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Génération efficace de diagnostics pour

les systèmes d’équations booléennes

Résumé : Les systèmes d’équations booléennes (Sebs) fournissent un cadre utile pour
la vérification des systèmes concurrents ayant un nombre fini d’états. En pratique, il est
souhaitable que la résolution d’un Seb produise aussi une information de diagnostic qui
explique, de préférence de manière concise, la valeur de vérité calculée pour une certaine
variable du Seb. Utilisant une représentation des Sebs comme graphes booléens étendus
(Gbes), nous proposons une caractérisation des diagnostics complets (c’est-à-dire, exemples
et contre-exemples) comme une classe particulière de sous-graphes du Gbe associé à un
Seb. Nous développons des algorithmes de calcul d’exemples et de contre-exemples ayant
une complexité linéaire en taille du Gbe (nombre de sommets et d’arcs). Ces algorithmes
peuvent être aisément utilisés pour étendre plusieurs algorithmes connus (globaux ou locaux)
de résolution d’Sebs avec des facilités de génération de diagnostics.

Mots-clés : diagnostic, logique temporelle, mu-calcul, spécification, système d’équations
booléennes, vérification basée sur les modèles



Efficient Diagnostic Generation for Boolean Equation Systems 3

1 Introduction

It is well-known that several equivalence/preorder checking and temporal logic model-
checking problems occurring in the verification of concurrent finite-state systems can be
reduced to the resolution of Boolean Equation Systems (Bess). Various algorithms have
been proposed for solving this problem, either globally, i.e., by computing the values of all
variables in a Bes [3,9,28,1,29,2,20,19], or locally, i.e., by computing the value of a single
variable [17,1,29,30,20,18,19]. However, practical applications of Bes resolution often need
more detailed feedback than a simple yes/no answer. For instance, when solving a Bes en-
coding the bisimilarity check between two transition systems, it is desirable to have, in case
of a negative result, a diagnostic (e.g., a transition sequence) explaining why the two systems
are not bisimilar.

In general, both positive diagnostics (examples) and negative diagnostics (counterexam-
ples) are needed in order to be capable of fully explaining the truth value of a boolean
variable. This is the case for instance when verifying Ctl [5] formulas over a transition sys-
tem: a positive answer obtained for an E [T U ϕ] formula should be explained by an example
(e.g., a transition sequence leading to a ϕ-state), whereas a negative answer obtained for
an A [T U ϕ] formula should be explained by a counterexample (e.g., a transition sequence
leading to a deadlock or to a circuit without reaching a ϕ-state).

The problem of generating diagnostics for finite-state verification has been studied using
various approaches. Explicit state enumeration techniques have been applied to compute
diagnostics for bisimulation/preorder checking [8,15,13] and Ctl model-checking [5,23], in
tools like Aldébaran [4] and Emc [5], respectively. Symbolic techniques based on (ordered)
binary decision diagrams have been used to generate examples (witnesses) and counterex-
amples for Ctl formulas [6,7], in tools like Smv [21]. Recently, game-based techniques [25]
have been applied to verify modal µ-calculus [16] formulas and to interactively generate
diagnostics, in tools like the Edinburgh Concurrency Workbench [24].

In this paper we address the problem of characterizing and computing full diagnostics
(examples and counterexamples) for Bess. We focus on single fixed point Bess, which allow
to encode the alternation-free fragment of the modal µ-calculus [9], and attempt to devise
efficient algorithms handling this case. The solutions that we propose can be easily instan-
tiated in order to obtain diagnostic generation facilities for particular verification problems
reducible to Bes resolution, such as bisimulation/preorder checking and model-checking of
branching-time temporal logics like Ctl.

We use a representation of Bess as extended boolean graphs (Ebgs), which allow to
define an appropriate subgraph relation between Ebgs. We start by characterizing the so-
lution of a Bes by means of two particular temporal logic formulas Ex and Cx interpreted
on the corresponding Ebg. This allows, on one hand, to reduce the problem of solving a
Bes to the problem of verifying these formulas over its Ebg and, on the other hand, to
characterize minimal diagnostics (w.r.t. the subgraph relation) as particular models of Ex
or Cx. We also propose two efficient (linear-time) algorithms for computing minimal ex-
amples and counterexamples and we indicate how they can be used in conjunction with
existing (global or local) Bes resolution algorithms. Our characterizations of minimal ex-
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4 Radu Mateescu

amples and counterexamples turned out to be very similar to the winning strategies for
player I and player II of a model-checking game [24]. However, as far as we know, there is
no equivalent linear-time complexity result about the game-based algorithms applied to the
alternation-free µ-calculus.

The paper is organized as follows. Section 2 defines Bess and their associated Ebgs,
and gives a characterization of the Bes solution using temporal formulas. Section 3 defines
diagnostics in terms of subgraphs of an Ebg and provides a characterization of minimal
diagnostics. Section 4 presents algorithms for computing minimal examples and counterex-
amples. Finally, Section 5 shows some practical applications of these results and indicates
directions for future work.

2 BESs and Extended Boolean Graphs

A boolean equation system (Bes) M is a set of fixed point equations whose left-hand-sides are
boolean variables and whose right-hand-sides are pure disjunctive or conjunctive formulas
(see Figure 1). Empty disjunctions and conjunctions are equivalent to F and T, respectively.
Variables {x1, ..., xn} are bound and variables in (

⋃

1≤i≤n Xi) \ {x1, ..., xn} are free in M . A
Bes is closed if it has no free variables. In the sequel, we consider only minimal fixed point
Bess (σ = µ), the formalization for maximal fixed point Bess being completely dual.

Syntax of Boolean Equation Systems (Bess):

M = {xi
σ
= opiXi}1≤i≤n

where σ ∈ {µ, ν}, xi ∈ X , opi ∈ {∨,∧}, Xi ⊆ X for all 1 ≤ i ≤ n

Semantics w.r.t. Bool = {F, T} and a context δ : X → Bool:
[[op{x1, ..., xk}]] δ = δ(x1) op ... op δ(xk)

[[M ]] δ = σΨδ

where Ψδ : Booln → Booln, Ψδ(b1, ..., bn) = ([[opiXi]] δ[b1/x1, ..., bn/xn])1≤i≤n

Fig. 1. Syntax and semantics of Boolean Equation Systems

An extended boolean graph (Ebg) is a tuple G = (V, E, L, F ), where: V is the set of
vertices; E ⊆ V × V is the set of edges; L : V → {∨,∧} is the vertex labeling; and
F ⊆ V is the frontier of G. The notion of frontier will be useful later for defining a suitable
subgraph relation between Ebgs (see Section 3). The sets of successors and predecessors
of a vertex x ∈ V are noted E(x) and E−1(x), respectively. The set of vertices reachable
from x via E is noted E∗(x). The restriction of E to a subset U ⊆ V is defined as E|U =
{(x, y) ∈ E | x ∈ U}. Every Ebg G induces a Kripke structure G = (V, E, L). A closed Bes
can be represented by an Ebg, where V denotes the set of boolean variables, E denotes

INRIA



Efficient Diagnostic Generation for Boolean Equation Systems 5

the dependencies between variables, and L labels the vertices as disjunctive or conjunctive
according to the operator in the corresponding equation of the Bes.

We can characterize the solution of a closed Bes using temporal logic formulas interpreted
over the Kripke structure induced by the corresponding Ebg. The temporal logic we use
(see Figure 2) is a simplified variant of the alternation-free modal µ-calculus [10].

Syntax of temporal formulas:
ϕ ::= P∨ | P∧ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 〈−〉ϕ | [−] ϕ | Y | µY.ϕ | νY.ϕ

where Y ∈ Y

Semantics w.r.t. a Kripke structure G = (V, E, L) and a context ρ : Y → 2V :
[[P∨]]

G
ρ = {x ∈ V | L(x) = ∨}

[[P∧]]
G

ρ = {x ∈ V | L(x) = ∧}
[[ϕ1 ∨ ϕ2]]Gρ = [[ϕ1]]Gρ ∪ [[ϕ2]]Gρ
[[ϕ1 ∧ ϕ2]]Gρ = [[ϕ1]]Gρ ∩ [[ϕ2]]Gρ

[[〈−〉ϕ]]
G

ρ = {x ∈ V | E(x) ∩ [[ϕ]]
G

ρ 6= ∅}
[[[−] ϕ]]

G
ρ = {x ∈ V | E(x) ⊆ [[ϕ]]

G
ρ}

[[Y ]]
G

ρ = ρ(Y )
[[µY.ϕ]]

G
ρ =

⋂

{U ⊆ V | ΦGρ(U) ⊆ U}
[[νY.ϕ]]

G
ρ =

⋃

{U ⊆ V | U ⊆ ΦGρ(U)}

where ΦGρ : 2V → 2V , ΦGρ(U) = [[ϕ]]
G

ρ[U/Y ]

Fig. 2. Syntax and semantics of the logic for diagnostic characterization

Given a Kripke structure G = (V, E, L), the two atomic propositions P∨ and P∧ denote
the disjunctive and conjunctive vertices of V , respectively. The boolean operators ∨ and ∧
have their usual semantics. The possibility and necessity modal formulas 〈−〉ϕ and [−] ϕ
denote the vertices for which some (all) successors satisfy ϕ. The fixed point formulas µY.ϕ
and νY.ϕ denote the minimal and maximal solutions (over 2V ) of the equation Y = ϕ,
respectively. Formulas ϕ are assumed to be alternation-free (without mutual recursion be-
tween minimal and maximal fixed points). A vertex x ∈ V satisfies a formula ϕ in G, noted
x |=G ϕ, iff x ∈ [[ϕ]]

G
. G is a ϕ-model iff V = [[ϕ]]

G
.

The two particular formulas defined below will be useful in the sequel.

Definition 1 (example and counterexample formulas).
The formulas Ex and Cx defined as follows:

Ex = µY.(P∨ ∧ 〈−〉Y ) ∨ (P∧ ∧ [−]Y )
Cx = νY.(P∨ ∧ [−] Y ) ∨ (P∧ ∧ 〈−〉Y )

are called example formula and counterexample formula, respectively.
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6 Radu Mateescu

Since Ex and Cx are complementary (Ex ∨ Cx = T and Ex ∧ Cx = F), their interpre-
tations on a Kripke structure G = (V, E, L) associated to a closed Bes induce a partition
of V . The following theorem (proved in Annex A) states that this partition corresponds
exactly to the true and false variables in the Bes solution.

Theorem 1 (characterization of BES solution).

Let M = {xi
µ
= opiXi}1≤i≤n be a closed Bes and let G = (V, E, L) be its associated Kripke

structure. Then:

[[M ]]i = T ⇔ xi |=G Ex

for all 1 ≤ i ≤ n.

Theorem 1 can be easily extended to alternation-free Bess, whose solution can be char-
acterized using an alternation-free µ-calculus formula containing an Ex-subformula for each
single fixed point subsystem1 of the Bes. The equivalence between alternation-free Bess and
alternation-free µ-calculus formulas has been extensively studied in [20]. Together with the
classical results of reducing µ-calculus model-checking to Bes resolution [9,1], Theorem 1
provides another proof of this equivalence.

In the following, we will develop the formalization of diagnostics by reasoning exclusively
in terms of Ebgs associated to Bess and the interpretations of Ex and Cx formulas on the
corresponding Kripke structures.

3 Examples and counterexamples

Consider a Bes M and a boolean variable x that is bound in M . What would be a diagnostic
for x? From the Bes point of view, a diagnostic for x could be a subsystem M ′ of M
containing x as a bound variable and having the property that by solving M ′ one obtains
for x the same truth value as by solving M . In other words, the value computed for x in M ′

should not depend upon the context of M ′ imposed by M (i.e., upon the values of variables
that are free in M ′ and bound in M); that is, it should not depend upon any context of M ′.

Figure 3 shows a Bes and its associated Ebg, where black vertices denote variables that
are T and white vertices denote variables that are F in the Bes solution. According to the
informal definition above, a “diagnostic” showing why x0 is T (an “example” for x0) would
be, for instance, the subsystem defining the variables {x0, x1, x2, x3, x4}, whose vertices are
surrounded by a dotted box in the Ebg. Similarly, a “diagnostic” showing why x5 is F (a
“counterexample” for x5) would be the other subsystem {x5, x6, x7, x8, x9} outlined in the
figure. It is easy to see that these two subsystems can be solved individually and the truth
values obtained in this way for x0 and x5 are the same as those obtained by solving the
whole system.

In general, for a given variable of a Bes there can be several subsystems having
the property above (an obvious one being the Bes itself). For instance, the reader may

1 For ν-subsystems, the formula Ex = νY.(P∨ ∧ 〈−〉Y ) ∨ (P∧ ∧ [−] Y ) must be used.

INRIA



Efficient Diagnostic Generation for Boolean Equation Systems 7

x4
µ
= x1 ∨ x3 ∨ x7

x1
µ
= x2 ∨ x3 ∨ x5

x8
µ
= x4 ∧ x6 ∧ x9

x5
µ
= x6 ∧ x9

x6
µ
= x3 ∧ x7

x7
µ
= x3 ∧ x8

x2
µ
= x0 ∧ x1

x3
µ
= T

x0
µ
= x1 ∧ x4

x9
µ
= F

x0

x1

∧

∧ ∨

∨

∨

∧

∨

x2

x4

x6

x7 x8

x5
x3

x9

∧

∧ ∧

Fig. 3. A closed Bes and its associated Ebg

check that for the Bes on Figure 3, the subsystems {x0, x1, x2, x3, x4, x6, x7, x8} and
{x3, x4, x5, x6, x7, x8, x9} can also be considered as “diagnostics” for the variables x0 and
x5, respectively.

From the Ebg point of view (and using Theorem 1), a diagnostic for a vertex x of an Ebg
G2 would be a subgraph G1 of G2 containing x and having the property that x |=G1

Ex iff
x |=G2

Ex. A suitable subgraph relation between Ebgs can be defined using the notion of
frontier. Intuitively, the frontier of a subgraph G1 contains all vertices starting at which new
edges can be added when G1 is embedded in another graph G2 (note that G2 may have the
same vertices as G1, but more edges). To obtain a correct subgraph relation, the notion of
frontier must be intrinsic to an Ebg: therefore, when embedding G1 in G2, the frontier of
G2 must not contain vertices of G1 which are not already in the frontier of G1. The frontier
of an Ebg that is not meant to be embedded in another one (e.g., an Ebg associated to a
closed Bes) is empty.

Definition 2 (subgraph of an EBG).
Let G1 = (V1, E1, L1, F1) and G2 = (V2, E2, L2, F2) be two Ebgs. G1 is a subgraph of G2,
written G1 � G2, iff the following conditions hold:

– V1 ⊆ V2 and F2 ∩ V1 ⊆ F1;
– E1 ⊆ E2 and (E2 \ E1)|V1

= (E2 \ E1)|F1
;

– L1 = L2|V1
.

It is easy to check that � is a partial order relation on Ebgs. For the Ebg on Figure 3,
the subgraphs enclosed in the left and right dotted boxes have the frontiers {x1, x4} and
{x6, x7, x8}, respectively.
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8 Radu Mateescu

The two definitions below precise the notion of diagnostics in terms of Ebgs.

Definition 3 (solution-closed EBG).
An Ebg G1 = (V1, E1, L1, F1) is solution-closed iff, for any Ebg G2 = (V2, E2, L2, F2) such
that G1 � G2:

[[Ex]]
G1

= [[Ex]]
G2

∩ V1

or, equivalently:
[[Cx]]

G1
= [[Cx]]

G2
∩ V1

where G1 and G2 are the Kripke structures associated to G1 and G2.

Definition 4 (examples and counterexamples).
Let G = (V, E, L, F ) be an Ebg, G its associated Kripke structure, and x ∈ V . A diagnostic
for x is a solution-closed subgraph of G containing x. A diagnostic for x is called example
if x |=G Ex and counterexample if x |=G Cx.

The following theorem (proved in Annex A) provides a characterization of solution-
closed Ebgs that will be useful in the sequel. Intuitively, an Ebg G is solution-closed if
the satisfaction of Ex (or Cx) on its frontier (which contains the only vertices of G that
may directly depend on some external context when G is embedded in another Ebg) can
be completely decided using only the information in G.

Theorem 2 (characterization of solution-closed EBGs).
Let G = (V, E, L, F ) be an Ebg. G is solution-closed iff:

F ⊆ [[(P∨ ∧ Ex) ∨ (P∧ ∧ Cx)]]
G

where G is the Kripke structure associated to G.

Using Theorem 2, we can easily see that the left and right subgraphs of the Ebg outlined
on Figure 3 are solution-closed (i.e., they are diagnostics for x0 and x5). The same holds for
the subgraphs corresponding to the other two subsystems {x0, x1, x2, x3, x4, x6, x7, x8} and
{x3, x4, x5, x6, x7, x8, x9} having the frontiers {x1, x8} and {x4}. However, in practice it is
desirable to explain the value of a variable in a concise manner, and therefore diagnostics
should be as small as possible. The following theorem (proved in Annex A) states that
minimal diagnostics (w.r.t. �) can be obtained as particular Ex-models or Cx-models.

Theorem 3 (characterization of minimal diagnostics).
Let G = (V, E, L, F ) be an example for x ∈ V and G its associated Kripke structure. G is
minimal (w.r.t. �) iff the following conditions hold:

a) G is an Ex-model;
b) ∀y ∈ V.L(y) = ∨ ⇒ |E(y)| = 1;
c) V = E∗(x);
d) F = {y ∈ V | L(y) = ∨}.

The same holds for minimal counterexamples (replacing Ex by Cx and ∨ by ∧).

The characterization provided by Theorem 3 is sufficiently concrete to allow the design
of efficient algorithms for generating minimal diagnostics.

INRIA



Efficient Diagnostic Generation for Boolean Equation Systems 9

4 Diagnostic generation algorithms

We give in this section algorithms for efficiently computing minimal examples and coun-
terexamples for a given variable of an Ebg G by exploring the Kripke structure G induced
by G. These algorithms exploit the information in [[Ex]]

G
and [[Cx]]

G
and therefore they

must rely upon a resolution algorithm that first computes the semantics of Ex (or Cx) on
G. We start by giving a global resolution algorithm and then we present our diagnostic
generation algorithms.

4.1 Global resolution revisited

The global resolution algorithm Solve that we consider here (see Figure 4) is a slightly ex-
tended version of the global graph-based algorithm given in [1]. The pre- and post-conditions
and the invariants of the while-loop are enclosed in rectangular boxes on Figure 4. The Solve
procedure takes as input a Kripke structure G = (V, E, L) induced by an Ebg G and com-
putes two informations for the vertices x ∈ V : a natural value c(x) such that c(x) = 0 iff
x ∈ [[Ex]]

G
; and (only for ∨-vertices x ∈ [[Ex]]

G
) a successor s(x) ∈ E(x) such that there is

no path from s(x) to x passing only through vertices in [[Ex]]
G

.
It is a straightforward exercise to check the validity of the I1 and I2 invariants (ΦEx

G
is

the functional associated to Ex), which ensure that after termination of Solve the vertices
in [[Ex]]

G
will have c(x) = 0. Here we expressed I1 and I2 in terms of Ex (we could have

done this equivalently in terms of Cx). In the light of Theorem 1, we see that Solve is
in fact a model-checking algorithm for Ex. This holds also for other global Bes resolution
algorithms [3,9,28,30].

Invariant I3 ensures that after termination of Solve, all the ∨-vertices x ∈ [[Ex]]
G

will
have a successor s(x) ∈ [[Ex]]

G
such that the satisfaction of Ex by s(x) does not depend

upon x. As we will see in the next section, the computation of s is necessary to obtain an
efficient algorithm for generating minimal examples.

Figure 5 shows the result of executing Solve on the Ebg previously considered on
Figure 3. Vertices x for which c(x) = 0 are black and the others are white. Edges (x, s(x))
are drawn as thick arrows.

One can easily adapt other global Bes resolution algorithms like those in [3,9,28,30] in
order to perform the computation of s. Moreover, we claim that local algorithms like those
in [1,29,19] can be adapted as well, since they function by exploring forwards the boolean
graph and by propagating backwards the vertices found to be true (which is done in a way
similar to the Solve algorithm above). In fact, it can be shown that these local algorithms
actually compute solution-closed subgraphs containing the boolean variable of interest.
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10 Radu Mateescu

G = (V , E, L)

procedure Solve (V , E, L) is

forall x ∈ V do

c(x) := if L(x) = ∧ then |E(x)| else 1 endif

end;
A := {x ∈ V | c(x) = 0};

while A 6= ∅ do I1 ∧ I2 ∧ I3

let y ∈ A;
A := A \ {y};
forall z ∈ E−1(y) do

if c(z) > 0 then

c(z) := c(z) − 1;
if c(z) = 0 then

A := A ∪ {z};
if L(z) = ∨ then

s(z) := y
endif

endif

endif

end

end

end

{x ∈ V | c(x) = 0} = [[Ex]]
G

∧
{(x, y) ∈ E | x, y ∈ [[Ex]]

G
∧ (L(x) = ∨ ⇒ y = s(x))} is acyclic

I1 : ΦEx
G ({x ∈ V | c(x) = 0} \ A) = {x ∈ V | c(x) = 0}

I2 : {x ∈ V | c(x) = 0} ⊆ µΦEx
G = [[Ex]]

G

I3 : {(x, y) ∈ E | c(x) = c(y) = 0 ∧ (L(x) = ∨ ⇒ y = s(x))} is acyclic

Fig. 4. Extended global resolution algorithm

x0

x1

∧

∧ ∨ ∨

∧

∨

x2

x4

x6

x7 x8

x5
x3

x9

∧

∧ ∧

∨

Fig. 5. Computation of c and s by Solve
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Efficient Diagnostic Generation for Boolean Equation Systems 11

4.2 Generation of minimal examples

The algorithm ExSearch that we propose for computing minimal examples (see Figure 6)
takes as input a Kripke structure G = (V, E, L) induced by an Ebg G, a vertex x ∈ [[Ex]]

G
,

and for every ∨-vertex y ∈ [[Ex]]
G

a successor s(y) as computed by the Solve algorithm
given in Section 4.1. Note that the algorithm does not explicitly need all the vertices in
[[Ex]]

G
but only the fact that x ∈ [[Ex]]

G
and the information given by s.

ExSearch iteratively accumulates in V0 all the vertices in [[Ex]]
G

that are reachable
from x by traversing only edges (y, s(y)) if L(y) = ∨ and edges (y, z) ∈ E if L(y) = ∧. All
traversed edges are accumulated in E0.

Invariant J1 (ensured by the properties of s) implies that after termination of ExSearch,
G0 = (V0, E0, L|V0

) is an Ex-model. Indeed, at the end of the while-loop A = ∅ and thus

V0 ⊆
⋃

i≥0 ΦEx
G0

i
(∅) = µΦEx

G0
= [[Ex]]

G0
⊆ V0. Invariant J2 implies that all ∨-vertices y ∈ V0

have only one successor (namely s(y)), and invariant J3 implies that all vertices in V0 are
reachable from x via E0. G0 being an Ex-model, Theorem 2 ensures that G0 is solution-
closed, i.e., it is an example for x. Moreover, G0 meets the conditions of Theorem 3 and thus
it is minimal.

Figure 7 shows a minimal example G0 computed by ExSearch for the variable x0 in
the Ebg considered earlier on Figure 5. The edges in E0 are drawn as thick arrows and the
vertices on the frontier of G0 are surrounded by dashed circles. The ∨-vertices x1 and x4

have in E0 a unique successor s(x1) = s(x4) = x3 that was previously computed by Solve.
Note that the use of the information in s is crucial for ensuring the correctness of

ExSearch: if we chose for x1 the successor x2 instead of x3, the algorithm would compute
the subgraph G0 outlined on Figure 8, which is not an example for x0 because x0 |=G0

Cx. A
correct version of ExSearch that does not use s would require a backtracking graph search
algorithm in order to determine the “good” successor for each ∨-vertex of the example. It is
not obvious how to obtain a linear-time algorithm for computing minimal examples in this
way.

ExSearch has a complexity O(|V0|+ |E0|), since all vertices (edges) in the constructed
example G0 are visited (traversed) only once. Since this is the lowest possible complexity for
an algorithm that must entirely explore G0, it appears that (modulo the linear-time precom-
putation of s) ExSearch is an optimal algorithm for finding minimal examples. In practice,
ExSearch runs very quickly when computing examples whose sizes are significantly smaller
than [[Ex]]

G
(this happens for Ctl formulas like E [T U ϕ]).

RR n
�

3861



12 Radu Mateescu

G = (V, E, L) ∧ x ∈ [[Ex]]
G

∧
R = {(y, z) ∈ E | y, z ∈ [[Ex]]

G
∧ (L(y) = ∨ ⇒ z = s(y))} is acyclic

procedure ExSearch (x, (V , E, L), s) is

V0 := {x}; E0 := ∅; A := {x};

while A 6= ∅ do J1 ∧ J2 ∧ J3

let y ∈ A;
A := A \ {y};
if L(y) = ∨ then

E0 := E0 ∪ {(y, s(y))};
if s(y) 6∈ V0 then

V0 := V0 ∪ {s(y)}; A := A ∪ {s(y)}
endif

else

forall z ∈ E(y) do

E0 := E0 ∪ {(y, z)};
if z 6∈ V0 then

V0 := V0 ∪ {z}; A := A ∪ {z}
endif

end

endif

end

end

G0 = (V0, E0, L|V0
, {y ∈ V0 | L(y) = ∨}) is a minimal example for x

J1 : ∃k ≥ 0.(V0 ⊆
⋃k

i=0
ΦEx

(V0,E0,L|V0
)

i
(A))

J2 : E0 = R|V0

J3 : V0 = E∗
0 (x)

Fig. 6. Minimal example generation algorithm

x0

x1

∧

∧ ∨ ∨

∧

∨

x2

x4

x6

x7 x8

x5
x3

x9

∧

∧ ∧

∨

Fig. 7. A minimal example for x0 computed by ExSearch
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x0

x1

∧

∧ ∨ ∨

∧

∨

x2

x4

x6

x7 x8

x5
x3

x9

∧

∧ ∧

∨

Fig. 8. An erroneous example for x0 computed in absence of s

4.3 Generation of minimal counterexamples

The algorithm CxSearch that we propose for computing minimal counterexamples (see
Figure 9) takes as input a Kripke structure G = (V, E, L) induced by an Ebg G, a vertex
x ∈ [[Cx]]

G
, and for every vertex y ∈ V a counter c(y) as computed by the Solve algorithm

given in Section 4.1.
CxSearch iteratively accumulates in V0 all the vertices in [[Cx]]

G
that are reachable

from x by traversing either a single edge (y, z) ∈ E if L(y) = ∧, or all edges (y, z) ∈ E if
L(y) = ∨. All traversed edges are accumulated in E0.

Invariant K1 (ΦCx
G

is the functional associated to Cx) ensures that after termination of
CxSearch, G0 = (V0, E0, L|V0

) is a Cx-model. Indeed, at the end of the while-loop A = ∅

and thus V0 ⊆ ΦCx
G0

(V0). By Tarski’s theorem [27], this implies V0 ⊆ νΦCx
G0

= [[Cx]]
G0

⊆ V0.
Invariant K2 implies that after the while-loop ∧-vertices of V0 have only one successor in V0

and ∨-vertices have all their successors in V0. Invariant K3 implies that all vertices in V0 are
reachable from x via E0. Since G0 is a Cx-model, Theorem 2 ensures that G0 is solution-
closed, i.e., it is a counterexample for x. Moreover, G0 meets the conditions of Theorem 3
and thus it is minimal.

Figure 10 shows a minimal counterexample G0 computed by CxSearch for the variable
x5 in the Ebg considered earlier on Figure 5.

CxSearch has a complexity O(|V0|+ |E0|), since all vertices (edges) in the constructed
counterexample G0 are visited (traversed) only once. Since this is the lowest possible com-
plexity for an algorithm that must entirely explore G0, CxSearch appears to be an optimal
algorithm for finding minimal counterexamples. In practice, CxSearch runs very quickly
when computing counterexamples whose sizes are significantly smaller than [[Cx]]

G
(this

happens for Ctl formulas like A [T U ϕ]).
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14 Radu Mateescu

G = (V, E, L) ∧ x ∈ [[Cx]]
G

= {y ∈ V | c(y) > 0}

procedure CxSearch (x, (V , E, L), c) is

V0 := {x}; E0 := ∅; A := {x};

while A 6= ∅ do K1 ∧ K2 ∧ K3

let y ∈ A;
A := A \ {y};
if L(y) = ∧ then

let z ∈ E(y) such that c(z) > 0;
E0 := E0 ∪ {(y, z)};
if z 6∈ V0 then

V0 := V0 ∪ {z}; A := A ∪ {z}
endif

else

forall z ∈ E(y) do

E0 := E0 ∪ {(y, z)};
if z 6∈ V0 then

V0 := V0 ∪ {z}; A := A ∪ {z}
endif

end

endif

end

end

G0 = (V0, E0, L|V0
, {y ∈ V0 | L(y) = ∧}) is a minimal counterexample for x

K1 : V0 \ A ⊆ ΦCx
(V0,E0,L|V0

)(V0)

K2 : ∀y ∈ V0 \ A.(L(y) = ∧ ⇒ |E0(y)| = 1) ∧ (L(y) = ∨ ⇒ |E0(y)| = |E(y)|)
K3 : V0 = E0

∗(x)

Fig. 9. Minimal counterexample generation algorithm

x0

x1

∧

∧ ∨ ∨

∧

∨

x2

x4

x6

x7 x8

x5
x3

x9

∧

∧ ∧

∨

Fig. 10. A minimal counterexample for x5 computed by CxSearch
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5 Conclusion and future work

By representing a boolean equation system M as an extended boolean graph G, we charac-
terized the solution of M by means of two particular alternation-free µ-calculus formulas Ex
and Cx interpreted on the Kripke structure G induced by G. This allowed to identify full
diagnostics (examples and counterexamples) explaining the truth value of a boolean vari-
able x of M as being particular subgraphs of G containing x. Moreover, minimal examples
and counterexamples (w.r.t. a subgraph relation that we defined) are obtained as particular
models of Ex and Cx, respectively.

The temporal logic-based formalization that we proposed provides a uniform framework
for analyzing graph-based Bes resolution algorithms such as those in [3,9,28,1,19]. For in-
stance, in Section 4.1 we used our formalization to prove the correctness of a global resolution
algorithm from [1], which can be seen in fact as an algorithm for checking the Ex formula
on a boolean graph.

We presented two linear-time algorithms ExSearch and CxSearch that compute min-
imal examples and counterexamples for a given variable of a Bes. We also indicated how
these algorithms can be used to extend existing (global or local) Bes resolution algorithms
with diagnostic generation facilities.

These two algorithms have been included in the model-checker Evaluator version 3.0
that we developed as part of the Cadp (Cæsar/Aldébaran) protocol engineering
toolset [11] using the generic Open/Cæsar environment for on-the-fly verification [14].
Evaluator 3.0 performs on-the-fly model-checking of alternation-free µ-calculus formulas
extended with regular expressions as in Pdl-∆ [26]. The diagnostic generation facilities
proved to be extremely useful in practice, as illustrated by the use of the model-checker
by non-expert users and also for teaching purposes. Besides giving diagnostics for plain
alternation-free µ-calculus formulas, Evaluator 3.0 can be used to find regular execution
sequences in labeled transition systems (as diagnostics for Pdl-∆ formulas) and to produce
full diagnostics for Ctl [5] and Actl [22] formulas (by encoding the operators of these logics
as macro-definitions in the input language of the tool).

The ExSearch and CxSearch algorithms compute diagnostics that are minimal w.r.t.
the Ebg subgraph relation that we proposed. The diagnostics obtained contain no redundant
information, since every ∨-vertex in a minimal example and every ∧-vertex in a minimal
counterexample has only one successor. This is reasonably good in practice, as confirmed
by the experiments performed using Evaluator 3.0. However, there are other additional
criteria that may be considered for further reducing the diagnostic size (e.g., minimizing the
number of vertices, number of edges, depth, diameter, etc.). Some of these optimizations can
be done efficiently in particular cases, e.g., generating minimal length transition sequences as
diagnostics for Pdl-∆ diamond modalities or Ctl formulas E [T U ϕ] (which both translate
into Bess containing only ∨ operators in the nontrivial right-hand sides). An interesting
issue would be to investigate the general extension of ExSearch and CxSearch with such
optimization features.
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16 Radu Mateescu

We also plan to apply our diagnostic generation techniques in the context of bisimulation
checking [9,2] and of test generation [12]. Another potentially fruitful direction of research
is to extend our formalization to Bess of higher alternation depth [29,2,20,18]. The charac-
terizations of the solution and diagnostics for these Bess would certainly require formulas
of the full modal µ-calculus.
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A Proofs

We first define some useful shorthand notations. Consider a Kripke structure G = (V, E, L).
According to Definition 1 and to Figure 2, the functionals ΦEx

G
, ΦCx

G
: 2V → 2V associated

to the Ex and Cx formulas are expressed below:

ΦEx
G

(U) = [[(P∨ ∧ 〈−〉Y ) ∨ (P∧ ∧ [−] Y )]]
G

[U/Y ]
= {x ∈ V | ((L(x) = ∨) ∧ E(x) ∩ U 6= ∅) ∨ ((L(x) = ∧) ∧ E(x) ⊆ U)}

ΦCx
G

(U) = [[(P∨ ∧ [−] Y ) ∨ (P∧ ∧ 〈−〉Y )]]
G

[U/Y ]
= {x ∈ V | ((L(x) = ∨) ∧ E(x) ⊆ U) ∨ ((L(x) = ∧) ∧ E(x) ∩ U 6= ∅)}

The semantics of Ex and Cx over G are [[Ex]]
G

= µΦEx
G

and [[Cx]]
G

= νΦCx
G

. Let Exk
G

be

the increasing chain defined by Exk+1
G

= ΦEx
G

(Exk
G

), Ex0
G

= ∅ and Cxk
G

be the decreasing

chain defined by Cxk+1
G

= ΦCx
G

(Cxk
G

), Cx0
G

= V . Using the Knaster-Tarski theorem, the

semantics of Ex and Cx over G can be obtained as [[Ex]]
G

= µΦEx
G

=
⋃

k≥0 Exk
G and

[[Cx]]
G

= νΦCx
G

=
⋂

k≥0 Cxk
G

, respectively.

Proof (Theorem 1).

Consider a closed Bes M = {xi
µ
= opiXi}1≤i≤n and its associated Kripke structure G =
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(V, E, L). According to classical µ-calculus model-checking results [3,9,28,1], we can translate
the satisfaction of a single fixed point formula σY.ϕ by a vertex xi ∈ V (1 ≤ i ≤ n) into the
resolution of a Bes N as follows:

xi |=G σY.ϕ ⇔ [[N ]]i = T

where N = {Yxi

σ
= (ϕ)xi

}1≤i≤n and (ϕ)x is obtained using the rules (1) below.

(P∨)x = (L(x) = ∨)
(P∧)x = (L(x) = ∧)

(ϕ1 ∨ ϕ2)x = (ϕ1)x ∨ (ϕ2)x

(ϕ1 ∧ ϕ2)x = (ϕ1)x ∧ (ϕ2)x

(〈−〉ϕ)x =
∨

x′∈E(x)
(ϕ)x′

([−] ϕ)x =
∧

x′∈E(x)
(ϕ)x′

(1)

By applying this translation to Ex interpreted on G, we obtain, for all 1 ≤ i ≤ n:

xi |=G µY.(P∨ ∧ 〈−〉Y ) ∨ (P∧ ∧ [−]Y ) ⇔ [[N ]]i = T

where:

N = {Yxi

µ
= ((P∨ ∧ 〈−〉Y ) ∨ (P∧ ∧ [−]Y ))xi

}1≤i≤n

=

{

Yxi

µ
=

{

∨

xj∈E(xi)
Yxj

if L(xi) = ∨
∧

xj∈E(xi)
Yxj

if L(xi) = ∧

}

1≤i≤n

by using rules (1)

= {Yxi

µ
= opi{Yxj

| xj ∈ Xi}}1≤i≤n by definition of G
= M by renaming Yxi

into xi (1 ≤ i ≤ n).

Proof (Theorem 2).

If. Let G = (V, E, L, F ) such that F ⊆ [[(P∨ ∧ Ex) ∨ (P∧ ∧ Cx)]]
G

and let G′ =
(V ′, E′, L′, F ′) such that G � G′. We must show that [[Ex]]

G
= [[Ex]]

G′ ∩ V . Using the
complementarity between Ex and Cx, we can split this equality into [[Ex]]

G′∩V ⊆ [[Ex]]
G

and [[Cx]]
G′ ∩ V ⊆ [[Cx]]

G
.

– To prove [[Ex]]
G′ ∩ V ⊆ [[Ex]]

G
, we show by induction that Exk

G′ ∩ V ⊆ [[Ex]]
G

for
all k ≥ 0.
Base step. Ex0

G′ ∩ V = ∅ ⊆ [[Ex]]
G

.

Inductive step. Let x ∈ Exk+1
G′ ∩ V . Two cases are possible.

1. If L(x) = ∧, by definition of Exk+1
G′ we have that E′(x) ⊆ Exk

G′ . Since

E ⊆ E′, this implies E(x) = E(x) ∩ V ⊆ E′(x) ∩ V ⊆ Exk
G′ ∩ V and

by induction hypothesis we have E(x) ⊆ [[Ex]]
G

. By definition of ΦEx
G

, this
means x ∈ ΦEx

G
([[Ex]]

G
) = [[Ex]]

G
.

2. If L(x) = ∨, by definition of Exk+1
G′ we have that E′(x) ∩ Exk

G′ 6= ∅. Since
E′ = E ∪ (E′ \ E), two cases are possible.
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(a) If E(x) ∩ Exk
G′ 6= ∅, we have E(x) ∩ (Exk

G′ ∩ V ) 6= ∅, which by induction
hypothesis implies E(x) ∩ [[Ex]]

G
6= ∅. By definition of ΦEx

G
, this means

x ∈ ΦEx
G

([[Ex]]
G

) = [[Ex]]
G

.

(b) If (E′ \ E)(x) ∩ Exk
G′ 6= ∅, and since G � G′, there exists (x, y) ∈

(E′ \ E)|V = (E′ \ E)|F . Thus x ∈ F , which implies by hypothesis
x ∈ [[P∨ ∧ Ex]]

G
⊆ [[Ex]]

G
.

– To prove [[Cx]]
G′ ∩ V ⊆ [[Cx]]

G
, we show by induction that [[Cx]]

G′ ∩ V ⊆ Cxk
G

for
all k ≥ 0.
Base step. [[Cx]]

G′ ∩ V ⊆ V = Cx0
G.

Inductive step. Let x ∈ [[Cx]]
G′ ∩ V = ΦCx

G′ ([[Cx]]
G′) ∩ V . Two cases are possible.

1. If L(x) = ∨, by definition of ΦCx
G′ we have that E′(x) ⊆ [[Cx]]

G′ . Since
E ⊆ E′, this implies E(x) = E(x) ∩ V ⊆ E′(x) ∩ V ⊆ [[Cx]]

G′ ∩ V and by

induction hypothesis we have E(x) ⊆ Cxk
G

. By definition of ΦCx
G

, this means
x ∈ ΦCx

G
(Cxk

G) = Cxk+1
G

.
2. If L(x) = ∧, by definition of ΦCx

G′ we have that E′(x) ∩ [[Cx]]
G′ 6= ∅. Since

E′ = E ∪ (E′ \ E), two cases are possible.
(a) If E(x)∩[[Cx]]

G′ 6= ∅, we have E(x)∩([[Cx]]
G′∩V ) 6= ∅, which by induction

hypothesis implies E(x) ∩ Cxk
G 6= ∅. By definition of ΦCx

G
, this means

x ∈ ΦCx
G

(Cxk
G

) = Cxk+1
G

.
(b) If (E′ \ E)(x) ∩ [[Cx]]

G′ 6= ∅, and since G � G′, there exists (x, y) ∈
(E′ \ E)|V = (E′ \ E)|F . Thus x ∈ F , which implies by hypothesis x ∈

[[P∧ ∧ Cx]]
G

⊆ [[Cx]]
G

⊆ Cxk+1
G

.

Only if. Let G = (V, E, L, F ) be a solution-closed Ebg. We must show that
F ⊆ [[(P∨ ∧ Ex) ∨ (P∧ ∧ Cx)]]

G
. Suppose there exists x ∈ F such that x 6∈

[[(P∨ ∧ Ex) ∨ (P∧ ∧ Cx)]]
G

. Using the complementarity between Ex and Cx, this is
equivalent to x ∈ [[(P∨ ∧ Cx) ∨ (P∧ ∧ Ex)]]

G
. Two cases are possible.

1. If L(x) = ∨, then x ∈ [[Cx]]
G

. Let y 6∈ V and consider the Ebg G′ = (V ∪ {y}, E ∪
{(x, y)}, L [∧/y] , F ). It is easy to see that G � G′. Since (E ∪ {(x, y)})(y) = ∅ ⊆
[[Ex]]

G′ , by definition of ΦEx
G′ we have y ∈ ΦEx

G′([[Ex]]
G′) = [[Ex]]

G′ . Because y ∈
(E ∪ {(x, y)})(x), this implies (E ∪ {(x, y)})(x)∩ [[Ex]]

G′ 6= ∅, which by definition of
ΦEx

G′ means that x ∈ ΦEx
G′([[Ex]]

G′) = [[Ex]]
G′ . Thus x 6∈ [[Cx]]

G′ and x ∈ [[Cx]]
G

i.e.,
G is not solution-closed. Contradiction.

2. If L(x) = ∧, then x ∈ [[Ex]]
G

. Let y 6∈ V and consider the Ebg G′ = (V ∪ {y}, E ∪
{(x, y)}, L [∨/y] , F ). It is easy to see that G � G′. Since (E ∪ {(x, y)})(y) = ∅ ⊆
[[Cx]]

G′ , by definition of ΦCx
G′ we have y ∈ ΦCx

G′ ([[Cx]]
G′) = [[Cx]]

G′ . Because y ∈
(E ∪{(x, y)})(x), this implies (E ∪{(x, y)})(x)∩ [[Cx]]

G′ 6= ∅, which by definition of
ΦCx

G′ means that x ∈ ΦCx
G′ ([[Cx]]

G′) = [[Cx]]
G′ . Thus x 6∈ [[Ex]]

G′ and x ∈ [[Ex]]
G

i.e.,
G is not solution-closed. Contradiction.
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Proof (Theorem 3). We show the result only for minimal examples, the proof for minimal
counterexamples being symmetric.

If. Let G = (V, E, L, F ) be an example for x ∈ V satisfying the conditions a), b), c), d).
Let G′ = (V ′, E′, L′, F ′) be another example for x ∈ V ′ such that G′ � G. Since by
condition a) G is an Ex-model and by definition G′ is a solution-closed subgraph of G,
it follows that G′ is also an Ex-model. We prove that G′ = G.

– To show V ′ = V , suppose that V \ V ′ 6= ∅. Then there must be (y, z) ∈ E such
that y ∈ V ′ and z ∈ V \ V ′ (because otherwise, by condition c) and since x ∈ V ′,
V = E∗(x) ⊆ V ′ ⊆ V ). By definition of �, this means that y ∈ F ′, since (y, z) ∈
(E \ E′)|V ′ = (E \ E′)|F ′ . Two cases are possible.
1. If L(y) = ∨, then E′(y) = ∅ (i.e., y has no successors in V ′), because 1 ≤

|(E \ E′)(y)| ≤ |E(y)| = 1 by condition b). By definition of ΦCx
G′ , this implies

that y ∈ ΦCx
G′ ([[Cx]]

G′) = [[Cx]]
G′ so G′ is not an Ex-model. Contradiction.

2. If L(y) = ∧, and since G′ is an Ex-model, we have y ∈ [[P∧ ∧ Ex]]
G′ and thus

y 6∈ [[(P∨ ∧Ex) ∨ (P∧ ∧ Cx)]]
G′ . Since y ∈ F ′, Theorem 2 implies that G′ is not

solution-closed. Contradiction.
– To show E′ = E, suppose there exists (y, z) ∈ E\E′. Then, by the same reasoning as

above, each of the two possible cases L(y) = ∨ and L(y) = ∧ leads to a contradiction.
– To show L′ = L, we have L′ = L|V ′ = L|V = L because V ′ = V and G′ � G.
– To show F ′ = F , we have F = F ∩ V = F ∩ V ′ ⊆ F ′ because V ′ = V and

G′ � G. Since G′ is solution-closed and G′ is an Ex-model, Theorem 2 implies
that F ′ ⊆ [[P∨ ∧Ex]]

G′ ⊆ [[P∨]]
G′ . Finally, by hypothesis and V ′ = V , we have

F ′ ⊆ [[P∨]]
G′ = {y ∈ V ′ | L(y) = ∨} = {y ∈ V | L(y) = ∨} = F .

Only if. Let G = (V, E, L, F ) be an example for x ∈ V that is minimal w.r.t. �. We must
show that G satisfies the conditions a), b), c), d).

Condition a). Suppose that [[Cx]]
G

6= ∅. Consider the subgraph G′ = ([[Ex]]
G

, E ∩
([[Ex]]

G
×[[Ex]]

G
), L|[[Ex]]

G

, [[P∨ ∧ Ex]]
G

). G′ is strictly smaller than G w.r.t. � be-

cause [[Ex]]
G

⊂ V . Since G is an example for x, this means x ∈ [[Ex]]
G

. We prove
that G′ is also an example for x. It is sufficient to show that G′ is an Ex-model,
because in this case Theorem 2 and the definition of G′ imply that G′ is also solution-
closed. By definition of G′ we have [[Ex]]

G′ ⊆ [[Ex]]
G

. To prove [[Ex]]
G

⊆ [[Ex]]
G′ , we

show by induction that Exk
G

⊆ Exk
G′ for all k ≥ 0.

Base step. Ex0
G = ∅ ⊆ Ex0

G′ .
Inductive step. Let y ∈ Exk+1

G
. Two cases are possible.

1. If L(y) = ∨, by definition of Exk+1
G

we have that E(y) ∩ Exk
G

6= ∅. By

induction hypothesis, this implies E(y) ∩ Exk
G′ 6= ∅, which by definitions

of ΦEx
G

and G′ implies y ∈ ΦEx
G

(Exk
G′) ⊆ ΦEx

G
([[Ex]]

G
) = [[Ex]]

G
. Thus we

have (E∩ ([[Ex]]
G
×[[Ex]]

G
))(y)∩Exk

G′ 6= ∅. By definition of ΦEx
G′ , this means

y ∈ ΦEx
G′(Exk

G′) = Exk+1
G′ .
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2. If L(y) = ∧, by definition of Exk+1
G

we have that E(y) ⊆ Exk
G

. By in-

duction hypothesis, this implies E(y) ⊆ Exk
G′ , which by definitions of ΦEx

G

and G′ implies again y ∈ ΦEx
G

(Exk
G′) ⊆ ΦEx

G
([[Ex]]

G
) = [[Ex]]

G
. Thus we

have (E ∩ ([[Ex]]
G
×[[Ex]]

G
))(y) ⊆ Exk

G′ . By definition of ΦEx
G′ , this means

y ∈ ΦEx
G′(Exk

G′) = Exk+1
G′ .

So, G′ is an example for x strictly smaller than G. Contradiction.
Condition b). Suppose there exists y ∈ V such that L(y) = ∨ and |E(y)| 6= 1. Two

cases are possible.
– If |E(y)| = 0, then E(y) = ∅ ⊆ [[Cx]]

G
. By definition of ΦCx

G
, this means y ∈

ΦCx
G

([[Cx]]
G

) = [[Cx]]
G

and thus G is not an Ex-model. Contradiction.
– If |E(y)| > 1, let u ∈ E(y) such that K(u) = min{K(v) | v ∈ E(y)}, where

K(v) = min{k ≥ 0 | v ∈ Exk
G}. Intuitively, u is (one of) the first successor(s)

of y reached by the increasing chain Exk
G

. Since |E(y)| > 1, there exists z ∈
E(y)\{u}. Consider the subgraph G′ = (V, E \{(y, z)}, L, F ∪{y}). G′ is strictly
smaller than G w.r.t. � because E \ {(y, z)} ⊂ E. We prove that G′ is also an
example for x. Since G is an Ex-model, it is sufficient to show that G′ is also an
Ex-model, because in this case Theorem 2 and the definition of G′ imply that
G′ is also solution-closed. By definition of G′ we have [[Ex]]

G′ ⊆ V . To prove

V ⊆ [[Ex]]
G′ , we show by induction that Exk

G
⊆ Exk

G′ for all k ≥ 0.
Base step. Ex0

G = ∅ ⊆ Ex0
G′ .

Inductive step. Let v ∈ Exk+1
G

. Two cases are possible.

1. If L(v) = ∧, by definition of Exk+1
G

we have that E(v) ⊆ Exk
G

. By defini-

tion of G′ and because v 6= y, we have (E \ {(y, z)})(v) = E(v) ⊆ Exk
G,

which by induction hypothesis implies (E \ {(y, z)})(v) ⊆ Exk
G′ . By defi-

nition of ΦEx
G′ , this means v ∈ ΦEx

G′(Exk
G′) = Exk+1

G′ .

2. If L(v) = ∨, by definition of Exk+1
G

we have that E(v) ∩ Exk
G 6= ∅. Two

cases are possible.
(a) If v 6= y, by definition of G′ we have (E \ {(y, z)})(v) = E(v), which

means that (E \ {(y, z)})(v) ∩ Exk
G 6= ∅. By induction hypothesis, this

implies (E \ {(y, z)})(v) ∩ Exk
G′ 6= ∅, which by definition of ΦEx

G′ means
that v ∈ ΦEx

G′(Exk
G′) = Exk+1

G′ .

(b) If v = y, let w ∈ E(v) ∩ Exk
G. By definition of K(w) and u, this

means k ≥ K(w) ≥ K(u) and thus we have also that u ∈ Exk
G

.
Since u 6= z by definition, we also have that u ∈ (E \ {(y, z)})(v) and
thus (E \ {(y, z)})(v)∩Exk

G 6= ∅. By induction hypothesis, this implies
(E \ {(y, z)})(v) ∩ Exk

G′ 6= ∅, which by definition of ΦEx
G′ means that

v ∈ ΦEx
G′(Exk

G′) = Exk+1
G′ .

So, G′ is an example for x strictly smaller than G. Contradiction.
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Condition c). Suppose that V \ E∗(x) 6= ∅. Consider the subgraph G′ = (E∗(x), E ∩
(E∗(x)×E∗(x)), L|E∗(x), [[P∨]]

G
∩ E∗(x)). G′ is strictly smaller than G w.r.t. � be-

cause E∗(x) ⊂ V . We prove that G′ is also an example for x. It is sufficient to show
that G′ is an Ex-model, because in this case Theorem 2 and the definition of G′

imply that G′ is also solution-closed. By definition of G′ we have [[Ex]]
G′ ⊆ E∗(x).

Since G is an Ex-model, we know that E∗(x) = [[Ex]]
G
∩ E∗(x). Thus, in order to

prove E∗(x) ⊆ [[Ex]]
G′ , we show by induction that Exk

G ∩ E∗(x) ⊆ Exk
G′ for all

k ≥ 0.
Base step. Ex0

G
∩ E∗(x) = ∅ ⊆ Ex0

G′ .
Inductive step. Let y ∈ Exk+1

G
∩ E∗(x). Two cases are possible.

1. If L(y) = ∨, by definition of Exk+1
G

we have that E(y) ∩ Exk
G

6= ∅. Since

E(y) ⊆ E∗(x), this implies E(y) ∩ (Exk
G

∩ E∗(x)) 6= ∅ and by induction
hypothesis we have E(y)∩Exk

G′ 6= ∅. Thus we have (E∩(E∗(x)×E∗(x)))(y)∩
Exk

G′ 6= ∅. By definition of ΦEx
G′ , this means y ∈ ΦEx

G′(Exk
G′) = Exk+1

G′ .

2. If L(y) = ∧, by definition of Exk+1
G

we have that E(y) ⊆ Exk
G

. Since E(y) ⊆

E∗(x), this implies E(y) = E(y) ∩ E∗(x) ⊆ Exk
G ∩ E∗(x) and by induction

hypothesis we have E(y) ⊆ Exk
G′ . Thus we have (E ∩ (E∗(x)×E∗(x)))(y) ⊆

Exk
G′ . By definition of ΦEx

G′ , this means y ∈ ΦEx
G′(Exk

G′) = Exk+1
G′ .

So, G′ is an example for x strictly smaller than G. Contradiction.
Condition d). Since G is solution-closed and G is an Ex-model, by Theorem 2 we have

that F ⊆ [[P∨ ∧Ex]]
G

⊆ [[P∨]]
G

. To show [[P∨]]
G

⊆ F , suppose there exists y ∈ V
such that L(y) = ∨ and y 6∈ F . Consider the subgraph G′ = (V, E, L, F ∪{y}). G′ is
strictly smaller than G w.r.t. � because G′ 6= G. We prove that G′ is also an example
for x. Since G is an Ex-model and G′ = G by definition of G′, it follows that G′

is also an Ex-model. Because F ∪ {y} ⊆ [[P∨]]
G

= {z ∈ V | L(z) = ∨} = [[P∨]]
G′ ,

Theorem 2 implies that G′ is also solution-closed. So, G′ is an example for x strictly
smaller than G. Contradiction.
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