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Abstract

We present a temporal logic model-checking environment based on a new language
called Xtl (eXecutable Temporal Language). Xtl is a functional programming
language designed to allow a compact description of various temporal logic oper-
ators, which are evaluated over a Labelled Transition System (Lts). Xtl offers
primitives to access the data values (possibly) contained in the states and labels of
the Lts, as well as to explore the transition relation. The temporal logic operators
are implemented by means of iteration expressions computing sets of states and
sets of transitions. Various useful modal and temporal logics like Hml, Ctl, Ltac
and Actl, have been implemented in Xtl, and several industrial case-studies, such
as the Brp protocol designed by Philips, the Ieee-1394 serial bus standardized by
Ieee, and the Cfs protocol developed by Bull and Inria, have been successfully
validated using the Xtl model-checker.

1 Introduction

The last years have witnessed an increasing application of formal methods in the design
and validation of complex applications, such as communication protocols and distributed
systems. One of the most popular techniques of program verification is the so-called
model-checking. In this approach, the application is first described using an appropriate
high-level language, such as Lotos1 [17] or µCrl2 [12]. Next, the program is trans-
lated into a Labelled Transition System model (Lts for short), over which the desired
correctness properties, expressed as temporal logic formulas, are verified by means of
specialized tools called model-checkers.

The literature concerning this area is very rich in results: a large variety of temporal
logics have been defined, allowing to capture different kinds of correctness properties, and
several corresponding model-checking algorithms have been proposed. Also, numerous
tool environments allowing verification by model-checking have been developed, such as
Emc [4], Cwb [6], Spin [15], Tav [19], Mec [1], Jack [3], and Concurrency Factory [5],
to mention only a few of them.

However, many of the currently available tools are either dedicated to a particular
description language and/or temporal logic (e.g., the language Promela [15] used in
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Spin, the logic Actl [23] used in Jack, etc.), or they are based on a particular model-
checking algorithm (e.g., the boolean resolution algorithm [2] used in Mec). Therefore,
most of these tools have limited applicability in different contexts, and their adaptation
to another setting may be overwhelming in terms of time and implementation effort.

Another important issue is the handling of data values, both at the level of the
description language and of the temporal logic. For instance, the Lts models corre-
sponding to value-passing description languages as Lotos or µCrl contain data values
in the states and/or transition labels. This requires the ability to express and verify tem-
poral properties involving data, e.g., “after a message m has been sent, the same message

m will be eventually received.” Although studied in the theorem-proving approach [26],
this issue has received little attention in the setting of automated model-checking.

In this paper, we present an approach to temporal logic model-checking that attempts
to reduce the shortcomings mentioned above. Our method is based on a meta-language
called Xtl (eXecutable Temporal Language), which is a functional programming lan-
guage designed to allow a compact description of temporal logic operators. We use the
term “meta-language” to emphasize that Xtl allows not only to handle, in a uniform
way, the data objects (i.e., types and functions) defined in the program to be verified,
but also the states, transitions, and labels of the corresponding Lts model. Furthermore,
since Xtl is a programming language, it can be used to define non-standard temporal
operators and, more generally, to perform any computation on an Lts model (e.g., to
calculate the branching factor, print the list of labels, etc.).

The Xtl model-checker has been developed as part of the Cadp
(Cæsar/Aldébaran Development Package) protocol engineering toolset [9]. We
describe here the version 1.1 of the Xtl tool, which is currently integrated in Cadp3.

The paper is organized as follows. Section 2 gives an overview of the Xtl language
and shows various examples of temporal logic operators implemented in Xtl. Section 3
briefly describes the architecture of the Xtl model-checker. Section 4 presents sev-
eral applications to industrial case-studies. Finally, Section 5 contains some concluding
remarks and directions for future work.

2 Overview of the XTL language

In this section, we first describe the (extended) Lts models over which Xtl programs
are interpreted, and next we present the basic Xtl constructs, illustrating their use by
means of various examples. Due to space limitations, we cannot describe here in full
detail the whole Xtl language. A more detailed presentation can be found in [22] and
in the technical documentation of the Cadp toolset.

2.1 Labelled Transition Systems

In order to verify temporal properties of programs written in value-passing description
languages as Lotos and µCrl, we must naturally use an adequate representation of
the corresponding Lts models, the states and labels of which may contain data values.
Such a representation is available within the Cadp toolset as a special file format called
Bcg (Binary Coded Graphs) [10]. A Bcg file representing the Lts model of a program
to be verified (denoted by “source program” in the remainder of the paper) contains
essentially the following informations:

3The Cadp toolset can be obtained at the Url http://www.inrialpes.fr/vasy/cadp.html.



• A set of states, each of them being represented as a tuple containing the values of
all the program variables (the so-called state-vector). An initial state is identified.

• A set of actions (also called labels), each of them being represented as a list of
typed values. In Bcg files generated from Lotos programs, the labels have the
form “G v1 . . . vn,” where G is a gate name.

• A transition relation, represented as a list of transitions encoded as tuples of the
form (s1, a, s2), each of them indicating that the program can move from state s1

to state s2 by performing action a.

Besides the above elements, a Bcg file generated from a source program contains also a
type area and a function area that give access to the types and functions defined in the
source program, respectively. Throughout this section, we implicitly consider an Lts
model represented in Bcg format, over which the Xtl constructs will be interpreted.

2.2 Types, expressions, and functions

As we mentioned earlier, Xtl allows to handle, in a uniform way, the data values used in
the source program, as well as the elements of the corresponding Lts model. To achieve
this, the Xtl language allows to define and use objects belonging to the following types.

external types: These are the types defined in the source program; they are exported
by the type area of the Bcg file encoding the Lts. The data values belonging
to these types can be handled using the functions defined in the source program,
which are exported by the function area of the Bcg file.

internal types: These are the types predefined in Xtl. The standard predefined types
(boolean, integer, character, etc.) are provided, together with their usual op-
erators. Beside these types, there are also the so-called meta-types stateset,
state, edgeset, edge, labelset, and label, denoting the (sets of) states, tran-
sitions, and labels of the Lts, respectively. These types are equipped with the
meta-operators given in Table 1, which allow to access the initial state of the Lts
and to explore the transition relation (some of these operators are inspired from
Dicky’s calculus [8]).

Operator Meaning

init : -> state initial state

succ, pred : state -> stateset successors and predecessors of a state

in, out : state -> edgeset incoming and outgoing transitions of a state

source, target : edge -> state origin and destination states of a transition

Table 1: Basic Xtl meta-operators

The basic Xtl expressions are shown in Table 2. Function calls may be either in
prefix, or infix notation (in the case of binary operators, such as the predefined operations
“+”, “*”, “<=”, etc.). The label-matching expression returns a result of type boolean.
The construct enclosed in its brackets (called action pattern) allows to examine the
structure of a transition label of the Lts and (possibly) to extract the values of its
fields and bind them to variables. Quantifiers over finite domains and comprehensive
set definitions have a syntax close to their usual mathematical notation.



The most simple way to implement in Xtl temporal operators expressing action or
state properties is to compute their denotational semantics, i.e., the sets of Lts labels or
states satisfying them. For example, the following expression computes the set of labels
corresponding to the emission of a signal with different source and destination addresses
(identifiers are in upper-case letters and keywords in lower-case):

{ L:label where L -> [ SIGNAL ?S:Addr ?D:Addr where S <> D ] }

The variables S and D, initialized by pattern-matching with the corresponding values
contained in the label, are used in the “where” clause, which allows additional filtering
using a boolean condition.

Expression Meaning

F (E1, ..., En) prefix function call

E1 F E2 infix function call

E -> [ G ?x:T !E1 [where E2] ] label matching

exists x:T in E end exists existential quantifier

forall x:T in E end forall universal quantifier

{ x:T where E } set in comprehension

let x:T:=E in

E1 variable definition
end let

if E then E1

else E2 conditional
end if

for [x0:T0] [in x1:T1] [while E1]
apply F

from E2 iteration
to E3

end for

Table 2: Summary of the basic Xtl expressions

Used together with the quantifiers, the set definition construct allows to easily express
modal operators. For instance, the 〈α〉ϕ modality of the Hennessy-Milner logic Hml [14]
can be implemented by the Xtl function below:

def Dia (A:labelset, F:stateset) : stateset =

{ S:state where

exists T:edge among out (S) in

(label (T) among A) and (target (T) among F)

end_exists

}

end_def

The parameters A and F denote the sets of labels and states satisfying α and ϕ, respec-
tively. The function call “Dia (A, F)” returns the states satisfying 〈α〉ϕ, i.e., the states
having an outgoing transition whose label satisfies α and whose target state satisfies ϕ.

The “let” and “if” constructs shown in Table 2 have their usual meaning (e.g., as in
Ml). The evaluation of the iteration construct “for”, which allows to perform repeated
computations, proceeds as follows. We first assume that the declaration x0:T0 is present,
but the “in” and “while” clauses are absent. The semantics of “for” uses an implicit
variable vacc (called accumulator) initialized with the value of E2. For each value of x0

(called iteration variable) in the finite domain T0, an iteration is performed, that consist



in evaluating the expression F (vacc , E3) and assigning it to vacc (note that F must be
a binary function). The result of the “for” expression is the value of vacc after the last
iteration. For example, the following Xtl expression computes the maximal branching
factor (i.e., the maximal number of transitions going out of a state in the Lts):

for S:state

apply max

from 0

to card (out (S))

end_for

where max denotes the maximum of two integer numbers and card gives the number of
elements of a transition set.

Optionally, the “in x1:T1” clause allows to give a name x1 to the accumulator vacc

so that it can be referenced in E1 and/or E3. If present, the “while E1” clause allows to
control the execution of the “for” expression: the iterations are performed as long as the
boolean expression E1 (re-evaluated before each iteration) remains true. An absence of
the iteration variable x0 means a “forever” loop: in this case, the iterations are stopped
using the “while E1” clause (which must be present in order to ensure termination).

Using the “for” construct, temporal operators can be defined in a compact form.
Thus, the following Xtl function implements the operator EFαϕ, which is a derived
modality of Actl [23]:

def EF_A (A:labelset, F:stateset) =

for in X:stateset

while X <> (F or Dia (A, X))

apply or

from false

to F or Dia (A, X)

end_for

end_def

A state satisfies EFαϕ if it is the origin of a path leading, via zero or more actions
satisfying α, to a state satisfying ϕ. This can be characterized as the least solution
of the fixed point equation X = ϕ ∨ 〈α〉X , that is iteratively computed by the “for”
expression above. Note the overloading of the boolean operators or and false, that
denote the union and the empty set of states, respectively. Alternately, the EFαϕ

operator could be defined using a recursive Xtl function.

2.3 Macros, libraries, and programs

In order to express temporal properties involving data conveniently, a higher-order mech-
anism for handling predicates containing free variables is needed. For this purpose, we
incorporated in Xtl a macro-expansion mechanism, which covers most practical user
needs and can be implemented simply and efficiently. The following example of Xtl
macro-definition implements the [α] ϕ modality of Hml, characterizing the states from
which all outgoing actions satisfying α lead to states satisfying ϕ:

macro Box (A, F) =

{ S:state where

forall T:edge among out (S) in

if T -> [ A ] then target (T) among F else true end_if

end_forall

}

end_macro



The A and F parameters above denote (the textual representation of) an action pattern
and an expression of type stateset. A macro call “Box (<textA>, <textF>)” is re-
placed in the Xtl program by the body of the macro, in which the occurrences of A
and F have been textually substituted with <textA> and <textF>. For instance, the
following Xtl macro call evaluates the set of states from which every message M sent on
gate SEND can be potentially received on gate RECV:

Box (SEND ?M:Msg, EF_A (true, Dia (RECV !M, true)))

where Dia is a macro implementing the 〈α〉ϕ modality and EF A is the function defined
in Section 2.2. The variable M, which extracts the message contained in the SEND labels,
is visible in the second argument of the Box operator; this is ensured by the static
semantics of the “if” expression used in the body of the Box macro-definition above.
Note also that the type Msg is external, i.e., it is defined in the source program.

Xtl allows the macro-definitions to be overloaded: several macros having the same
name, but different number of parameters, may be used in the same scope. This is
convenient for defining derived temporal operators having the same name, for instance
the pot(ϕ1, ϕ2) and pot(ϕ) operators of Ltac [25], which are similar to the E[ϕ1 U ϕ2]
and EFϕ operators of Ctl [4], respectively.

Another useful feature is the possibility to include in an Xtl program other Xtl
files, typically containing libraries of temporal operators. This allows to reuse existing
Xtl code and also to provide different implementations of the same temporal logic (see
Section 4). For example, the following construct denotes the textual inclusion of an Xtl
source file implementing the Actl temporal logic:

library actl.xtl end_library

An Xtl program consists of an expression (the program’s body) preceded by an optional
list of macro-definitions and library inclusions.

3 Implementation

We developed a model-checker for Xtl as part of the Cadp protocol engineering toolset.
The tool takes as input an Xtl program and an Lts model encoded in Bcg format,
evaluates the program over the Lts and produces the results.

The architecture of the model-checker is shown in Figure 1. First, the Xtl program
is processed by an auxiliary tool called expander , that textually expands the macro-
definitions and includes the Xtl libraries used in the program. The resulting program
(containing “pure” Xtl code, i.e, without macro calls) is translated into a C program,
which is then compiled and linked with the Bcg libraries. Note that the information
contained in the Bcg file is used also during the static analysis, since the types and
functions defined in the source program (exported by the Bcg file) can be used in the
Xtl program. The object file obtained in this way is executed and the results are
obtained on the standard Unix output stream.

The version 1.1 of the Xtl model-checker is available on Sun workstations running
SunOs or Solaris and PCs running Linux. The syntax analyzer has been implemented
using the Syntax4 compiler generator. The semantics analyzer has been written in
Lotos abstract data types, which are translated into C code using the Cæsar.adt
compiler of the Cadp toolset. The expander, the code generator, and all the interfacing

4Syntax is a trademark of Inria.



code with the Bcg environment have been written in C. The overall implementation
consists of about 27,000 lines of code.

XTL
programexpansion

LTS
model

syntax
analysis

abstract
tree

code
generation

C
compilation

object
code

C
code

execution

environment
BCG

semantic
analysis

environment
UNIX

results

environment
XTL

handling
error

Figure 1: Architecture of the Xtl model-checker

Besides developing the model-checker, we also provided Xtl libraries implementing
the operators of Hml [14], Ctl [4], Ltac [25], Actl [23], and the modal µ-calculus [18].
All these operators can be naturally used in conjunction with the built-in Xtl data-
handling facilities in order to express temporal properties involving data.

4 Applications

An initial version 1.0 of the Xtl model-checker has been used to verify several Lotos de-
scriptions of small size, such as the alternating bit protocol, a leader election algorithm,
and various mutual exclusion algorithms. These exercises, together with the experience
of using Xtl for teaching purposes at the University Joseph Fourier of Grenoble, pro-
vided valuable feedback, enabling us to improve the tool from the initial version 1.0 to
the current version 1.1. So far, this version of the Xtl model-checker has been used to
validate three medium-sized industrial case-studies.



Bounded Retransmission Protocol: The Brp protocol has been designed by Philips
and is currently used in the remote control devices of television sets. It implements
the transmission of (large) data packets over an unreliable communication medium
by splitting them in (small) chunks that are sent sequentially. Whenever a chunk
is lost, it is retransmitted over the communication medium. If a (fixed) maximal
number of retransmissions is reached, the protocol gives up the transmission of
the packet, appropriately informing the sender and the receiver. This protocol
was proposed by Jan Friso Groote (Cwi, Amsterdam) as a verification exercise
intended for the comparison of several formal methods.

Starting from a µCrl description given in [13], we produced a Lotos description
of the Brp protocol, for which we identified a set of 21 safety and liveness prop-
erties, expressed in Xtl using the library of Actl operators combined with data.
These properties have been successfully verified, using the Xtl model-checker,
on different instances of the protocol, obtained by giving different values to the
maximal number of retransmissions and to the packet length [21].

Link Layer of the IEEE-1394 Serial Bus: The Ieee-1394 serial bus (“FireWire”)
is a high-speed bus particularly adapted to data transmission for multimedia de-
vices connected to computers. This bus, standardized by Ieee, is currently used by
numerous constructors, such as AT&T, Canon, Compaq, Hewlett-Packard, Ibm,
Kodak, Microsoft, Sony, Texas Instruments, etc.

We carried out the validation of the asynchronous part of the link layer protocol
of Ieee-1394. Based upon a µCrl description provided by Bas Luttik [20] and
upon the Ieee standard [16], we produced an E-Lotos description of this part
of the protocol, which was subsequently translated in Lotos using the Traian
prototype compiler of the Cadp toolset. We translated in Xtl (using the library
of Actl operators extended with data) the 5 correctness properties of the protocol
stated in natural language by Luttik. These properties have been verified, using
the Xtl tool, on several instances of the protocol, obtained for different numbers
of nodes connected to the bus and for various message scenarios. This allowed us
to detect and correct a potential deadlock occurring in the protocol after about 50
transitions from the initial state [27].

Cluster File System: Cfs is a distributed file system developed by Bull and Inria
on top of the Arias shared memory architecture [7]. Cfs was designed both to
validate the Arias system itself and to experiment with distributed applications
that use shared files as a programming model.

The validation of the migratory file coherency protocol of Cfs (referred to as the
Cfs protocol in the sequel) has been recently carried out by Charles Pecheur.
First, he produced a Lotos description modelling both the Cfs protocol and the
Arias service primitives used by it. Next, he specified a set of 15 safety, liveness,
and coherency properties (expressed as Actl formulas with data) of the control
level (i.e., involving only the calls to Cfs synchronization primitives) and of the
data level (i.e., taking into account also the access and modification of the data
files). Finally, he implemented in Xtl a new library of Actl operators, able to
produce diagnostic sequences explaining the truth value of a formula using the Xtl
tool. These properties have been verified on various scenarios of Cfs, obtained for
different application configurations on top of the Cfs protocol [24].

These experiments confirm the usefulness of the Xtl language: temporal properties
involving data can be expressed in a natural way using directly the notations of the



source program. Although the action-based operators of Actl are often enough powerful
to express the safety and liveness properties encountered in practice, there are situations
(e.g., some of the properties of the Brp protocol) that can be handled in an easier way
using more powerful constructs, such as regular expressions. These can be implemented
in Xtl by means of their fixed point characterizations.

5 Conclusion and future work

Formal methods have proved their usefulness in the design of complex, distributed ap-
plications. Among these methods, model-checking verification techniques are simple to
use and completely automated, although limited to finite-state systems.

We presented in this paper a model-checking environment based on a special language
called Xtl, dedicated to the description of temporal properties involving data. A model-
checker for Xtl has been developed, and several widely-used temporal logics like Hml,
Ctl, Ltac, Actl, and the µ-calculus, have been implemented in Xtl. The version 1.1
of the model-checker is available as part of the Cadp protocol engineering toolset, and
has been successfully used to validate several industrial case-studies [21, 27, 24].

These experiments are encouraging, confirming the advantages of the approach
adopted in designing Xtl, which allows to combine temporal operators and data-
handling constructs. Moreover, since Xtl is a programming language, it allows the
user to implement new temporal logics or to extend existing ones with new operators.
Indeed, Charles Pecheur developed in Xtl a new library of Actl temporal operators,
able to produce diagnostic sequences [24].

The work presented here can be extended in several directions. Firstly, our experience
shows that additional data types (such as sequences and subtrees of the Lts) are needed
in order to facilitate the implementation of temporal operators with diagnostic features.
Secondly, there is still room for improving the performances of the model-checker: Xtl
being a functional language, the code generator should be optimized using appropriate
storage allocation techniques for the variables containing sets of states and transitions
of the Lts. Finally, the implementation of on-the-fly model-checking algorithms, which
do not require to generate entirely the Lts before evaluating a temporal formula, can
be envisaged along the lines described in [22], by using the Open/Cæsar approach to
on-the-fly verification [11].
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