
Bisimulator 2.0: An On-the-Fly Equivalence Checker
based on Boolean Equation Systems

Radu Mateescu and Emilie Oudot∗

INRIA / VASY project-team
Faculté des Sciences Mirande, bât. LE2I, F-21000 Dijon, France

{Radu.Mateescu,Emilie.Oudot}@inria.fr

Abstract

Equivalence checking is a classical verification method
determining if a finite-state concurrent system (protocol)
satisfies its desired external behaviour (service) by compar-
ing their underlying labeled transition systems (LTSs) mod-
ulo an appropriate equivalence relation. Local (or on-the-
fly) equivalence checking explores the synchronous product
of the LTSs incrementally, allowing an efficient detection
of errors in complex systems. In this paper, we consider
the technique based on translating the equivalence checking
problem in terms of the local resolution of a boolean equa-
tion system (BES). We propose two enhancements of this
technique in the case of equivalent LTSs: a new, faster BES
encoding of weak equivalence relations, and a new local
BES resolution algorithm with a good average complexity.
These enhancements were incorporated into the BISIMU-
LATOR 2.0 equivalence checker of the CADP toolbox, and
led to significant performance improvements.

1. Context

CADP (Construction and Analysis of Distributed Pro-
cesses) [5] is a state-of-the-art verification toolbox for asyn-
chronous concurrent systems. It accepts as input pro-
cess algebraic descriptions in LOTOS or CHP, as well
as networks of communicating automata. These descrip-
tions are translated into LTSs, represented either implic-
itly (by their “successor function”) as C programs us-
ing the OPEN/CÆSAR environment [4], or explicitly (by
their list of transitions) as compact binary files encoded
in the BCG (Binary Coded Graph) format. The tool-
box provides a wide range of functionalities: compila-
tion and rapid prototyping, interactive and guided sim-
ulation, random execution, model checking and equiva-

∗Research funded by the EC-MOAN project no. 043235 of the FP6-
NEST-PATH-COM European program.

lence checking, test generation, and performance evalua-
tion. CADP was used to validate more than 100 case-studies
(see http://www.inrialpes.fr/vasy/cadp/case-studies).

We present here two recent enhancements of the
BISIMULATOR [9] equivalence checker of CADP, which
compares two LTSs modulo various equivalence relations
(strong, branching, weak, τ∗.a, safety, trace, and weak
trace). The tool follows the on-the-fly approach [1], ex-
ploring the synchronous product of two implicit LTSs incre-
mentally and searching for mismatches indicating the non
equivalence of their initial states. The alternative global ap-
proach [2] computes the equivalence classes of states in two
explicit LTSs using partition refinement and then checks
whether their initial states fall into the same class. The
global approach is more effective when the LTSs are equiv-
alent, whereas the on-the-fly approach is more suitable for
showing non equivalence by quickly detecting counterex-
amples. Our objective is to improve on-the-fly equivalence
checking for equivalent LTSs.

Existing techniques for on-the-fly equivalence check-
ing include synchronous product exploration [3, 1], model
checking of characteristic formulas [6], and HORNSAT reso-
lution [11]. BISIMULATOR works by translating the on-the-
fly equivalence checking problem to the local resolution of
a boolean equation system (BES), which is carried out using
specific algorithms [7, 9].

2. Two Enhancements

New BES encodings of equivalence relations. Weak
equivalences can be encoded as maximal fixed point BESs
by directly translating their mathematical definitions (see
the table below, first row, for the BES of branching bisimula-
tion [1]). Solving such BESs requires to compute transitive
reflexive closures over internal steps (τ -closures) on both
LTSs, which reveals to be the most time-consuming part of
the verification process. The new encodings that we pro-
pose (see the table below, second row) shift the τ -closure

computations into the boolean equations, which is about
one order of magnitude faster than general τ -closure algo-
rithms [8]. These encodings work only in the absence of τ -
cycles, which are eliminated by applying τ -compression [8]
on-the-fly on both LTSs simultaneously with their forward
exploration underlying the local resolution of the BES.

Xpq
ν=

∧
p

a→p′
((a = τ ∧Xp′q)∨∨

q
τ∗→q′

a→q′′
(Xpq′ ∧Xp′q′′))∧∧

q
a→q′

((a = τ ∧Xpq′)∨∨
p

τ∗→p′
a→p′′

(Xp′q ∧Xp′′q′))

Xpq
ν=

∧
p

a→p′
Ypp′qa ∧

∧
q

a→q′
Zpqq′a

Ypp′qa
ν= (a = τ ∧Xp′q) ∨ Upp′qa

Zpqq′a
ν= (a = τ ∧Xpq′) ∨ Vpqq′a

Upp′qa
ν=

∨
q

a→q′
Wpp′qq′ ∨

∨
q

τ→q′
Upp′q′a

Vpqq′a
ν=

∨
p

a→p′
Wpp′qq′ ∨

∨
p

τ→p′
Vp′qq′a

Wpp′qq′
ν= Xpq ∧Xp′q′

Local BES resolution based on suspend/resume DFS.
We propose a new local BES resolution algorithm, which
exhibits a smaller average complexity than previously pub-
lished algorithms (see [7] for a survey). Our algorithm is
based on a suspend/resume depth first search (sr-DFS) of
the boolean graph representing the dependencies between
boolean variables, and stops as soon as the BES portion ex-
plored contains a single example or counterexample for the
boolean variable Xp0,q0 to be solved (denoting the equiva-
lence of the initial states p0 and q0 of the two LTSs), there-
fore being optimal from this point of view.

 10000

 100000

 1e+06

 1e+07

 1e+08

 100000 1e+06 1e+07

B
E

S
 s

iz
e

(n
u

m
b

er
 o

f
o

p
er

at
o

rs
)

LTS size (number of transitions)

Branching bisimulation using Bisimulator 1.0 and 2.0

V1.0
V2.0

3. Experiments

The new BES encodings of weak equivalences were im-
plemented in BISIMULATOR 2.0 and the sr-DFS algorithm
was integrated to the generic CÆSAR SOLVE library [9] for
on-the-fly BES resolution, which serves as computing en-
gine for BISIMULATOR and other tools of CADP. These two
enhancements led to significant performance improvements

w.r.t. BISIMULATOR 1.0, as shown by our experiments
on LTSs coming from the demo examples of CADP (spec-
ifications of communication protocols and asynchronous
circuits) or from the VLTS benchmark suite. As regards
branching bisimulation (see the curves above), version 2.0
exhibits reductions of both the number of boolean variables
and operators explored (up to a factor 9), which determine
memory consumption and execution time, respectively.

4. Future Work

We plan first to extend the range of equivalences and pre-
orders already available in BISIMULATOR 2.0 by devising
BES encodings for testing equivalence and CFFD. Next, we
will continue experimenting the sr-DFS algorithm and study
its applicability for solving BESs coming from other verifi-
cation problems, such as on-the-fly LTS reduction modulo
partial order relations (e.g., τ -confluence, τ -inertness, etc.)
as formulated in [10].

References

[1] R. Cleaveland and O. Sokolsky. Equivalence and Preorder
Checking for Finite-State Systems. In Handbook of Process
Algebra, chapter 6, pages 391–424, Elsevier, 2001.

[2] A. Dovier, C. Piazza, and A. Policriti. An efficient algo-
rithm for computing bisimulation equivalence. Th. Comp.
Sci., 311(1–3):221–256, 2004.

[3] J-C. Fernandez and L. Mounier. Verifying bisimulations “on
the fly”. In Proc. of FORTE’90, 1990.

[4] H. Garavel. Open/cæsar: An open software architecture for
verification, simulation, and testing. In Proc. of TACAS’98,
LNCS vol. 1384, pp. 68–84, March 1998.

[5] H. Garavel, F. Lang, R. Mateescu, and W. Serwe.
Cadp 2006: A toolbox for the construction and anal-
ysis of distributed processes. In Proc. of CAV’2007,
LNCS vol. 4590, pp. 158–163, July 2007. See also
http://www.inrialpes.fr/vasy/cadp.

[6] A. Ingolfsdottir and B. Steffen. Characteristic formulae for
processes with divergence. Information and Computation,
110(1):149–163, 1994.

[7] A. Mader. Verification of modal properties using boolean
equation systems. VERSAL 8, Bertz Verlag, Berlin, 1997.

[8] R. Mateescu. On-the-fly state space reductions for weak
equivalences. In Proc. of FMICS’05, pages 80–89. ACM
Computer Society Press, September 2005.

[9] R. Mateescu. Caesar solve: A generic library for on-the-
fly resolution of alternation-free boolean equation systems.
Springer Int. Journal on Software Tools for Technology
Transfer (STTT), 8(1):37–56, February 2006.

[10] G. Pace, F. Lang, and R. Mateescu. Calculating τ -
confluence compositionally. In Proc. of CAV’2003, LNCS
vol. 2725, pp. 446–459, July 2003.

[11] S. K. Shukla and H. B. Hunt III and D. J. Rosenkrantz.
Hornsat, model checking, verification and games. Proc. of
CAV’96, LNCS vol. 1102, pages 99-110, 1996.

