
On-the-Fly Verification using CADP

Radu Mateescu
Inria Rhône-Alpes / Vasy, 655, avenue de l’Europe

F-38330 Montbonnot Saint Martin, France
Radu.Mateescu@inria.fr

Abstract

On-the-fly verification consists in analysing the correctness of a finite-state concur-
rent system by constructing and exploring its state space incrementally. This provides
a way to fight against state explosion, by enabling the detection of errors in systems
with large state spaces. We give an overview of the latest on-the-fly verification tech-
niques developed within the Cadp protocol engineering toolbox. These techniques are
based upon on-the-fly resolution of (alternation-free) boolean equation systems, imple-
mented in a generic software library named Cæsar Solve, which is currently used for
equivalence checking and model checking.

1 Introduction

A successful approach for automatically analysing the correctness of a concurrent finite-
state system consists in building its state space and verifying that it meets an abstract
specification, expressed either as an external behaviour (equivalence checking), or as a set
of temporal logic properties (model checking). The main drawback of this approach is state

explosion (prohibitive size of the state space), which occurs for systems containing many par-
allel processes and complex data structures. On-the-fly verification combats state explosion
by constructing the state space in a demand-driven way, therefore enabling the detection of
errors in large systems.

Building robust tools for on-the-fly verification is a complex and costly activity. This
effort could be significantly reduced by using generic software components from which elab-
orated verification tools can be constructed. A successful attempt in achieving genericity
was made by developing the Open/Cæsar [5] environment, which is a central piece of the
Cadp verification toolbox [6]. Open/Cæsar precisely defines an application programming
interface (Api) which represents state spaces or labelled transition systems (Ltss) in an
implicit manner, by means of their “successor” function. This Api allows to build generic
verification tools that explore the Lts of a concurrent program on-the-fly, independently
from the source language in which the program was written. Such verification tools are
directly available for any language equipped with a compiler implementing a translation to
the Api of Open/Cæsar. Cadp currently contains several verification tools built using

1



Open/Cæsar: Executor (random execution), Exhibitor (searching of regular transi-
tion sequences), Ocis (interactive and guided simulation), Evaluator (model checking of
regular alternation-free µ-calculus), etc.

Continuing the ideas underlying Open/Cæsar, we developed a generic software library,
called Cæsar Solve, dedicated to on-the-fly resolution of alternation-free boolean equation
systems (Bess), represented by their corresponding boolean graphs encoded implicitly in an
Open/Cæsar-style. The library currently contains four Bes resolution algorithms, each one
implementing a different strategy, and also allows to generate diagnostics, i.e., portions of the
Bes explaining the truth value of a variable. Cæsar Solve has been used — in conjunction
with Open/Cæsar — for building two on-the-fly verification tools: the equivalence checker
Bisimulator and the model checker Evaluator.

The paper is organized as follows. Section 2 recalls the Bes definition and briefly describes
the four on-the-fly resolution algorithms. Section 3 presents the principles of the generic
library Cæsar Solve and its applications to equivalence checking and µ-calculus model
checking. Section 4 concludes and indicates directions for future work.

2 Boolean equation systems

A boolean equation system (Bes) consists of several blocks of equations having boolean
variables in their left-hand sides and disjunctive or conjunctive boolean formulas in their
right-hand sides (see Figure 1). Each block of n equations denotes either a minimal (µ) or
maximal (ν) fixed point solution of its associated functional defined over Booln. Here we
consider alternation-free Bess (i.e., without cyclic dependencies between blocks), which can
be solved in linear time and thus are of practical interest.

x1 =µ x2 ∨ x3

x2 =µ x3 ∨ x4

x3 =µ x2 ∧ x7

M1 M2 M3

x5 =µ x8 ∨ x9

x4 =µ x5 ∨ x6

x6 =µ F

x7 =ν x8 ∧ x9

x8 =ν T

x9 =ν F

Figure 1: An alternation-free boolean equation system

The local (or on-the-fly) resolution of a Bes consists in computing the value of a given
variable, without necessarily solving the whole system. A useful local resolution scheme for
alternation-free Bess can be obtained by associating a resolution routine to each block of
the Bes; a routine is invoked whenever the value of a variable defined in its corresponding
block is needed. This scheme yields simple algorithms, which must handle a single type of
fixed point equations, and also allows to optimize the resolution of each block independently,
according to its particular shape.

We developed the resolution algorithms by representing Bess as boolean graphs [1], which
provide an intuitive way of reasoning about dependencies between boolean variables. All
algorithms are based upon the same principle: forward exploration of the boolean graph

2



starting at the variable of interest, and backward propagation (i.e., substitution) of variables
whose values have been established. During the computation, the algorithms also gather
information for constructing diagnostics (portions of the boolean graph illustrating the value
of a variable) after termination of the resolution, using the approach proposed in [7]. We
developed four local resolution algorithms [9]: A1 is depth-first search (Dfs)-based and
currently serves as engine in the Evaluator model checker for regular alternation-free
µ-calculus [10]; A2 is breadth-first search (Bfs)-based and yields low-depth diagnostics;
A3 and A4 are both Dfs-based and exhibit reduced memory consumption for acyclic and
disjunctive/conjunctive boolean graphs, respectively. A3 is currently used within Cadp for
checking µ-calculus properties on large execution traces [8].

3 On-the-fly verification

Alternation-free Bess allow to encode various verification problems on Ltss, such as equiv-
alence checking, i.e., comparison of two Ltss modulo strong and weak equivalences [2] and
model checking, i.e., evaluation of alternation-free µ-calculus formulas on an Lts [1]. This
motivated the construction of a generic library within Cadp, called Cæsar Solve, which
implements the four on-the-fly resolution algorithms for alternation-free Bess (see Section 2)
and can be applied for building different verification tools. Genericity is achieved by en-
coding Bess and diagnostics as boolean graphs, through a precise Api inspired by the
Open/Cæsar [5] Api for representing implicit Ltss. The basic idea is to encode each
equation block of a Bes by the successor function of its corresponding boolean graph; after
resolution of a boolean variable, the library can also provide a diagnostic (boolean subgraph
rooted at the variable) by giving its successor function.

To use the Cæsar Solve library, the designer of a verification tool must provide: (1) an
implementation in C of the boolean variables as pointers to (application-dependent) memory
areas of fixed size, equipped with comparison and hashing functions; (2) an iterator function
which enumerates the successors of a given boolean variable; (3) if needed, a function which
traverses the boolean subgraph provided as diagnostic in order to interpret it in terms of the
application. So far we used Cæsar Solve as engine for two on-the-fly verification tools with
diagnostic developed within Cadp (see Figure 2): the equivalence checker Bisimulator,
which handles strong, branching, observational, safety, and τ ∗.a equivalence; and the model
checker Evaluator, which handles alternation-free µ-calculus formulas extended with reg-
ular expressions and data parameters. Both tools translate their verification problems into
Bes resolution and interpret diagnostics by traversing the corresponding boolean subgraphs
using the successor function given as output by Cæsar Solve.

We also identified several particular cases of practical interest where the memory-efficient
algorithms A3 and A4 can be used [9]. For equivalence checking, A3 can be applied when one
of the Ltss is acyclic (e.g., when checking the inclusion of an execution trace in the Lts of
a specification) and A4 can be applied when one Lts is deterministic (e.g., when comparing
a protocol Lts with its deterministic service Lts). For model checking, A3 can be applied
when the Lts is acyclic (e.g., when checking formulas on execution traces) and A4 can be
applied when the formulas are expressed using the operators of Actl [3] and Pdl [4].

3



Open/Cæsar
library (.a)

Y uses X

Cæsar Solve
library (.a)

I/O dependency

X Bcg
library (.a)

executable diagnostic
(.bcg)

X

Compilation

C compiler

Open/Cæsar
environment Verification

Bisimulator (.a)

Y:

Y:
Y / N

+ linker

environment

Lts (.c)

source

Runtime

implicit

program

compiler

explicit
Lts (.bcg)

formula

Open/Cæsar Api

Cæsar Solve Api

Evaluator (.a)

Figure 2: Use of Open/Cæsar and Cæsar Solve for on-the-fly verification

4 Conclusion and future work

The Cæsar Solve library is intended to provide a generic support for the construction
of on-the-fly verification tools based upon Bes resolution. Two directions for continuing
this work seem promising. Firstly, to increase the flexibility of Cæsar Solve, we plan
to extend it with new Bes resolution algorithms, which either optimize particular cases
(e.g., model checking of Actl and Pdl formulas on execution traces, which yields disjunc-
tive/conjunctive Bess with low-breadth, acyclic boolean graphs), or experiment with various
exploration strategies (e.g., combined Dfs-Bfs, random exploration, etc.). Secondly, we en-
visage new applications of Cæsar Solve in the field of verification: partial-order reduction
by detecting τ -confluent transitions (a prototype tool has already been developed and used
for compositional verification [11]); test generation and discrete controller synthesis, both of
which could be rephrased in terms of diagnostic generation.

4



References

[1] Andersen, H.R., Model Checking and Boolean Graphs, Theoretical Computer Science
126(1):3–30, 1994.

[2] Cleaveland, R., and B. Steffen, Computing Behavioural Relations, Logically, in
ICALP’91, LNCS vol. 510, pp. 127–138.

[3] De Nicola, R., and F. Vaandrager, Action versus State based Logics for Transition
Systems, in Semantics of Concurrency, LNCS vol. 469, pp. 407–419.

[4] Fischer, M. J., and R. E. Ladner, Propositional Dynamic Logic of Regular Programs,
Journal of Computer and System Sciences 18:194–211, 1979.

[5] Garavel, H., OPEN/CÆSAR: An Open Software Architecture for Verification, Simula-
tion, and Testing, in TACAS’98, LNCS vol. 1384, pp. 68–84.

[6] Garavel, H., F. Lang, and R. Mateescu, An Overview of CADP 2001, EASST Newsletter

4:13–24, 2002.

[7] Mateescu, R., Efficient Diagnostic Generation for Boolean Equation Systems, in
TACAS’00, LNCS vol. 1785, pp. 251–265.

[8] Mateescu, R., Local Model-Checking of Modal Mu-Calculus on Acyclic Labeled Tran-
sition Systems, in TACAS’02, LNCS vol. 2280, pp. 281–295.

[9] Mateescu, R., A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Sys-
tems, in TACAS’03, LNCS vol. 2619, pp. 81–96.

[10] Mateescu, R., and M. Sighireanu, Efficient On-the-Fly Model-Checking for Regular

Alternation-Free Mu-Calculus, Science of Computer Programming 46(3):255–281, 2003.

[11] Pace, G., F. Lang, and R. Mateescu, Calculating Tau-Confluence Compositionally, in
CAV’03, to appear in LNCS, 2003.

5


