processes have similar behaviours, except differences on internal actions provided they do not affect the
choices of non-internal actions available from branching bisimilar states. Two processes are strongly equivalent

2

(respectively branching equivalent) if their corresponding Ltss are strongly bisimilar (respectively branching
bisimilar). More formally, let “(Q, A,→, q0)” be an Lts, and q1 and q2 be states of that Lts:

• q1 and q2 are strongly bisimilar if there exists a relation “R ⊆ Q × Q” such that “R(q1, q2)” and (1)

for each transition “q1
a

−→ q′1”, there is a transition “q2
a

−→ q′2” such that “R(q′1, q
′

2)”, and (2) for each

transition “q2
a

−→ q′2”, there is a transition “q1
a

−→ q′1” such that “R(q′2, q
′

1)”.

• q1 and q2 are branching bisimilar if there exists a relation “R ⊆ Q × Q” such that “R(q1, q2)” and (1)

for each transition “q1
a

−→ q′1”, either “a = τ” and “R(q′1, q2)”, or there is a path “q2
τ∗
−→ q′2

a
−→ q′′2 ”

such that “R(q1, q
′

2)” and “R(q′1, q
′′

2)”, and (2) for each transition “q2
a

−→ q′2”, either “a = τ” and

“R(q′2, q1)”, or there is a path “q1
τ∗
−→ q′1

a
−→ q′′1” such that “R(q2, q

′

1)” and “R(q′2, q
′′

1)”.

Two Ltss “(Qi, Ai,→i, q0i) (i ∈ {0, 1})” are strongly bisimilar (respectively branching bisimilar) if the
states q00 and q01 are strongly bisimilar (respectively branching bisimilar) in the Lts “(Q0⊎Q1, A0∪A1,→0

∪ →1, q00)”, where “Q0 ⊎ Q1” denotes the disjoint union of Q0 and Q1.
In every class of strongly bisimilar (respectively branching bisimilar) Ltss, there exists a unique

representative (modulo a renaming of states) that is minimal in number of states and transitions.
We call Lts minimization the computation of this representative, for which there exists efficient algo-
rithms [PT87, GV90, KS90] and tools [BO05, GLMS07].

The Lts model also allows temporal logic formulas to be verified by evaluation on the initial state of the
Lts. For instance, Ltsa allows the specification and verification of safety and progress properties themselves
written in FSP, and Cadp allows the specification and verification of temporal logic formulas expressed in
the regular alternation-free µ-calculus [MS03].

2.2 FSP

FSP (Finite State Processes) is a recent process calculus [MK99, MK06] originally proposed to design software
architectures [MDEK95, Mag99]. FSP allows Booleans, integers, constant character strings, and sets to
represent data, as well as processes to represent behaviours. An FSP process may be either basic (i.e.,
sequential) or composite (i.e., built from parallel compositions of processes).

We give here a short presentation of FSP processes in the form of an abstract grammar, which allows
us to get rid of details of FSP’s concrete syntax. We omit the “@” visibility operator, whose treatment is
close to its dual hiding operator, although our tool presented in Section 4 supports this operator. Also,
we do not handle safety and progress properties which, in further work, could be translated into regular
alternation free modal µ-calculus formulas in order to be verified using the Evaluator [MS03] tool of
Cadp. A comprehensive concrete syntax of FSP is described in Magee and Kramer’s book [MK06].

Figures 1 and 2 present the grammar of FSP basic and composite processes, respectively. In the grammar,
and also in the sequel, we use “. . .” and indexed terms to represent sequences of arbitrary length. For instance,
“V1, . . .,Vn” represents a possibly empty sequence of terms separated by commas. Note that “. . .” should
not be confused with the “..” terminal symbol of FSP. We use the symbol P (or “P1, P2, . . .”) to represent
process identifiers, x (or “x1, x2, . . .”) to represent variables, act to represent character strings, and V (or
“V1, V2, . . .”) to represent data expressions. To avoid details about the concrete syntax of data expressions,
we consider that an expression is either a variable x, or the application of a function f to expressions
“V1, . . . , Vn”, written “f(V1, . . . , Vn)”. Without loss of generality, literal constants can be considered as
functions without parameters.

FSP has an expressive syntax to represent labels. FSP labels, written A (or “A′, A1, A2, . . .”), are
concatenations of sublabels written L (or “L′, L1, L2, . . .”), each of which is either a character string act,
an expression V , a nonempty set of labels “{A1, . . . , An}”, or a nonempty integer range “V1..V2”, where V1

and V2 are integer expressions. An FSP label thus denotes a set of label strings obtained by (combinatorial)
concatenation of sublabel strings. When a variable x is associated to a sublabel, such as in “x:V1..V2”, x
is assigned any value in the label set corresponding to the sublabel.

A basic process definition Db consists of:

• a process name P ;

3

Db ::= P(x1=V1, . . . , xk=Vk) = B0 process definition
Dl1, . . . , Dlm local processes
+{Ae1

, . . . , Aen
} alphabet extension

/{A′

r1
/Ar1

, . . . , A′

rp
/Arp

} \{Ah1
, . . . , Ahq

} relabeling & hiding

Dl ::= P[x1
1:L

1
1] . . . [xn

1:L
n
1] = B1, local process definition

. . .
P[x1

m:L1
m] . . .[xn

m:Ln
m] = Bm

B ::= stop deadlock termination
| end normal termination
| error erroneous termination
| A → B0 prefixing
| P(V1, . . . , Vn);B0 global process call
| P[V1] . . .[Vn] local process call
| if V then B1 else B2 conditional branching
| when V1 B1 | . . . | when Vn Bn choice

A ::= L1 . . . Ln label

L ::= act action
| V | x:V expression
| {A1, . . . , An} | x:{A1, . . . , An} label set
| V1..V2 | x:V1..V2 range

Figure 1: Abstract grammar of the FSP language: basic processes

4

• a (possibly empty) list of data parameters “xi (i ∈ 1..k)”, each data parameter being assigned a default
value Vi;

• a basic behaviour B0, described below;

• a (possibly empty) list of local process definitions “Dl1, . . . , Dlm”;

• a (possibly empty) set of relabeling rules “{A′

r1
/Ar1

, . . . , A′

rp
/Arp

}”, which apply to the labels of B0,
where “Ari

, Ar′

i
(i ∈ 1..p)” are label expressions: each label in the label set corresponding to Ari

renames into labels corresponding to A′

ri
(i.e., a single label may rename into several labels);

• a (possibly empty) set of FSP labels “{Ah1
, . . . , Ahq

}” to be hidden in B0, i.e., renamed into the
internal action tau;

• a (possibly empty) set of labels “{Ae1
, . . . , Aen

}” which, together with the set of non-hidden labels
occurring in B0 constitutes the alphabet of the process.

Each local process is defined by an ordered set of equations, each of the form “P[x1
i :L

1
i] . . .[xn

i :L
n
i] =

Bi”, where “x1
i , . . . , x

n
i ” are variables and each label Lj

i does not contain expressions. In the concrete syntax,

each “xj
i (j ∈ 1..n)” is optional, but we make them mandatory in the abstract syntax so as to simplify the

presentation of translation rules. Parsing into the abstract syntax may thus require adding some dummy
variables xj

i for those Lj
i not preceded by a variable in the concrete syntax. Also, FSP’s concrete syntax

allows the definition of several local processes with same name but different arities. Instead, we assume that
parsing has associated a unique name to each local process, which corresponds to a particular ordered set of
equations Dl.

A local process call of the form “P [V1] . . . [Vn]” is substituted by the first Bi such that “L1
i , . . . , L

n
i ”

contain respectively the values “V1, . . . , Vn”, in which each “xj
i (j ∈ 1..n)” is replaced by Vj . If no such Bi

exists, then the process call is equivalent to “error”.
As regards hiding and relabeling, FSP uses label prefix matching, which means that the rules apply to

label prefixes. For instance, as regards hiding, a label is hidden if some of its prefixes belongs to the set of
labels to be hidden.

The operational semantics of FSP can be expressed in terms of an Lts. Informally, the semantics of
sequential behaviours is the following:

• The “stop” behaviour corresponds to deadlock termination. No transition can be derived from “stop”.

• The “end” behaviour corresponds to successful termination. It does not produce a transition but, if it
occurs in the left part of the sequential composition operator “;”, then the execution of the right part
immediately starts.

• The “error” behaviour corresponds to erroneous termination. It is modeled by the error state.

• “A → B0” corresponds to the prefixing of behaviour B0 by any action a belonging to A. It produces
a transition labeled by a and then behaves as B0, in which every variable x possibly defined in A is
replaced by its value.

• “P(V1, . . . , Vn);B0” corresponds to the execution of the basic global process P with actual param-
eters “V1, . . . , Vn”, followed by B0 once P has terminated succesfully. FSP’s concrete syntax also
allows calls of the form “P(V1, . . . , Vn)” (not followed by a behaviour B0), which is parsed into
“P(V1, . . . , Vn);end” in the abstract syntax.

• “P[V1] . . .[Vn]” corresponds to the execution of the local process P , indexed by “V1, . . . , Vn”. A local
process call cannot be followed by another behaviour.

• “if V then B1 else B2” behaves as B1 if V evaluates to true, and as B2 otherwise.

• “when V1 B1 | . . . | when Vn Bn” behaves nondeterministically as any branch Bi whose condition Vi

evaluates to true.

5

Dc ::= ||P(x1=V1, . . . , xk=Vk) = C0 process definition
opp {Ap1

, . . . , Apn
} \{Ah1

, . . . , Ahq
} priority & hiding

opp ::= ≫ high priority operator
| ≪ low priority operator

C ::= P(V1, . . . , Vn) process call
| C1|| . . . ||Cn parallel composition
| C0/{A′

1/A1, . . . , A
′

n/An} relabeling
| {A1, . . . , An}:C0 labeling
| {A1, . . . , An}::C0 sharing
| if V then C1 else C2 conditional branching
| forall [x1:L1] . . . [xn:Ln] C0 replication

Figure 2: Abstract grammar of the FSP language: composite processes

A composite process definition Dc consists of:

• a process name P , the symbol “||” which precedes P indicating that P belongs to the class of composite
processes;

• a (possibly empty) list of data parameters “xi (i ∈ 1..k)”, each data parameter being assigned a default
value Vi;

• a composite behaviour C0, described below;

• a (possibly empty) list of labels “{Ap1
, . . . , Apn

}” that are assigned either higher (symbol “≪”) or
lower (symbol “≫”) priority than all other labels occurring in C0;

• a (possibly empty) set of FSP labels “{Ah1
, . . . , Ahq

}” to be hidden, i.e., renamed into tau.

The semantics of composite behaviours C is the following:

• “P(V1, . . . , Vn)” corresponds to a (basic or composite) process call.

• “C1|| . . .||Cn” corresponds to the parallel composition of the composite behaviours “C1, . . . , Cn”.
All behaviours among “C1, . . . , Cn” that contain a common label in their alphabets must synchronise
all together on that label.

• “C0/{A′

1/A1, . . . , A
′

n/An}” corresponds to the relabeling of C0, which has the same semantics as for
basic processes.

• “{A1, . . . , An}:C0”, called process labeling, generates an interleaving of as many instances of C0 as there
are labels in “{A1, . . . , An}”. All the labels of each instance are prefixed by the label of “{A1, . . . , An}”
associated to this instance. It is assumed that “n 6= 0”.

• “{A1, . . . , An}::C0”, called process sharing, replaces each label l occurring in C0 by a choice between
labels “A1l, . . . , Anl”. It is assumed that “n 6= 0”.

• “if V then C1 else C2” behaves as C1 if V evaluates to true, and as C2 otherwise.

• “forall [x1:L1] . . . [xn:Ln] C0” corresponds to the parallel composition of as many instances of C0

as there are valuations of “x1, . . . , xn” such that the value of each xi belongs to the set of labels
“Li (i ∈ 1..n)”. In each instance of C0, each “xi (i ∈ 1..n)” is replaced by its value in the corresponding
valuation.

6

1 E

20

b.comm

a.comm

b.comm

a.comm

||C1

0 E

b.comm
a.comm

||C2

Figure 3: Process labeling and process sharing in FSP

Example 1 An illustration of process labeling and process sharing is given in Figure 3. The figure shows
the automata corresponding to the following processes:

P = comm -> end

||C1 = {a, b}: P

||C2 = {a, b}:: P

�

An FSP specification consists of a set of basic (Db) and composite (Dc) process definitions. We note “P̂”
the process definition corresponding to the basic or composite process P , and we note “P̂ [V ′

1 , . . . , V ′

k]” the
process definition corresponding to P , in which the default parameter values “V1, . . . , Vk” are replaced by
“V ′

1 , . . . , V ′

k”. For instance, if “P̂” corresponds to:

||P(x1=V1, . . . , xk=Vk) = C ≫ {Ap1
, . . . , Apn

} \{Ah1
, . . . , Ahq

}

then “P̂ [V ′

1 , . . . , V ′

k]” corresponds to:

||P(x1=V
′

1 , . . . , xk=V
′

k) = C ≫ {Ap1
, . . . , Apn

} \{Ah1
, . . . , Ahq

}.

The behaviour of the whole FSP specification is that of a particular process, which may be either selected
by the user, or chosen by default. We call this particular process the main process of the FSP specification.

Example 2 The following specification describes in FSP’s concrete notation a semaphore inspired from an
example in [MK06]. The indexed process notation “SEMA[v:Int]” represents two processes named “SEMA[0]”
and “SEMA[1]”, which are mutually recursive. The “ACCESS” process simulates a client which accesses the
critical section protected by the “SEMAPHORE” process. The main process, called “SEMADEMO”, is composed of
an instance of the “SEMAPHORE” process that models a semaphore in charge of three resources “a, b, c”, and
an instance of the “ACCESS” process that wants to access these resources.

range Int = 0..1

SEMAPHORE (N = 0) = SEMA[N],

SEMA[v:Int] = (up -> SEMA[v+1] | when (v > 0) down -> SEMA[v-1]).

ACCESS = (mutex.down -> critical -> mutex.up -> ACCESS).

||SEMADEMO = ({a,b,c}:ACCESS || {a,b,c}::mutex:SEMAPHORE(1)).

The Lts corresponding to the exhaustive behaviour of “||SEMADEMO” process is depicted in Figure 4. �

2.3 LOTOS

Lotos (Language Of Temporal Ordering Specification) is a specification language for distributed open sys-
tems, standardised by Iso [ISO89]. Lotos combines a data part based on algebraic abstract data types to
define data and their operations, and a control part to define (sequential and parallel) processes, inspired
from the CCS [Mil89] and CSP [Hoa85] process algebras. In this section, we do not present Lotos data part,
which is not intensively used in the translation since FSP does not handle complex data types. Their trans-
lation into Lotos makes no particular difficulty. We do not present Lotos parallel composition operators

7

a.mutex.up

0 1 2 3 4 5 6

a.mutex.down

b.mutex.down

c.critical

c.mutex.up

b.mutex.up

||SEMADEMO

b.critical a.criticalc.mutex.down

Figure 4: Transition system computed by Ltsa for the “SEMADEMO” specification

D ::= process P[G1, . . . , Gn](X1: T1, . . . ,Xm: Tm): (exit | noexit) :=
B0 [where D0 . . . Dp]

endproc

Figure 5: Syntax of a Lotos process definition

either, since Lotos is used only as target language for translating FSP sequential processes, the Exp.Open
language (see Section 2.4) being used as target language for FSP composite processes.

A Lotos process has the syntax given in Figure 5. It consists of:

• a process name P ;

• a list of gate parameters “G1, . . . , Gn”;

• a list of data parameters “X1, . . . , Xm” of respective types (in Lotos terminology: sorts) “T1, . . . , Tm”;

• a functionality among “exit” if P may end by the “exit” behaviour, and “noexit” otherwise;

• a behaviour B0;

• and a possible set of local process definitions “D0, . . . , Dp”.

Figure 6 (page 9) gives the grammar of the subset of Lotos behaviours used in this article, which consists
of sequential behaviours only. The operational semantics of sequential behaviours can be expressed in terms
of an Lts. Intuitively, the semantics is the following:

• The “stop” behaviour corresponds to deadlock termination. No transition can be derived from “stop”.

• The “exit” behaviour corresponds to normal termination. It produces a transition labeled by “exit”
and then behaves like “stop”.

• “[V] → B0” behaves either as B0 if the expression V evaluates to true, or as “stop” otherwise.

• “B1[]B2” behaves nondeterministically, either as B1 or as B2.

• “B1>>B2” behaves as B1 until B1 terminates normally, i.e., produces a transition labeled by “exit”.
This transition is then consumed by the “>>” operator and turned into an internal action“i”, followed
by the behaviour of B2.

8

B ::= stop deadlock termination
| exit normal termination
| [V] → B0 guarded behaviour
| B1[]B2 choice
| B1>>B2 sequential composition
| P[G′

1, . . . , G
′

n](V1, . . . , Vm) process call
| choice X : T [] B0 value choice
| A; B0 action prefix
| hide G1, . . . , Gn in B0 hiding

A ::= G O1 . . . On [V] (guarded) visible action
| i internal action

O ::= !V | ?X : T data emission / reception

V ::= X | f(V1, . . . , Vn) value expression

Figure 6: Syntax of a subset of (sequential) Lotos behaviours

• “P[G′

1, . . . , G
′

n](V1, . . . , Vm)” corresponds to a call to process P . If P is defined as in Figure 5, this
call behaves as B0 in which the formal gate parameters “G1, . . . , Gn” are replaced respectively by
the actual gate parameters “G′

1, . . . , G
′

n”, and the formal data parameters “X1, . . . , Xm” are replaced
respectively by the actual values (expressions) “V1, . . . , Vm”. Cyclic behaviours may be defined using
tail-recursive process calls.

• “choice X : T [] B0” behaves as a nondeterministic choice between all instances of B0 in which X is
replaced by some value in T .

• “G O1 . . . On [V]; B0” corresponds to the prefixing of behaviour B0 by action “G O1 . . . On [V]”,
where G is a gate, “O1, . . . , On” are data expressions called offers, and V is a Boolean data expression
called guard. Each offer Oi has either the form “!Vi”, which corresponds to the emission of a value Vi, or
“?Xi : Ti”, which corresponds to the reception of any value Vi of sort Ti, stored in a variable Xi. If the
guard V in which every variable Xi is replaced by Vi evaluates to true, then “G O1 . . . On [V]; B0”
produces a transition labeled by “G !V1 . . . !Vn” and then behaves as B0 in which every variable
Xi is replaced by Vi. Otherwise, it behaves as “stop”. For instance, “RECV ?X : Nat [X ≥
1]; SEND !X; stop” produces either a transition labeled by “RECV !0” followed by a transition
labeled by “SEND !0”, and then stops, or a transition labeled by “RECV !1” followed by a transition
labeled by “SEND !1”, and then stops. The special action “i” corresponds to an internal action and
can neither have offers nor guards.

• “hide G1, . . . , Gn in B0” behaves as B0, except that for every transition produced by B0, the gate of
which belongs to “G1, . . . , Gn”, the transition label is replaced by the internal action “i”.

Example 3 The following example describes in Lotos’s concrete syntax two sequential processes named
“SEMAPHORE LOTOS” and “ACCESS LOTOS”.

process SEMAPHORE_LOTOS [UP, DOWN] (N : Nat) : noexit :=

[N < 4] ->

UP; SEMAPHORE_LOTOS [UP, DOWN] (N + 1)

[]

[N > 0] ->

DOWN; SEMAPHORE_LOTOS [UP, DOWN] (N - 1)

endproc

9

10 2 3 4

UP UP UPUP

DOWN DOWN DOWNDOWN
1

2

0

MUTEX DOWN

CRITICAL

MUTEX UP

Figure 7: Ltss generated by the Cæsar tool of Cadp for the instances “SEMAPHORE LOTOS [UP, DOWN] (0)”
(left) and “ACCESS LOTOS [MUTEX UP, MUTEX DOWN, CRITICAL]” (right) of the sequential processes defined
in Example 3.

process ACCESS_LOTOS [MUTEX_UP, MUTEX_DOWN, CRITICAL] : noexit :=

MUTEX_DOWN;

CRITICAL;

MUTEX_UP;

ACCESS_LOTOS [MUTEX_UP, MUTEX_DOWN, CRITICAL]

endproc

The Ltss corresponding to the instances “SEMAPHORE LOTOS [UP, DOWN] (0)” and
“ACCESS LOTOS [MUTEX UP, MUTEX DOWN, CRITICAL]” are given in Figure 7. �

2.4 EXP.OPEN

Exp.Open 2.0 [Lan05] is a tool of the Cadp toolbox that allows all applications written using the
Open/Cæsar [Gar98] application programming interface to be executed directly on networks of commu-
nicating automata. Cadp contains Open/Cæsar applications for step-by-step and random simulation,
temporal logic verification, equivalence checking, test generation, etc. For instance, the evaluation of a
temporal logic formula described in the file “prop.mcl” on the network of automata described in the file
“spec.exp” using the Open/Cæsar application of Cadp named Evaluator [MS03] can be done using the
single command “exp.open spec.exp evaluator prop.mcl”.

The input language of Exp.Open, which we also call Exp.Open, allows the description of such networks
using synchronisation vectors, and generalisations of several parallel composition, renaming, hiding, cutting,
and priority operators taken from the process algebras CCS, CSP, Lotos, E-Lotos, and µCrl.

While Lotos synchronisation rules depend on the gate name and only allow synchronisations of transi-
tions that have the same label, Exp.Open allows more flexible label handling mechanisms, such as synchro-
nisations determined by regular expressions, and renaming, hiding, cutting, and synchronisation rules that
may depend either upon the gate part of labels as in Lotos, or upon labels as a whole. This additional
flexibility of Exp.Open with respect to Lotos will be appropriate when translating FSP concurrent con-
structs, whose semantics is not easily expressible in Lotos. For this reason, we use Exp.Open instead of
Lotos as the target language for FSP concurrent behaviours.

Despite this generality, Exp.Open satisfies nice congruence properties inherited from process alge-
bras, namely: strong bisimulation is a congruence for all Exp.Open operators, and branching bisimula-
tion [vGW89], observational equivalence [Mil89], trace equivalence (also known as language equivalence),
weak trace equivalence [BHR84], and safety equivalence [BFG+91] (among others) are congruences for all
Exp.Open operators except priority.

We present in Figure 8 (page 11) the part of the Exp.Open language that is used in this article.
“L1, L

′

1, L2, . . .” represent labels, which are merely character strings. In the case of “rename”, “hide”,
“cut”, and “prio”, they may also be regular expressions aimed to match labels. As FSP and Lotos,
Exp.Open expressions have an operational semantics defined in terms of an Lts:

• “"F.bcg"” is the name of a file describing an Lts. Its format called Bcg (Binary Coded
Graph) [GLMS07] allows a compact representation of very large Ltss.

10

B ::= "F.bcg" graph

| total rename L1 → L′

1, . . . , Ln → L′

n in B0 end rename rename

| total hide L1, . . . , Ln in B0 end hide hide

| total cut L1, . . . , Ln in B0 end cut cut

| total prio L1, . . . , Ln > all but L1, . . . , Ln in B0 end prio priority (1)

| total prio all but L1, . . . , Ln > L1, . . . , Ln in B0 end prio priority (2)

| label par L1, . . . , Lm in B1 || . . . || Bn end par parallel (1)

| label par V1, . . . , Vm in B1 || . . . || Bn end par parallel (2)

| B1 ||| B2 parallel (3)

V ::= A1 ∗ . . . ∗ An → L sync. vector

A ::= L action

| inaction

Figure 8: Syntax of a subset of the Exp.Open language

• “total rename L1 → L′

1, . . . , Ln → L′

n in B0 end rename” behaves as B0 except that every label
matching one of the “Li (i ∈ 1..n)” is replaced by the corresponding L′

i.

• “total hide L1, . . . , Ln in B0 end hide” behaves as B0 except that every label matching one of the
“Li (i ∈ 1..n)” is replaced by the internal action “i”.

• “total cut L1, . . . , Ln in B0 end cut” behaves as B0 except that every transition whose label matches
one of the “Li (i ∈ 1..n)” is cut, thus potentially making unreachable some states of B0.

• “total prio L1, . . . , Ln > all but L1, . . . , Ln in B0 end prio” behaves as B0 except that every tran-
sition whose label matches one of the “Li (i ∈ 1..n)” takes priority over all other transitions. For
“total prio all but L1, . . . , Ln > L1, . . . , Ln in B0 end prio”, the priority relation is inversed.

• “label par L1, . . . , Lm in B1 || . . . || Bn end par” behaves as the concurrent execution of
“B1, . . . , Bn” with mandatory (n-ary) synchronisation on the labels “L1, . . . , Lm”.

• “label par V1, . . . , Vm in B1 || . . . || Bn end par” behaves as the concurrent execution of
“B1, . . . , Bn” with synchronisation following the constraints expressed by the synchronisation vectors
“V1, . . . , Vm”. Precisely, a synchronisation vector (between n expressions “B1, . . . , Bn”, with “n ≥ 1”)
is a term of the form “A1 ∗ . . . ∗ An → L”, where each Ai is either a label, which corresponds to an
action of Bi, or the special symbol “ ”, which corresponds to inaction of Bi. In a given state, the
vector “A1 ∗ . . . ∗ An → L” produces a transition labeled by L if all Bi such that “Ai 6= ” execute all
together a transition labeled by Ai. We call n the length of the synchronisation vector.

• “B1 ||| B2” behaves as the concurrent execution of B1 and B2 without synchronisation.

Exp.Open provides other variants of the “hide”, “rename”, “cut”, “prio”, and “par” operators
(see [Lan05] for more details). The semantics of each variant is determined by the keyword (“total” and
“label” for the operators described above) that precedes the operator name.

3 Translating FSP Processes into LOTOS and EXP.OPEN

In this section, we describe how a process P of an FSP specification is translated into Lotos and Exp.Open.

11

3.1 Preliminary Definitions

We will present the translation from FSP to Lotos using first-order logic and its usual notions of variables,
(open and closed) terms, and formulas. Sets may be defined either in extension in the form “{e1, . . . , en}”,
or in intension in the form “{t | F (x1, . . . , xn)}”, where t is a term and F a formula whose free variables
“x1, . . . , xn” are variables of t. The latter denotes the set of closed instances of the term t, such that the
valuation of “x1, . . . , xn” satisfies the formula “F (x1, . . . , xn)”. All sets mentioned in this article will be
finite.

We represent a partial function from a set S1 to a set S2 as a set of couples of the form “e1 7→ e2”, where
e1 and e2 are elements of S1 and S2, respectively. We assume that, for a given e1, at most one e2 exists
such that “e1 7→ e2” belongs to the set. The domain of a function f , denoted by “dom(f)”, is defined as the
set of elements “e1 ∈ S1” such that there exists a couple of the form “e1 7→ e2” in f . In this case, we write
“f(e1) = e2”. If “e1 /∈ dom(f)” then “f(e1)” is not legal (undefined value). We represent the empty list by
“()” and the list of head e and tail T by “e :: T ”.

During the translation from FSP to Lotos, we will use the following functions and predicates:

• We write “l·m” the concatenation of labels l and m. We write “ǫ” the neutral element of concatenation,
i.e. such that “(∀l) ǫ · l = l · ǫ = l”.

• The dispatching function “ 7→d” takes two sets of labels. It returns a partial function from labels to
sets of labels, which associates every element of the first set to the second:

{li | i ∈ 1..n} 7→d {mj | j ∈ 1..p} = {li 7→ {mj | j ∈ 1..p} | i ∈ 1..n}

• Function “⊗” takes two sets of labels and returns the set of labels obtained by (combinatorial) con-
catenation of labels taken in each set:

{li | i ∈ 1..n} ⊗ {mj | j ∈ 1..p} = {li · mj | i ∈ 1..n ∧ j ∈ 1..p}

• The prefix matching test “pm?” takes as inputs a label l and a set of labels, and evaluates to true if
one of the labels in the list is a prefix for l:

pm?(l, {li | i ∈ 1..n}) = ((∃i ∈ 1..n) (∃m) l = li · m)

• A relabeling is a partial function from labels to sets of labels, such that a single label may be replaced by
several ones, yielding several transitions. Function “relabel” takes as inputs a label l and a relabeling,
and returns the set of labels obtained after relabeling every prefix of l that belongs to the domain of
the relabeling:

relabel(l, R) =

{

{m′ · l′ | l = m · l′ ∧ m ∈ dom(R) ∧ m′ ∈ R(m)} if pm?(l, dom(R))
{l} otherwise

• In the sequel, FSP sequential composition will have to be translated into the Lotos sequential com-
position operator “B1>>B2”, whose semantics introduces an internal action “i” between the end of B1

and the beginning of B2, as explained page 8. This internal action does not exist in the semantics of
FSP sequential composition. We will see that, to ensure a strong equivalence between the source FSP
specification and the target Lotos specification of a sequential process1, those internal actions can be
removed by using Lts minimisations modulo branching bisimulation. Therefore, we must distinguish
such “i” actions from the internal actions obtained by hiding of FSP labels, which must appear in the
Lts corresponding to the specification. Therefore, we consider a different Lotos label written “TAU”,
as well as the following function “hide”, which takes as inputs a label l and a set of labels H , and
returns “TAU” if l has to be hidden, or l otherwise:

hide(l, H) =

{

TAU if pm?(l, H)
l otherwise

1Note that weaker equivalences are not congruences in concurrent languages which contain priority operators, such as FSP.

Therefore, strong equivalence is an important requirement as regards the semantic correctness of the translator.

12

As regards FSP data expressions, we will also use the standard function “type”, which computes the type
of an FSP expression.

The translation of an FSP specification into Lotos/Exp.Open requires to collect and propagate along the
abstract syntax tree of the FSP specification, information about the context of the process under translation.
Such context information, called an environment, consists of the following elements:

• E, called variable environment, is a partial function from variables to Lotos expressions. E is ini-
tialised with the constant definitions, which are global to all processes, and will be extended to store
the value of parameters and variables.

• X , called constraint environment, is a partial function from variables to integer ranges of the form
“(v1, v2)” corresponding to the set of natural numbers ranging from v1 to v2. For a variable x, “X(x)”
denotes the set of numbers in which x may take its value.

• M , called relabeling environment, is a list of tuples “(R, H)” where R is a relabeling and H is a set of
labels to be hidden.

3.2 Translating Data and Label Expressions

Given a variable environment E, an FSP data expression is translated into a Lotos data expression using
the “f2le” function defined below. We assume that every FSP data operator written “f” can be translated
into a Lotos data operator “f”. Indeed, FSP contains a fixed set of data operators, which can be easily
translated into Lotos data operators, defined using first order conditional algebraic equations. The precise
translation of FSP data operators into Lotos is standard and out of the scope of this paper.

f2le : FSP expression× variable environment → Lotos expression

f2le(x, E) = E(x)

f2le(f(V1, . . . , Vn), E) = f(f2le(V1, E), . . . , f2le(Vn, E))

Both FSP and Lotos have a rich syntax of expressions to represent labels, so that each label expression
evaluates into a set of labels. However, label expressions are structured much differently in each of these
languages.

On the one hand, FSP label expressions are concatenations of smaller label expressions. It is not always
possible to say at compile-time whether a label expression will be renamed or hidden, because the hiding or
renaming operator will act differently on the different values of the label expression. The label expression
has to be expanded , i.e., replaced by its values (a set of labels) to determine which labels of this set are to
be renamed or hidden. This is how Ltsa operates while generating a transition system corresponding to an
FSP specification.

On the other hand, Lotos labels are more structured, since they consist of a static part (the gate) and
an evaluable part (the offers). The fact that a label expression will be renamed (through gate instantiation)
or hidden can be determined statically because it only depends on the gate part. This is how the Cæsar
compiler of Lotos operates.

Therefore, the translation from FSP labels into Lotos cannot be straightforward: in some cases, we can
translate an FSP label expression into a single Lotos label expression, but in many cases, we must expand
the FSP label expression into several Lotos labels, depending on the operations performed on the labels.

To translate labels, we thus define two functions, named “expand” and “expandx”, defined below, which
translate an FSP label expression in a given environment into a set of tuples consisting of a Lotos label
and an updated environment. Function “expand” expands each FSP label expression into a set of couples
consisting of a Lotos label without variables and a variable environment that associates to each variable
occurring in the FSP label the value given by the expansion. For instance, the FSP label “x : 0..2” is
translated by “expand” into the set “{(0, {x 7→ 0}), (1, {x 7→ 1}), (2, {x 7→ 2})}” corresponding to all possible

13

values for the FSP label and subsequent bindings for x. By contrast, function “expandx” keeps the range
variables occurring in the FSP label expression as this allows the translation of FSP labels into more compact
sets of Lotos labels. It thus expands each FSP label expression into a set of triples consisting of a Lotos
label which may contain variables, a variable environment, and a constraint environment that associates
the appropriate range to each variable occurring in the FSP label. For instance, the FSP label “x : 0..2”
is translated by “expandx” into the set “{(x, {x 7→ x}, {x 7→ (0, 2)})}”. During the translation, function
“expand” will be used instead of “expandx” only when required for a correct translation of FSP hiding or
renaming be possible.

Functions “expand” and “expandx” use respectively the auxiliary functions “expandl” and “expandlx”
defined thereafter, which expands a sublabel.

expand : FSP label × variable environment → (expanded label × variable environment) set

expand(L1 . . . Ln, E) = {(l1 · . . . · ln, En+1) | E1 = E ∧ (∀i ∈ 1..n) (li, Ei+1) ∈ expandl(Li, Ei)}

expandl : FSP sublabel × variable environment → (expanded label × variable environment) set

expandl(act, E) = {(act, E)}

expandl(V, E) = {(f2le(V, E), E)}

expandl(x:V, E) = {(v, E ∪ {x 7→ v})} where v = f2le(V, E)

expandl({A1, . . . , An}, E) =
⋃

i∈1..n expand(Ai, E)

expandl(x:{A1, . . . , An}, E) =
⋃

i∈1..n{(li, Ei ∪ {x 7→ li}) | (li, Ei) ∈ expand(Ai, E)}

expandl(V1..V2, E) = {(i, E) | i ∈ f2le(V1, E).. f2le(V2, E)}

expandl(x:V1..V2, E) = {(i, E ∪ {x 7→ i}) | i ∈ f2le(V1, E).. f2le(V2, E)}

expandx : FSP label × variable environment × constraint environment
→ (expanded label × variable environment× constraint environment) set

expandx(L1 . . . Ln, E, X) =
{(l1 · . . . · ln, En+1, Xn+1) | E1 = E ∧ X1 = X ∧ (∀i ∈ 1..n) (li, Ei+1, Xi+1) ∈ expandlx(Li, Ei, Xi)}

14

expandlx : FSP sublabel × variable environment × constraint environment
→ (expanded label × variable environment× constraint environment) set

expandlx(act, E, X) = {(act, E, X)}

expandlx(V, E, X) = {(f2le(V, E), E, X)}

expandlx(x:V, E, X) = {(v, E ∪ {x 7→ v}, X)}
where v = f2le(V, E)

expandlx({A1, . . . , An}, E, X) =
⋃

i∈1..n expandx(Ai, E, X)}

expandlx(x:{A1, . . . , An}, E, X) =
⋃

i∈1..n{(li, Ei ∪ {x 7→ li}, Xi) | (li, Ei, Xi) ∈ expandx(Ai, E, X)}

expandlx(V1..V2, E, X) = {(x, E ∪ {x 7→ x}, X ∪ {x 7→ (f2le(V1, E), f2le(V2, E))})}
where x is an unused variable

expandlx(x:V1..V2, E, X) = {(x, E ∪ {x 7→ x}, X ∪ {x 7→ (f2le(V1, E), f2le(V2, E))})}

Example 4

expand(lab[x:1..2], ∅) = {(lab · 1, {x 7→ 1}), (lab · 2, {x 7→ 2})}
expandx(lab[x:1..2], ∅, ∅) = {(lab · x, {x 7→ x}, {x 7→ (1, 2)})} �

3.3 Relabel Test

We now define the “relabel?” function, which tests whether a set of labels is affected by hiding or renaming
contained in a relabeling environment. This function is used when translating sequences of labels, to decide
which of the “expand” or “expandx” functions has to be used. Indeed, if hiding or renaming has an effect on
the list of labels, then variables must be totally expanded, i.e., the “expand” function must be used.

relabel? : expanded labels × relabeling environment → Boolean

relabel?({li | i ∈ 1..n}, ()) = false

relabel?({li | i ∈ 1..n}, (R, H) :: M) = (∃i ∈ 1..n) pm?(li, H ∪ dom(R)) ∨ relabel?({li | i ∈ 1..n}, M)

3.4 Translating Sequential Processes into LOTOS

FSP sequential processes are translated into Lotos processes. If E0 is the initial environment containing the
definitions of constants, and the main process P of the FSP specification is sequential, then P is translated
into “f2lsd(P̂ , E0, ())”, where “f2lsd” is defined below. It uses the auxiliary functions “f2llp”, which translates
a local FSP process (defined as a set of equations) into a Lotos process, “func”, which computes the Lotos
functionality resulting from the translation of an FSP process, and “f2lb”, defined thereafter.

15

f2lsd : FSP sequential process definition × variable environment × relabeling environment
→ Lotos process

f2lsd(

P(x1=V1, . . . , xk=Vk) =

B0, Dl1 , . . . , Dlm

+{Ae1
, . . . , Aen

}
/{A′

r1
/Ar1

, . . . , A′

rp
/Arp

}

\{Ah1
, . . . , Ahq

}

, E, M) =

process P ′ [EVENT,TAU, ERROR] : func(B0) :=
f2lb(B0, E0, (R, H) :: M)
where

f2llp(Dl1 , E0, (R, H) :: M)
. . .
f2llp(Dlm , E0, (R, H) :: M)

endproc

where P ′ is an unused name
E0 = {x1 7→ V1, . . . , xk 7→ Vk} ∪ E
(∀i ∈ 1..p) Si = {l | (l, E) ∈ expand(Ari

, E0)}
(∀i ∈ 1..p) S′

i = {l | (l, E) ∈ expand(A′

ri
, E0)}

R =
⋃

i∈1..p Si 7→d S′

i

H =
⋃

i∈1..q{l | (l, E) ∈ expand(Ahi
, E0)}

f2llp : FSP local process definition × variable environment× relabeling environment → Lotos process

f2llp(

P[x1
1:L

1
1] . . . [xn

1:L
n
1] = B1,

. . . ,
P[x1

m:L1
m] . . . [x1

m:Ln
m] = Bm

 , E, M) =

process P [EVENT,TAU, ERROR](x1:T1, . . . , xn:Tn) :F :=

(

[C1] → f2lb(B1, {x1
1 7→ x1, . . . , x

n
1 7→ xn} ∪ E, M)

[]

[¬C1] →
(

[C2] → f2lb(B2, {x1
2 7→ x1, . . . , x

n
2 7→ xn} ∪ E, M)

[]

[¬C2] →
. . .
(

[Cm] → f2lb(Bm, {x1
m 7→ x1, . . . , x

n
m 7→ xn} ∪ E, M)

[]

[¬Cm] → f2lb(error, E, M)
)

. . .
)

)

endproc

where x1, . . . , xn are unused variables
(∀i ∈ 1..n) Ti = type(xi)
F = func(B1 | . . . |Bm)

(∀i ∈ 1..m, j ∈ 1..n) Sj
i = {l | (l, E′) ∈ expandl(L

j
i , E)}

(∀i ∈ 1..m) Ci = (x1 ∈ S1
i) ∧ . . . ∧ (xn ∈ Sn

i)

16

func : FSP sequential behaviour → {exit,noexit}

func(B) =

{

exit if exit(B)
noexit otherwise

where exit(stop) = false

exit(end) = true

exit(error) = false

exit(P(V1, . . . , Vn); B) = exit(B)

exit(P[V1] . . . [Vn]) = false

exit(if V then B1 else B2) = exit(B1) ∨ exit(B2)

exit(when V1 → B1 | . . . | when Vn → Bn) =
∨

i∈1..n exit(Bi)

exit(A → B) = exit(B)

The translation from FSP sequential behaviours into Lotos is done by the “f2lb” function defined in
Figure 9. “f2lb” also uses auxiliary functions “applyRH”, “f2ls”, and “f2lsx”, defined below.

Lotos behaviours generated by the translation contain three gates, named “EVENT”, “TAU”, and “ERROR”.
Every Lotos visible label is made of the “EVENT” gate with an offer corresponding to a visible label obtained
by translation of an FSP label using function “expand” or “expandx”. The choice between “expand” and
“expandx” depends whether A has to be relabeled: if so, A is expanded using the “expand” function; if not,
the “expandx” function is used instead. The “ERROR” gate is used to encode FSP error termination. At last,
the “TAU” gate is used to encode the FSP internal action as already explained in Section 3.1.

Function “applyRH” computes a set of labels resulting from a list of operations (renaming and hiding) on
labels. It uses the auxiliary functions “applyR” and “applyH”, defined below, which compute a set of labels
resulting from renaming and hiding, respectively.

applyRH : expanded label set × relabeling environment → expanded label set

applyRH({li | i ∈ 1..n}, ()) = {li | i ∈ 1..n}

applyRH({li | i ∈ 1..n}, (R, H) :: M) = applyRH(applyH(applyR({li | i ∈ 1..n}, R), H), M)

applyR : expanded label set × relabeling → expanded label set

applyR({li | i ∈ 1..n}, R) =
⋃

i∈1..n relabel(li, R)

applyH : expanded label set × expanded label set → expanded label set

applyH({li | i ∈ 1..n}, H) = {hide(li, H) | i ∈ 1..n}

17

f2lb : FSP sequential behaviour× variable environment × relabeling environment → Lotos behaviour

f2lb(stop, E, M) = stop

f2lb(end, E, M) = exit

f2lb(error, E, M) = P ERROR [ERROR]

where the Lotos process P ERROR is defined as:
process P ERROR [ERROR] : noexit :=

ERROR; P ERROR [ERROR]

endproc

f2lb(P(V1, . . . , Vn); B0, E, M) = P ′ [EVENT, TAU, ERROR] >> f2lb(B0, E, M)

where P ′ is the Lotos process defined by

f2lsd(P̂ [V1, . . . , Vn], E, M)

f2lb(P[V1] . . .[Vn], E, M) =

P [EVENT, TAU, ERROR] (f2le(V1, E, M), . . . , f2le(Vn, E, M))

f2lb(A → B0, E, M) =

f2ls(applyRH({l1}, M), f2lb(B0, E1 ∪ E, M))
[] . . . []

f2ls(applyRH({lh}, M), f2lb(B0, Eh ∪ E, M))

 if relabel?(S, M)

f2lsx(l
′

1, X1, f2lb(B0, E
′

1 ∪ E, M))
[] . . . []

f2lsx(l
′

m, Xm, f2lb(B0, E
′

m ∪ E, M))

 otherwise

where {(li, Ei) | i ∈ 1..h} = expand(A, E)
S = {l1, . . . , lh}
{(l′i, E

′

i, Xi) | i ∈ 1..m} = expandx(A, E, X)

f2lb(if V then B1 else B2, E, M) =

[f2le(V, E)] → f2lb(B1, E, M)
[]

[¬ f2le(V, E)] → f2lb(B2, E, M)

f2lb(when V1 B1 | . . . | when Vn Bn, E, M) =

[f2le(V1, E)] → f2lb(B1, E, M)
[] . . . []

[f2le(Vn, E)] → f2lb(Bn, E, M)

Figure 9: Definition of function “f2lb”

18

Functions “f2ls” and “f2lsx”, defined below, generate either a Lotos choice from a set of labels, or
a single label if the set is a singleton. They also choose the appropriate Lotos sequential composition
operator between “>>” and “;”, depending whether the set of labels is a singleton or not.

f2ls : expanded label set × Lotos behaviour → Lotos behaviour

f2ls({li | i ∈ 1..n ∧ n > 0}, B) =

{

l1; B if n = 1
(l1; exit [] . . . [] ln; exit) >> B otherwise

f2lsx : expanded label set × constraint environment × Lotos behaviour → Lotos behaviour

f2lsx(l, {xj 7→ (vj , v
′

j) | j ∈ 1..m}, B) = choice x1:T1, . . . ,xm:Tm [] ([V] → l;B)

where V =
∧

j∈1..m((xj ≥ vj) ∧ (xj ≤ v′j))

(∀i ∈ 1..m) Ti = type(xi)

3.5 Process alphabets

Due to the semantics of the parallel composition operator of FSP, the translation of composite processes
requires to compute the alphabet of a process, i.e., its set of reachable labels. Function “alph” computes such
alphabets. We first define below “alph” for sequential processes, then for composite processes. The auxiliary
function “alphm” computes the alphabet of a process definition.

alph (sequential processes) : FSP sequential behaviour × variable environment → expanded label set

alph(stop, E) = ∅

alph(end, E) = ∅

alph(error, E) = ∅

alph(A → B0, E) =
⋃

(l,E′)∈expand(A,E)({l} ∪ alph(B0, E ∪ E′))

alph(P(V1, . . . ,Vk); B0, E) = alphm(P̂ [V1, . . . , Vk], E, M) ∪ alph(B0, E)

alph(P[V1] . . . [Vn], E) = ∅

alph(if V then B1 else B2, E) =

{

alph(B1, E) if f2le(V, E) = true

alph(B2, E) otherwise

alph(when V1 → B1 | . . . |when Vn → Bn, E) =
⋃

i∈1..n ∧ f2le(Vi,e)=true alph(Bi, E)

19

alph (composite processes) : FSP composite behaviour × variable environment → expanded label set

alph(P(V1, . . . , Vk), E) = alphm(P̂ [V1, . . . , Vk], E)

alph(C0/{A′

1/A1, . . . , A
′

n/An}, E) = applyR(alph(C0, E),
⋃

i∈1..n Si 7→d S′

i)

where (∀i ∈ 1..n) Si = {l | (l, E′) ∈ expand(Ai, E)}
(∀i ∈ 1..n) S′

i = {l | (l, E′) ∈ expand(A′

i, E)}

alph({A1, . . . , An}::C0, E) =
⋃

i∈1..n{l | (l, E′) ∈ expand(Ai, E)} ⊗ alph(C0, E)

alph({A1, . . . , An}:C0, E) =
⋃

i∈1..n{l | (l, E′) ∈ expand(Ai, E)} ⊗ alph(C0, E)

alph(if V then C1 else C2, E) =

{

alph(C1, E) if f2le(V, E)
alph(C2, E) otherwise

alph(C1|| . . . ||Ck, E) =
⋃

i∈1..k alph(Ci, E)

alph(forall [x1:L1] . . . [xn:Ln] C0, E) =
⋃

l1∈S1,...,ln∈Sn
alph(C0, E ∪ {x1 7→ l1, . . . , xn 7→ ln})

where (∀i ∈ 1..n) Si = {li | (li, E
′) ∈ expand(Li, E)}

alphm (sequential processes) : FSP sequential process definition × variable environment
→ expanded label set

alphm(

P(x1=V1, . . . ,xk=Vk) =

B, Dl1 , . . . , Dlm

+{Ae1
, . . . , Aen

}
/{A′

r1
/Ar1

, . . . , A′

rp
/Arp

}

\{Ah1
, . . . , Ahq

}

, E) =

applyR(applyH(alph(B, E0) ∪
⋃

i∈1..m alphm(Dli , E0), H0), R0) ∪
⋃

i∈1..n{l | (l, E′) ∈ expand(Aei
, E)}

where E0 = {x1 7→ V1, . . . , xk 7→ Vk} ∪ E
(∀i ∈ 1..p) Si = {l | (l, E′) ∈ expand(Ari

, E)}
(∀i ∈ 1..p) S′

i = {l | (l, E′) ∈ expand(A′

ri
, E)}

R0 =
⋃

i∈1..p Si 7→d S′

i

H0 =
⋃

i∈1..q{l | (l, E′) ∈ expand(Ahi
, E)}

alphm(

P[x1
1:L

1
1] . . . [xn

1:L
n
1] =B1,

. . . ,
P[x1

m:L1
m] . . .[xn

m:Ln
m] =Bm

 , E) =

(⋃

i∈1..m

⋃

l1∈S1

i
∧...∧ln∈Sn

i

alph(Bi, E ∪ {x1
i 7→ l1, . . . , x

n
i 7→ ln})

)

where (∀i ∈ 1..m)(∀j ∈ 1..n)

Sj
i = {l | (l, E′) ∈ expandl(L

j
i , E)}

alphm (composite processes) : FSP composite process definition × variable environment
→ expanded label set

alphm(

||P(x1=V1, . . . , xk=Vk) = C
≫ {Ap1

, . . . , Apn
}

\{Ah1
, . . . , Ahq

}

 , E) = applyH(alph(C, E0), H0)

where E0 = {x1 7→ V1, . . . , xk 7→ Vk} ∪ E
H0 =

⋃

i∈1..q{l | (l, E′) ∈ expand(Ahi
, E)}

20

3.6 Translating Composite Processes into EXP.OPEN

If E0 is the initial environment containing the definitions of constants, the FSP composite process P of
interest is translated into the Exp.Open expression “f2lcd(P̂ , E0)” where “f2lcd” is defined below.

f2lcd : FSP composite process definition × variable environment → Exp.Open code

f2lcd(

||P(x1=V1, . . .,xk=Vk) = C
≫ {Ap1

, . . . , Apn
}

\{Ah1
, . . . , Ahq

}

 , E)=

total prio "ERROR" > all but "ERROR" in

total cut "exit" in

total hide

"EVENT !l1 · .*", . . . , "EVENT !lm · .*"
in

total prio

all but "EVENT !l′1", . . . , "EVENT !l′p" >

"EVENT !l′1", . . . , "EVENT !l′p"
in

f2lc(C, {x1 7→ V1, . . . , xk 7→ Vk} ∪ E)
end prio

end hide

end cut

end prio

where {(li, Ei) | i ∈ 1..m} =
⋃

i∈1..q expand(Ahi
, E)

{(l′i, E
′

i) | i ∈ 1..p} =
⋃

i∈1..n expand(Api
, E)

Note that the generated Exp.Open code contains regular expressions of the form “EVENT !li ·.*”, where
“.*” is the regular expression that matches any (possibly empty) sequence of labels. This implements the
label prefix matching.

The definition of “f2lcd” details only the case of the “≫” priority operator. The “≪” operator is handled
similarly, except that

all but "EVENT !l′1", . . . , "EVENT !l′p" > "EVENT !l′1", . . . , "EVENT !l′p"

is replaced by

"EVENT !l′1", . . . , "EVENT !l′p" > all but "EVENT !l′1", . . . , "EVENT !l′p".

Function “f2lc”, defined in Figure 10 (page 22), translates composite processes into Exp.Open code.
It uses the auxiliary functions “alph” already defined, as well as “vecr”, “f2lpr”, and “f2lrc”, which will be
detailed below. The renaming rules of the form “"EVENT !\(.*\)" → "EVENT !m · \1"” correspond to the
prefixing of every label by m. The regular expression “\1” in the right-hand side stands for the sequence of
characters matched by the regular expression located in the (first) occurrence of “\(. . . \)” in the left-hand
side.

As already seen earlier, the error state is modeled as a sink state that contains a single (self-looping)
transition labeled “ERROR”. The priority given to action “ERROR” over all other actions in the generated
Exp.Open code ensures that if a component is in the error state, then the whole specification is also in the
error state since “ERROR” is the only action that can be executed.

The “rename” operator of Exp.Open allows many-to-one renaming, i.e., several labels may be renamed
into the same label, but it does not allow one-to-many renaming, i.e., a single label may not be renamed
into several labels, such as in FSP. However, one-to-many renaming can be implemented in Exp.Open using
synchronisation vectors of length 1, i.e., of the form “L1 → L2”. Function “vecr”, defined below, is used to
generate such synchronisation vectors.

21

f2lc : FSP composite behaviour × variable environment → Exp.Open code

f2lc(P(V1, . . . , Vn), E) = f2lpr(P(V1, . . . , Vn), E)

f2lc(C0/{A′

1/A1, . . . , A
′

n/An}, E) = label par vecr(R, alph(C0, E)) in f2lc(C0, E) end par

where (∀i ∈ 1..n) Si = {l | (l, E′) ∈ expand(Ai, E)}
(∀i ∈ 1..n) S′

i = {l | (l, E′) ∈ expand(A′

i, E)}
R =

⋃

i∈1..n Si 7→d S′

i

f2lc({A1, . . . , An}::C0, E) = label par vecr(R, alph(C0, E)) in f2lc(C0, E) end par

where S =
⋃

i∈1..n{l | (l, E′) ∈ expand(Ai, E)}
R = {(l, l′l) | l ∈ alph(C0, E) ∧ l′ ∈ S}

f2lc({A1, . . . , An}:C0, E) =

total rename

"EVENT !\(.*\)" → "EVENT !m1 · \1"
in

f2lc(C0, E)
end rename

if p = 1

f2lc({m1} : C0 || . . . || {mp} : C0, E) otherwise

where {mi | i ∈ 1..p} =
⋃

i∈1..n{l | (l, E′) ∈ expand(Ai, E)}

f2lc(if V then C1 else C2, E) =

{

f2lc(C1, E) if f2le(V, E)
f2lc(C2, E) otherwise

f2lc(C1 || . . . || Cn, E) =

label par l1, . . . , lq in

f2lc(C1, E)
||

f2lc(C2 || . . . || Cn, E)
end par

where {li | i ∈ 1..q} = alph(C1, E) ∩ alph(C2 || . . . || Cn, E)

f2lc(forall [x1:L1] . . . [xn:Ln] C0, E) = f2lrc(C0, {E ∪ {x1 7→ l1, . . . , xn 7→ ln} | (∀i ∈ 1..n) li ∈ Si})

where (∀i ∈ 1..n) Si = {li | (li, E
′) ∈ expand(Li, E)}

Figure 10: Definition of function “f2lc”

22

vecr : relabeling × expanded label set → Exp.Open synchronisation vectors

vecr(R, S) = "l1" → "l′1", . . . , "ln" → "l′n"
where {(li, l′i) | i ∈ 1..n} = {(l, l′) | l ∈ S ∧ l′ ∈ relabel(l, R)}

Function “f2lpr”, defined below, translates a sequential or composite process call into Exp.Open code.
In the case of a sequential process, the process call is replaced by a Bcg graph corresponding to the Lotos
process obtained by translation of the sequential process with appropriate parameters, minimized modulo
branching bisimulation to eliminate “i” transitions that are generated from the Lotos sequential composition
operator “>>”, as explained in Section 3.1. This graph is obtained automatically by using the Cæsar.Adt
and Cæsar compilers for Lotos, and the Bcg Min minimization tool, all available in Cadp. In the case
of a composite process, the process call is replaced by an Exp.Open expression that inlines the call to the
composite process. Note that the translation terminates, because FSP composite processes are not recursive.

f2lpr : FSP process call × variable environment → Exp.Open code

f2lpr(P(V1, . . . , Vn), E) =

{

"P ′.bcg" if P is a sequential process

f2lcd(P̂ [V1, . . . , Vn], E) otherwise

where P ′ is the Lotos process defined by f2lsd(P̂ [V1, . . . , Vn], E, ())
and "P ′.bcg" is the Bcg graph of P ′ minimized for branching

bisimulation

Function “f2lrc”, defined recursively below, is an auxiliary function used to translate forall processes.

f2lrc : FSP composite behaviour × variable environment set → Exp.Open code

f2lrc(C, {E0}) = f2lc(C, E0)

f2lrc(C, {E0, . . . , En+1}) =

label par l1, . . . , lq in

f2lc(C, E0)
||

f2lrc(C, {E1, . . . , En+1})
end par

where {li | i ∈ 1..q} = alph(C, E0) ∩
⋃

i∈1..n+1 alph(C, Ei)

4 Tool and Validation

We developed an automatic translator tool from FSP to Lotos and Exp.Open, which is named Fsp2Lotos,
implemented using the Syntax+Traian compiler construction technology [GLM02]. It consists of about
5, 000 lines of Syntax code, 20, 000 lines of Lotos NT code, and 600 lines of C code. The Fsp2Lotos tool
consists of two parts:

• The front-end parses the input FSP program and builds an abstract syntax tree. The front-end was
quite hard to implement, because the abstract grammar given in [MK06] is not directly implementable
in Syntax, which needs LALR(1) grammars. Therefore, the grammar given in [MK06] was refined to
a concrete LALR(1) grammar.

23

• The back-end translates the abstract syntax tree into code. It generates a Lotos file containing the
definition of sequential processes and an Exp.Open file semantically equivalent to the main process.

In addition, Fsp2Lotos generates a verification script in the Svl language [GL01], which automates
the generation of Ltss. In particular, this script generates (using the Cæsar.adt and Cæsar compilers
for Lotos) and minimizes (using the Bcg Min tool) the Bcg graphs corresponding to FSP sequential
processes composed in the main process.

We also developed a new shell-script named Fsp.Open, which provides an interface between FSP specifi-
cations and the Open/Cæsar application programming interface. Fsp.Open encapsulates the full transla-
tion from FSP to Exp.Open using Fsp2Lotos and Svl, and a call to the Exp.Open tool on the generated
network of automata. This allows Open/Cæsar applications to be executed directly on FSP specifica-
tions. For instance, the evaluation of a temporal logic formula described in the file “prop.mcl” on the
FSP specification described in the file “spec.lts” using the Open/Cæsar application of Cadp named
Evaluator [MS03] can be done using the single command “fsp.open spec.lts evaluator prop.mcl”.

We applied Fsp2Lotos and Fsp.Open on a benchmark of FSP examples2, which includes all examples
provided with the Ltsa distribution [MK06] (except features unsupported by Fsp2Lotos such as fluents and
properties), as well as unitary tests that we wrote ourselves. It consists of 714 FSP files containing 2, 781
translatable processes. This represents 198, 964 FSP lexical tokens3 in total. For the whole benchmark,
Fsp2Lotos produced 1, 097, 497 Lotos lexical tokens, 169, 247 Exp.Open lexical tokens, and 137, 682 Svl
lexical tokens. The explanations for these apparently large amount of code are the following:

• Lotos generally allows a less concise style than FSP. For instance, it requires more keywords and gates
have to be declared explicitly and passed as parameters to each process call.

• Although FSP variables are translated as often as possible into Lotos variables, the translation may
expand concise FSP labels into many Lotos labels.

It is essential for the validity of verifications performed with Cadp that the Lotos/Exp.Open code
obtained after translation has the same semantics as the source FSP specification. Therefore, we developed
an automatic checker, which verifies that strong equivalence is preserved by the translation. The checker,
illustrated in Figure 11 (page 25), works as follows:

• In a first step, the checker generates using Ltsa (which is accessed in non-interactive mode) the Lts
in Aldebaran format (file extension “.aut”) corresponding to the main process of the source FSP
specification. This Lts is then slightly transformed by the program Aut2Cadp that we developed
(255 lines of C code): the FSP error state is replaced by a sink state labeled by the ”ERROR” symbol,
and labels in FSP notations are converted into labels in Cadp notations. The resulting Lts is then
translated into the compact Bcg (Binary Coded Graph) format of Cadp (file extension “.bcg”), using
the Bcg Io tool of Cadp.

• In a second step, the checker generates the Lotos, Exp.Open, and Svl files corresponding to the
translation of the source FSP specification using Fsp2Lotos. The checker then calls the Svl tool of
Cadp to generate from these files a network of automata in the Exp.Open format, which corresponds
semantically to the main process of the source FSP specification. Note that this network of automata
includes renaming of the Lotos labels (which are not written using the same conventions as Ltsa)
into the Ltsa notation. This is an important feature that allows the FSP user to easily understand
the behaviour of the translation into Lotos.

• In a third step, the checker compares the Bcg graph generated in the first step with the Exp.Open
network of automata generated in the second step, modulo strong bisimulation. The comparison is
performed automatically using the Bisimulator [BDJM05] on-the-fly equivalence checking tool of
Cadp, which responds by true or false and is even capable of producing a counter-example in case the
graphs are not strongly bisimilar.

2We are looking forward to enriching our benchmark with additional examples. Examples may be sent to cadp@inrialpes.fr.
3A lexical token is either a keyword, a symbol, or an identifier of the considered language. Comments are excluded. Measuring

code size in lexical tokens is more fair than in number of characters or number of lines, which depend on non-significant factors

such as indenting style or identifier conventions.

24

y

x

x

x

x
True

False

Svl file

Labelled Transition
Systems
.bcg.exp

Exp.Open file

C files

Lotos file

Fsp2Lotos

(x uses y)

Input file

Tool

File dependency

Legend

Ltsa
(batch)

Labelled Transition
System
.aut

Output file

.bcg

Labelled Transition
System

Bisimulator

(Cadp)

Fsp.Open

Svl
Aut2Cadp

FSP specification

.lts

(Cadp)

Figure 11: Principles of the automated checker used to validate Fsp2Lotos.

25

We validated the Fsp2Lotos translator using the aforementioned automated checker on all the exam-
ples of our database, and for each example the checker returned the answer true, thus showing that both
specifications (before and after translation) are strongly equivalent.

So far, the largest FSP specification processed using Fsp2Lotos had 1, 658 FSP tokens (213 lines), which
is already quite large (although not huge) given the conciseness of the FSP language. The code generated
from this specification consists of 389 Svl tokens, 984 Exp.Open tokens, and 7, 729 Lotos tokens. These
numbers are far below the code sizes already processed by the Cadp tools, which has been used to verify
specifications consisting of thousands of lines of code4.

Although the translation rules implemented in our tool have been formally defined, we cannot claim
that they have been formally proven. Given that FSP, Lotos, and Exp.Open are based upon the same
Lts semantic model, defined using structural operational semantic rules, and that strong bisimulation is a
congruence for all operators, a formal proof would consist in showing, using a structural induction hypothesis,
that for each rule, the FSP process in the left-hand side of the rule yields the same Lts transitions as the
Lotos or Exp.Open process in the right-hand side, modulo the different encodings of labels and error state.
Doing this using a theorem prover such as, e.g., Pvs would probably not raise much technical difficulty.
However, due to the size and number of (source and target) languages involved, encoding the translation
scheme and underlying theory (languages, semantics, and bisimulations) in such a theorem prover is itself a
quite manpower consuming task that we have not considered as a priority so far.

5 Application

In this section, we present several refinements of an FSP specification of a semaphore. We show how Cadp
can be used in complement to Ltsa, using the translation from FSP to Lotos and Exp.Open.

The starting point is the FSP specification of the semaphore given in Example 2 (page 7), whose corre-
sponding graph (Figure 4, page 8) has 7 states and 9 transitions.

A first refinement is to extend the number of resources (“{1,2,3}” in addition to “{a,b,c}”) accessed
in mutual exclusion, as well as the number of accesses, leading to the following specification “SEMADEMO1”:

||SEMADEMO1 = (

{a,b,c}:ACCESS

|| {a,b,c,[1..3]}::mutex:SEMAPHORE(1)

|| [1..3]:ACCESS

).

For “SEMADEMO1”, Ltsa generates a graph with 13 states and 18 transitions.
The next refinement aims at duplicating both semaphores so that each semaphore is in charge of a single

resource. This leads to the following specification “SEMADEMO2”:

||SEMADEMO2 = (

{a,b,c}:ACCESS

|| {a,b,c}::mutex:SEMAPHORE(1)

|| [1..3]::mutex:SEMAPHORE(1)

|| [1..3]:ACCESS

).

For “SEMADEMO2”, Ltsa generates a graph with 49 states and 126 transitions, which is difficult to analyse
visually, in particular because all the transitions between resources “{a,b,c}” and “{1,2,3}” are interleaved.

The last refinement defines the specification as a composition of two composite processes being dedicated
to one resource. This leads to the following specification “SEMADEMO3”:

||C_P = ({a,b,c}:ACCESS || {a,b,c}::mutex:SEMAPHORE(1)).

||C_Q = ([1..3]:ACCESS || [1..3]::mutex:SEMAPHORE(1)).

||SEMADEMO3 = (C_P || C_Q).

4See for instance the list of case studies done using Cadp at http://www.inrialpes.fr/vasy/cadp/case-studies .

26

For “SEMADEMO3”, Ltsa generates a graph which has the same size as “SEMADEMO2”. However, it is
impossible to check using Ltsa that “SEMADEMO2” and “SEMADEMO3” are equivalent. Instead, the translation
to Lotos/Exp.Open allows the Bisimulator [BDJM05] tool of Cadp to be used to verify that, indeed,
“SEMADEMO2” and “SEMADEMO3” are strongly equivalent.

The following code is an excerpt of the Lotos code generated by Fsp2Lotos. We only show here
the code generated for the “SEMAPHORE” and “SEMA” sequential processes. Additional code (of similar size)
is generated for the “ACCESS” sequential process. Note that label concatenation “·” used in Section 3.2 is
implemented using the “CONS” and “NIL” list constructor operations, which are defined using Lotos abstract
data types.

process SEMAPHORE [EVENT, TAU, ERROR] (N:Int): noexit :=

SEMA [EVENT, TAU, ERROR] (N)

where

process SEMA [EVENT, TAU, ERROR] (N:Int): noexit :=

EVENT !CONS (UP, NIL);

SEMA [EVENT, TAU, ERROR] (N + POS(1))

[]

[V > POS(0)] -> EVENT !CONS (DOWN, NIL);

SEMA [EVENT, TAU, ERROR] (N - POS(1))

endproc

endproc

The following is an excerpt of the Exp.Open code generated by Fsp2Lotos (comments were added by
hand). We only show here the code generated for the “C P” composite process. Similar code (same size) is
generated for “C Q”. To save space, we have replaced this code by dots at the end of the following excerpt.

total prio "ERROR" > all but "ERROR" in

(*

* this part of the EXP.OPEN code corresponds to

* C_P = ({a, b, c}:ACCESS || {a, b, c}::mutex:SEMAPHORE)

*)

label par

"EVENT !CONS (A, CONS (MUTEX, CONS (DOWN, NIL)))",

"EVENT !CONS (A, CONS (MUTEX, CONS (UP, NIL)))",

"EVENT !CONS (B, CONS (MUTEX, CONS (DOWN, NIL)))",

"EVENT !CONS (B, CONS (MUTEX, CONS (UP, NIL)))",

"EVENT !CONS (C, CONS (MUTEX, CONS (DOWN, NIL)))",

"EVENT !CONS (C, CONS (MUTEX, CONS (UP, NIL)))"

in

(* {a, b, c}:ACCESS *)

(

(* a:ACCESS *)

total rename "EVENT !\(.*\)" -> "EVENT !CONS (A, \1)" in

"ACCESS.bcg"

end rename

|||

(* b:ACCESS *)

total rename "EVENT !\(.*\)" -> "EVENT !CONS (B, \1)" in

"ACCESS.bcg"

end rename

|||

(* c:ACCESS *)

total rename "EVENT !\(.*\)" -> "EVENT !CONS (C, \1)" in

"ACCESS.bcg"

27

end rename

)

||

(* {a, b, c}::mutex:SEMAPHORE *)

label par

"EVENT !CONS (MUTEX, CONS (UP, NIL))" ->

"EVENT !CONS (A, CONS (MUTEX, CONS (UP, NIL)))",

"EVENT !CONS (MUTEX, CONS (UP, NIL))" ->

"EVENT !CONS (B, CONS (MUTEX, CONS (UP, NIL)))",

"EVENT !CONS (MUTEX, CONS (UP, NIL))" ->

"EVENT !CONS (C, CONS (MUTEX, CONS (UP, NIL)))",

"EVENT !CONS (MUTEX, CONS (DOWN, NIL))" ->

"EVENT !CONS (A, CONS (MUTEX, CONS (DOWN, NIL)))",

"EVENT !CONS (MUTEX, CONS (DOWN, NIL))" ->

"EVENT !CONS (B, CONS (MUTEX, CONS (DOWN, NIL)))",

"EVENT !CONS (MUTEX, CONS (DOWN, NIL))" ->

"EVENT !CONS (C, CONS (MUTEX, CONS (DOWN, NIL)))",

"ERROR" -> "ERROR" in

(* mutex:SEMAPHORE *)

total rename "EVENT !\(.*\)" -> "EVENT !CONS (MUTEX, \1)" in

"SEMAPHORE.bcg"

end rename

end par

end par

|||

(*

* the part corresponding to C_Q is similar as above,

* with A, B, C replaced by POS (1), POS (2), and POS (3)

*)

...

end prio

This example illustrates the use of equivalence checking of FSP specifications, but other verification tech-
niques available in Cadp to tackle the state explosion problem, such as distributed, compositional, or on-the-
fly verification, can be used to complement Ltsa validation. For instance, one can use the Evaluator [MS03]
model checker of Cadp to verify µ-calculus formulas on-the-fly. The counterexamples provided by Cadp are
easy to translate back automatically into FSP format, using the label renaming facilities available in Cadp.

6 Related Work

Several works aimed at combining the theories and notations of CSP, ACP, and CCS [HLP81, AZ81, Bro83,
Mil87, HH06]. The long-term goal of these papers is to unifying theories of concurrent programming, and
accordingly they focus on theoretical aspects of the aforementioned process calculi. As an example, in [HH06],
the authors consider CCS and CSP and formalise a set of links between common parts of CCS and CSP
theories. Codifying the similarities between their respective theories enables them to be used in combination
while preserving their benificial differences. Our objective is different since we consider calculi equipped with
verification tools, and propose a solution to allow the joint use of existing tools.

As regards high-level translations between process algebras, several proposals have been made in the
hardware area [SS05, WKTZ05]. In [SS05], the authors propose a translation from the hardware process
algebra Chp to Lotos. Thus, it makes possible to verify Chp designs of asynchronous circuits and architec-
tures using the Cadp toolbox. This approach was applied in practice for the verification of an Asynchronous
Network-on-Chip architecture [SSTV07]. [WKTZ05] starts with a Balsa description of circuits, and sketches
a translation from Balsa to Csp in order to verify Balsa programs using Fdr.

28

Two other initiatives consider Lotos as target language of high-level language encodings. In the frame-
work of the French national project TopCased, which gathers numerous industrial (Airbus, Thales, CS-SI,
...) and academic partners (Inria, Cnrs, Toulouse Universities, . . .), a new language named Fiacre
has been designed as an intermediate model between high-level models and verification toolboxes such
as Tina and Cadp. The connection to Cadp has led to a translator from Fiacre into Lotos named
Flac [BBF+08, BGLV08]. Also a translator to Lotos from a variant of E-Lotos [ISO01] named Lotos-
NT [Sig04] is under construction at Inria/Vasy.

Another group of related works concerns those advocating the encoding of process calculi (mainly Acp,
Ccs, Csp and their dialects) into higher-order logics, inputs of theorem provers such as Hol, Pvs, Is-
abelle [Nes99, DS97, TW97, BH99] or into the B method [But00], motivated by the availability of formal
verification support for the target formalism. Theorem proving is a means to fight against the state explosion
problem and to deal with infinite automata, but is not suitable to prove temporal properties. Instead, we
focused on model checking because it makes verification steps easier (especially for non-expert users) thanks
to a full automation and its adequacy to automata-based models.

In [CMS95], the authors present an alternative solution to translation approaches to verify process al-
gebras. The Pac (Process Algebra Compiler) is a front-end generator for process-algebra-based verification
tools. It produces routines for parsing and unparsing programs being given a description of the syntax and
semantics of a language. Thus, the Pac provides a useful tool for expanding the repertoire of languages that
tools can support. The current prototype only includes a back-end for the Concurrency Workbench (Cwb).

Another way to use Cadp to verify Fsp specifications would have been to use a lower-level translation
from Fsp to an intermediate language such as the one advocated in the If toolset [BGM02]. If is built
upon a specification language based on communicating extended timed automata. So far, the If toolset is
mainly connected to high-level modelling languages such as Sdl and Uml. Several validation tools have
been developed and connected (mainly Cadp) to analyse If descriptions. We preferred to connect Fsp with
Lotos and Exp.Open because it avoids the state explosion that a lower-level encoding might induce.

Other proposals and initiatives have emerged to favour a joint use of verification tools: Rushby and his
colleagues [Rus06] propose a joint use of an SMT (Satisfiability Modulo Theories) solver, model checking
techniques, and theorem proving. A similar work [FMM+06] focuses as well on a combination of SMT Solvers
and Interactive Proof Assistants. Last, let us emphasize the Fmics-Jeti initiative [MNS05] (Electronic Tool
Integration Platform) which aims at facilitating access to a managed collection of analysis tools.

At last, a preliminary version of this work has been published in [SKLM07]. The current article contains
the following updates and additions:

• A related work section has been written and integrated.

• The conference paper contained only excerpts of the translation rules, whereas the current article
presents all translation rules in more details.

• Some translation rules have been simplified when possible, so that smaller Lotos/Exp.Open code is
generated. In addition, the translation process now preserves a strong equivalence relation (instead of
branching equivalence) between the source FSP specification and the target Lotos/Exp.Open code.

• We have enhanced our validation procedure, which now checks automatically that the graphs generated
using Fsp2Lotos and Cadp are equivalent to those generated using Ltsa.

7 Concluding Remarks

The motivation of this work was to reduce the gap between existing tool support for process calculi. We
chose here the process calculus FSP and the Lotos international standard. We proposed a translation
from FSP to Lotos and Exp.Open to make the joint use of Ltsa and Cadp possible for FSP users. The
translation is completely automated, and implemented within the Fsp2Lotos and Fsp.Open tools, which
we validated on many examples using formal verification tools of Cadp, such as the Bisimulator [BDJM05]
Lts equivalence checker. Fsp2Lotos has been distributed within Cadp since beta-version 2007-p (January
2009) and Fsp.Open since beta-version 2008-d (July 2009).

29

As regards the lessons learnt from our experience in making gateways between formalisms and tools, we
think that supporting a high-level encoding between process algebra is a good solution as these languages are
based on the same kernel of operators, which makes the translation rather straightforward for most of them.
Lotos is an appropriate target calculus because, beyond the numerous validation and verification tools
available, it contains various behavioural operators that can be freely combined, but also has an expressive
notation to describe abstract data types, the presence of which is sometimes essential to ensure a correct
encoding. In [SS05], the authors managed to encode all the operators of the hardware process algebra Chp
into Lotos.

However, each process algebra comes with its own specificities and subtleties that may make the high-
level translation of all the operators difficult. For instance, in the case of FSP, priorities and the label
prefix matching semantics of hiding and relabeling cannot be easily translated into Lotos, which prevented
us to benefit from Lotos composition operators. To ameliorate this, an automata-based language such as
Exp.Open can be used in order to complement the process algebra translation by providing a large number of
parallel composition, hiding, relabeling, and priority operators, among others. When a pure process algebra
translation is not possible, a mixed translation targeting both a process algebra and an automata-based
language may therefore be an adequate solution to encode the whole expressiveness of a calculus.

A perspective of this work is to apply our approach on complex systems, for instance on Web service
models described first in Bpel [A+05] or Ws-Cdl [KBR], and then automatically translated into FSP for
analysis purposes [FUMK05]. In this case, the interaction of services can involve huge underlying state spaces,
which require efficient generation and minimisation tools such as those available in Cadp. Moreover, the
equivalence checking tool available in Cadp can help in Web services to ensure that an abstract specification
of a problem and its solution described as a composition of services are formally equivalent [SBS06]. Another
perspective is to take FSP safety and progress properties into account, and to translate them into regular
alternation-free µ-calculus formulas, which can be checked using the Evaluator [MS03] on-the-fly model
checker of Cadp.

Acknowledgements

The authors warmly thank Hubert Garavel (head of the Inria/Vasy project-team) for suggesting this work,
and for his constant support and encouragements. They are also grateful to Wendelin Serwe (Inria/Vasy)
for his valuable help on technical aspects during the implementation of the translator.

References

[A+05] T. Andrews et al. Business Process Execution Language for Web Services (WSBPEL). BEA
Systems, IBM, Microsoft, SAP AG, and Siebel Systems, February 2005.

[AZ81] Egidio Astesiano and Elena Zucca. Semantics of CSP via Translation into CCS. In Proc. of the
10th International Symposium on Mathematical Foundations of Computer Science (MFCS’81),
volume 118 of Lecture Notes in Computer Science, pages 172–182. Springer, 1981.

[BBF+08] Bernard Berthomieu, Jean-Paul Bodeveix, Patrick Farail, Mamoun Filali, Hubert Garavel, Pierre
Gaufillet, Frédéric Lang, and François Vernadat. FIACRE: an Intermediate Language for Model
Verification in the TOPCASED Environment. In Jean-Claude Laprie, editor, Proceedings of
the 4th European Congress on Embedded Real-Time Software ERTS’08 (Toulouse, France). SIA
(the French Society of Automobile Engineers), AAAF (the French Society of Aeronautic and
Aerospace), and SEE (the French Society for Electricity, Electronics, and Information & Com-
munication Technologies), January 2008.

[BDJM05] Damien Bergamini, Nicolas Descoubes, Christophe Joubert, and Radu Mateescu. BISIMULA-
TOR: A Modular Tool for On-the-Fly Equivalence Checking. In Nicolas Halbwachs and Lenore
Zuck, editors, Proceedings of the 11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems TACAS’2005 (Edinburgh, Scotland, UK), volume 3440 of
Lecture Notes in Computer Science, pages 581–585. Springer Verlag, April 2005.

30

[BFG+91] Ahmed Bouajjani, Jean-Claude Fernandez, Susanne Graf, Carlos Rodŕıguez, and Joseph Sifakis.
Safety for Branching Time Semantics. In Proceedings of 18th ICALP. Springer Verlag, July 1991.

[BGLV08] Bernard Berthomieu, Hubert Garavel, Frédéric Lang, and François Vernadat. Verifying Dynamic
Properties of Industrial Critical Systems Using TOPCASED/FIACRE. ERCIM News, 75:32–33,
October 2008.

[BGM02] Marius Bozga, Susanne Graf, and Laurent Mounier. IF-2.0: A Validation Environment for
Component-Based Real-Time Systems. In Kim G. Larsen and Ed Brinksma, editors, Proceedings
of the Conference on Computer-Aided Verification CAV’2002 (Copenhagen, Denmark), volume
2404 of Lecture Notes in Computer Science. Springer Verlag, July 2002.

[BH99] T. Basten and J. Hooman. Process Algebra in Pvs. In Proceedings of the 5th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems TACAS’99
(Amsterdam, The Netherlands), volume 1579 of Lecture Notes in Computer Science, pages 270–
284. Springer Verlag, 1999.

[BHR84] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A Theory of Communicating Sequential
Processes. Journal of the ACM, 31(3):560–599, July 1984.

[BO05] Stefan Blom and Simona Orzan. Distributed state space minimization. International Journal
on Software Tools for Technology Transfer, 7(3):80–291, 2005.

[Bro83] Stephen D. Brookes. On the Relationship of CCS and CSP. In Proc. of the 10th Colloquium
Automata, Languages and Programming (ICALP’83), volume 154 of Lecture Notes in Computer
Science, pages 83–96. Springer, 1983.

[But00] M. Butler. Csp2B: A Practical Approach to Combining Csp and B. Formal Aspects of Com-
puting, 12(3):182–198, 2000.

[CMS95] Rance Cleaveland, Eric Madelaine, and Steve Sims. A Front-End Generator for Verification
Tools. In Uffe H. Engberg, Kim G. Larsen, and Arne Skou, editors, Proceedings of TACAS’95
Tools and Algorithms for the Construction and Analysis of Systems (Aarhus, Denmark), May
1995. Also available as INRIA Research Report RR-2612.

[DS97] B. Dutertre and S. Schneider. Using a PVS Embedding of CSP to Verify Authentication Proto-
cols. In Proceedings of the 10th International Conference on Theorem Proving in Higher Order
Logics TPHOLs’97 (Murray Hill, NJ, USA), volume 1275 of Lecture Notes in Computer Science,
pages 121–136. Springer Verlag, 1997.

[FMM+06] Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor Prensa Nieto, and Alwen Fernanto
Tiu. Expressiveness + Automation + Soundness: Towards Combining SMT Solvers and In-
teractive Proof Assistants. In Proceedings of the 12th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems TACAS’06 (Vienna, Austria), volume
3920 of Lecture Notes in Computer Science, pages 167–181. Springer Verlag, 2006.

[FUMK05] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Tool Support for Model-Based Engineering
of Web Service Compositions. In Proceedings of the IEEE International Conference on Web
Services ICWS’05, pages 95–101. IEEE Computer Society, 2005.

[Gar89a] Hubert Garavel. Compilation et vérification de programmes LOTOS. Thèse de Doctorat, Uni-
versité Joseph Fourier (Grenoble), November 1989.

[Gar89b] Hubert Garavel. Compilation of LOTOS Abstract Data Types. In Son T. Vuong, editor, Proceed-
ings of the 2nd International Conference on Formal Description Techniques FORTE’89 (Van-
couver B.C., Canada), pages 147–162. North-Holland, December 1989.

[Gar90] Hubert Garavel. CÆSAR Reference Manual. Rapport SPECTRE C18, Laboratoire de Génie
Informatique — Institut IMAG, Grenoble, November 1990.

31

[Gar98] Hubert Garavel. OPEN/CÆSAR: An Open Software Architecture for Verification, Simulation,
and Testing. In Bernhard Steffen, editor, Proceedings of the First International Conference
on Tools and Algorithms for the Construction and Analysis of Systems TACAS’98 (Lisbon,
Portugal), volume 1384 of Lecture Notes in Computer Science, pages 68–84, Berlin, March 1998.
Springer Verlag. Full version available as INRIA Research Report RR-3352.

[GL01] Hubert Garavel and Frédéric Lang. SVL: a Scripting Language for Compositional Verification. In
Myungchul Kim, Byoungmoon Chin, Sungwon Kang, and Danhyung Lee, editors, Proceedings
of the 21st IFIP WG 6.1 International Conference on Formal Techniques for Networked and
Distributed Systems FORTE’2001 (Cheju Island, Korea), pages 377–392. IFIP, Kluwer Academic
Publishers, August 2001. Full version available as INRIA Research Report RR-4223.

[GLM02] Hubert Garavel, Frédéric Lang, and Radu Mateescu. Compiler Construction using LOTOS
NT. In Nigel Horspool, editor, Proceedings of the 11th International Conference on Compiler
Construction CC 2002 (Grenoble, France), volume 2304 of Lecture Notes in Computer Science,
pages 9–13. Springer Verlag, April 2002.

[GLMS07] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2006: A Tool-
box for the Construction and Analysis of Distributed Processes. In Werner Damm and Holger
Hermanns, editors, Proceedings of the 19th International Conference on Computer Aided Verifi-
cation CAV’2007 (Berlin, Germany), volume 4590 of Lecture Notes in Computer Science, pages
158–163. Springer Verlag, July 2007.

[GS06] Hubert Garavel and Wendelin Serwe. State Space Reduction for Process Algebra Specifications.
Theoretical Computer Science, 351(2):131–145, February 2006.

[GV90] Jan Friso Groote and Frits Vaandrager. An Efficient Algorithm for Branching Bisimulation and
Stuttering Equivalence. In M. S. Patterson, editor, Proceedings of the 17th ICALP (Warwick),
volume 443 of Lecture Notes in Computer Science, pages 626–638. Springer Verlag, 1990.

[HH06] Jifeng He and C. A. R. Hoare. CSP Is a Retract of CCS. In Proc. of the First International
Symposium on Unifying Theories of Programming (UTP’06), volume 4010 of Lecture Notes in
Computer Science, pages 38–62. Springer, 2006.

[HLP81] Matthew Hennessy, W. Li, and Gordon D. Plotkin. A First Attempt at Translating CSP
into CCS. In Proc. of the 2nd International Conference on Distributed Computing Systems
(ICDCS’81), pages 105–115. IEEE Computer Society, 1981.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[ISO89] ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal Ordering of Obser-
vational Behaviour. International Standard 8807, International Organization for Standardization
— Information Processing Systems — Open Systems Interconnection, Genève, September 1989.

[ISO01] ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard 15437:2001, Interna-
tional Organization for Standardization — Information Technology, Genève, September 2001.

[KBR] N. Kavantzas, D. Burdett, and G. Ritzinger. Web Services Choreography Description Language
1.0. W3C. W3C Working Draft 27 April 2004.

[KS90] P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state processes, and three problems
of equivalence. Information and Computation, 86(1):43–68, May 1990.

[Lan02] Frédéric Lang. Compositional Verification using SVL Scripts. In Joost-Pieter Katoen and Perdita
Stevens, editors, Proceedings of the 8th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems TACAS’2002 (Grenoble, France), volume 2280 of Lecture
Notes in Computer Science, pages 465–469. Springer Verlag, April 2002.

32

[Lan05] Frédéric Lang. EXP.OPEN 2.0: A Flexible Tool Integrating Partial Order, Compositional,
and On-the-fly Verification Methods. In Jaco van de Pol, Judi Romijn, and Graeme Smith,
editors, Proceedings of the 5th International Conference on Integrated Formal Methods IFM’2005
(Eindhoven, The Netherlands), volume 3771 of Lecture Notes in Computer Science, pages 70–88.
Springer Verlag, November 2005. Full version available as INRIA Research Report RR-5673.

[Lan06] Frédéric Lang. Refined Interfaces for Compositional Verification. In Elie Najm, Jean-François
Pradat-Peyre, and Véronique Viguié Donzeau-Gouge, editors, Proceedings of the 26th IFIP
WG 6.1 International Conference on Formal Techniques for Networked and Distributed Sys-
tems FORTE’2006 (Paris, France), volume 4229 of Lecture Notes in Computer Science, pages
159–174. Springer Verlag, September 2006. Full version available as INRIA Research Report RR-
5996.

[Mag99] J. Magee. Behavioral Analysis of Software Architectures Using LTSA. In Proceedings of the 21st
International Conference on Software Engineering ICSE’99, pages 634–637. ACM Press, 1999.

[MDEK95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Software Architectures.
In Proceedings of the 5th European Software Engineering Conference ESEC’95 (Sitges, Spain),
volume 989 of Lecture Notes in Computer Science, pages 137–153. Springer Verlag, 1995.

[Mil87] M. Millington. Theories of Translation Corrections for Concurrent Programming Languages.
PhD thesis, LFCS, School of Informatics, University of Edinburgh, 1987.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MK99] Jeff Magee and Jeff Kramer. Concurrency: State Models and Java Programs. Wiley, 1999.

[MK06] Jeff Magee and Jeff Kramer. Concurrency: State Models and Java Programs. Wiley, 2006 edition,
April 2006.

[MNS05] Tiziana Margaria, Ralf Nagel, and Bernhard Steffen. Remote Integration and Coordination of
Verification Tools in JETI. In Proceedings of the 12th IEEE International Conference on the
Engineering of Computer-Based Systems ECBS’05 (Greenbelt, MD, USA), pages 431–436. IEEE
Computer Society, 2005.

[MS03] Radu Mateescu and Mihaela Sighireanu. Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. Science of Computer Programming, 46(3):255–281, March 2003.

[Nes99] M. Nesi. Formalising a Value-Passing Calculus in Hol. Formal Aspects of Computing, 11(2):160–
199, 1999.

[Par81] David Park. Concurrency and Automata on Infinite Sequences. In Peter Deussen, editor, The-
oretical Computer Science, volume 104 of Lecture Notes in Computer Science, pages 167–183.
Springer Verlag, March 1981.

[PT87] Robert Paige and Robert E. Tarjan. Three Partition Refinement Algorithms. SIAM Journal of
Computing, 16(6):973–989, December 1987.

[Rus06] John M. Rushby. Tutorial: Automated Formal Methods with PVS, SAL, and Yices. In Pro-
ceedings of the 4th IEEE International Conference on Software Engineering and Formal Methods
SEFM’06 (Pune, India), page 262. IEEE Computer Society, 2006.

[SBS06] Gwen Salaün, Lucas Bordeaux, and Marco Schaerf. Describing and Reasoning on Web Services
using Process Algebra. International Journal of Business Process Integration and Management,
1(2):116–128, 2006.

[Sig04] Mihaela Sighireanu. LOTOS NT User’s Manual (Version 2.4). INRIA projet VASY.
ftp://ftp.inrialpes.fr/pub/vasy/traian/manual.ps.Z, June 2004.

33

[SKLM07] Gwen Salaün, Jeff Kramer, Frédéric Lang, and Jeff Magee. Translating FSP into LOTOS and
Networks of Automata. In Jim Davies, Wolfram Schulte, and Jin Song Dong, editors, Proceedings
of the 6th International Conference on Integrated Formal Methods IFM’2007 (Oxford, United
Kingdom), volume 4591 of Lecture Notes in Computer Science, pages 558–578. Springer Verlag,
July 2007.

[SS05] Gwen Salaün and Wendelin Serwe. Translating Hardware Process Algebras into Standard Process
Algebras — Illustration with CHP and LOTOS. In Jaco van de Pol, Judi Romijn, and Graeme
Smith, editors, Proceedings of the 5th International Conference on Integrated Formal Methods
IFM’2005 (Eindhoven, The Netherlands), volume 3771 of Lecture Notes in Computer Science.
Springer Verlag, November 2005. Full version available as INRIA Research Report RR-5666.

[SSTV07] Gwen Salaün, Wendelin Serwe, Yvain Thonnart, and Pascal Vivet. Formal Verification of CHP
Specifications with CADP — Illustration on an Asynchronous Network-on-Chip. In Peter Beerel,
Marly Roncken, Mark Greenstreet, and Montek Singh, editors, Proceedings of the 13th IEEE
International Symposium on Asynchronous Circuits and Systems ASYNC 2007 (Berkeley, Cal-
ifornia, USA), pages 73–82. IEEE Computer Society Press, March 2007.

[TW97] H. Tej and B. Wolff. A Corrected Failure-Divergence Model for Csp in Isabelle/Hol. In Pro-
ceedings of the 4th International Symposium of Formal Methods Europe FME’97 (Graz, Austria),
volume 1313 of Lecture Notes in Computer Science, pages 318–337. Springer Verlag, 1997.

[vGW89] R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstraction in Bisimulation
Semantics (extended abstract). CS R8911, Centrum voor Wiskunde en Informatica, Amsterdam,
1989. Also in proc. IFIP 11th World Computer Congress, San Francisco, 1989.

[WKTZ05] X. Wang, M. Z. Kwiatkowska, G. K. Theodoropoulos, and Q. Zhang. Towards a Unifying
Csp approach to Hierarchical Verification of Asynchronous Hardware. In Procedings of the 4th
International Workshop on Automated Verification of Critical Systems AVoCS’04 (London, UK),
volume 128 of Electronic Notes in Theoretical Computer Science (ENTCS) series, pages 231–246,
2005.

34

