
Translating Pi-Calculus into LOTOS NT

Radu Mateescu1 and Gwen Salaün1,2

1 Inria Grenoble – Rhône-Alpes / Vasy project-team / Lig, Inovallée
655, av. de l’Europe, Montbonnot, F-38334 Saint Ismier, France
2 Grenoble Inp, 46, av. Félix Viallet, F-38031 Grenoble, France

{Radu.Mateescu,Gwen.Salaun}@inria.fr

Abstract. Process calculi supporting mobile communication, such as
the π-calculus, are often seen as an evolution of classical value-passing
calculi, in which communication between processes takes place along a
fixed network of static channels. In this paper, we attempt to bring these
calculi closer by proposing a translation from the finite control fragment
of the π-calculus to Lotos NT, a value-passing concurrent language with
classical process algebra flavour. Our translation is succinct in the size
of the π-calculus specification and preserves the semantics of the lan-
guage by ensuring a one-to-one correspondence between the states and
transitions of the labeled transition systems corresponding to the input
π-calculus and the output Lotos NT specifications. We automated this
translation by means of the Pic2Lnt tool, which makes it possible to
analyze π-calculus specifications using all the state-of-the-art simulation
and verification functionalities provided by the Cadp toolbox.

1 Introduction

Process calculi (or algebras) are abstract specification languages used to model
concurrent systems. These formalisms have been widely studied and used for
the specification of real-world systems in many different application areas such
as telecommunication protocols, hardware design, or embedded systems. One of
the most famous calculi is the π-calculus [20] proposed by Milner, Parrow, and
Walker about twenty years ago. The π-calculus is an extension of Ccs [18] with
mobile communication, and is equipped with an operational semantics defined in
terms of labeled transition systems (Ltss). Although a lot of theoretical results
have been achieved on this language (see [24] for a survey), only a few verification
techniques and tools, such as the Mobility Workbench (Mwb) [28] or Jack [8],
are operational for analyzing π-calculus specifications automatically.

In this paper, we attempt to provide similar analysis features for π-calculus
specifications by reusing the verification technology already available for classical
(i.e., without mobility) value-passing process algebras. Contrary to existing anal-
ysis tools for the π-calculus, which rely on specific algorithms and intermediate
models, such as HD-automata [8], our approach is based on a novel translation
from π-calculus to a classical process algebra. We focus here on the finite control
fragment of the π-calculus and adopt as target language Lotos NT [4], a re-
cent enhancement of Lotos [16]. In Lotos NT, the abstract data type part was

2 R. Mateescu and G. Salaün

abandoned in favor of constructive data type definitions and pattern-matching,
and the behavior process algebraic part was replaced by an imperative-like lan-
guage with a user-friendly syntax. To the best of our knowledge, this is the first
π-calculus translation that uses a classical process algebra as target language.

Most of the π-calculus constructs can be translated quite straightforwardly
into Lotos NT thanks to its good level of expressiveness. Nevertheless, we faced
some subtle difficulties in order to have a translation as succinct as possible and
preserving the Lts semantics, i.e., mapping each transition of a π-calculus agent
to a transition of the resulting Lotos NT term. Obviously, one of the main
problems was to emulate mobile communication in a language that offers only
communication on static channels; we overcame this issue by heavily exploiting
the data types and synchronization features of Lotos NT. Our translation is
fully automated by the Pic2Lnt tool we have implemented. Since Lotos NT
is one of the input languages of the Cadp [12] verification toolbox, all the state-
of-the-art verification features of Cadp can be used on the Lotos NT specifi-
cations generated from the π-calculus ones.

The outline of the paper is as follows. In Section 2, we introduce both specifi-
cation languages, namely the π-calculus and Lotos NT. Section 3 presents the
translation rules and shows the semantics preservation. Section 4 describes the
Pic2Lnt translator and Section 5 illustrates the overall approach on the spec-
ification and verification of a simple Web services case study. Finally, Section 6
compares our proposal with related approaches, and Section 7 draws up some
conclusions and lines for future work.

2 Pi-Calculus and LOTOS NT

We briefly present below the syntax and semantics of π-calculus and of the
Lotos NT fragment that serves as target language for the translation.

Pi-Calculus. We consider the original version of π-calculus [20] equipped with
the early operational semantics defined in [21]. For simplicity of the presentation,
we focus on the monadic π-calculus, although the translation to Lotos NT given
in Section 3 can be straightforwardly extended to handle the polyadic version
of the calculus [19]. The syntax and semantics of the π-calculus are shown in
Figure 1. Channel names (denoted by a, ..., z) belong to an infinite countable set
of names N . Agents (denoted by P) are built from inaction (0), action prefix
(.), parallel composition (|), choice (+), channel creation (ν), guard ([]), and
instantiation (A(...)). The occurrences of y in x(y).P and (νy)P are bound and
the other occurrences of channel names are free. The set of free (resp. bound)
names of an agent P is denoted by fn(P) (resp. bn(P)), and the set of names of P
is defined as n(P) = fn(P)∪bn(P). Each agent identifier A has an arity r(A) ≥ 0

and must be defined by an equation A(x1, ..., xr(A))
def
= P . The parameter names

x1, ..., xr(A) must be pairwise distinct and fn(P) ⊆ {x1, ..., xr(A)}.
The actions (denoted by α) that an agent can perform are of four kinds: inter-

nal action (τ), free output (xy), bound output (x(z)), and free input (xy). The

Translating Pi-Calculus into LOTOS NT 3

P ::= 0 | τ.P | xy.P | x(y).P | P1|P2 | P1 + P2

| (νx)P | [x = y]P | [x 6= y]P | A(x1, ..., xr(A))
α ::= τ | xy | x(z) | xy

Tau τ.P
τ
→ P Out xy.P

xy
→ P In x(y).P

xz
→ P{z/y}

Sum
P1

α
→ P ′

1

P1 + P2
α
→ P ′

1

Par
P1

α
→ P ′

1

P1|P2
α
→ P ′

1|P2

if bn(α) ∩ fn(P2) = ∅

Com
P1

xy
→ P ′

1 P2
xy
→ P ′

2

P1|P2
τ
→ P ′

1|P
′

2

Close
P1

x(y)
→ P ′

1 P2
xy
→ P ′

2

P1|P2
τ
→ (νy)(P ′

1|P
′

2)
if y 6∈ fn(P2)

Res
P

α
→ P ′

(νx)P
α
→ (νx)P ′

if x 6∈ n(α) Open
P

xy
→ P ′

(νy)P
x(z)
→ P ′{z/y}

if x 6= y, z 6∈ fn((νy)P ′)

Match
P

α
→ P ′

[x = x]P
α
→ P ′

Mismatch
P

α
→ P ′

[x 6= y]P
α
→ P ′

if x 6= y

Ide
P{y1/x1, ..., yr(A)/xr(A)}

α
→ P ′

A(y1, ..., yr(A))
α
→ P ′

if A(x1, ..., xr(A))
def
= P

Fig. 1. Syntax and early operational semantics of π-calculus

same notations fn(α), bn(α), and n(α) are used for actions, the only bound oc-
currence being z in the bound output x(z). Intuitively, bound names in actions
correspond to references of places in the executing agent where substitutions
must be performed; bound outputs are used to represent scope extrusions (rules
Open and Close). The early operational semantics is given in terms of rules
enabling to infer the transitions, labeled by actions, that an agent can perform.
The rules associated to binary operators (| and +) have also symmetric forms,
omitted here for conciseness. Given a substitution σ : N → N , we denote by
Pσ the agent P in which each free name x has been replaced by σ(x), pos-
sibly with changes of the bound variables to avoid captures. The substitution
{y1/x1, ..., yn/xn} maps each xi into yi for i ∈ [1, n] and keeps all the other
names unchanged. In the sequel, we will consider only π-calculus agents that
satisfy the finite control property [6], i.e., do not contain recursive calls of agent
identifiers through the parallel composition operator.

LOTOS NT fragment. Lotos NT [4] is a simplified variant of the E-Lotos
standard [15] that attempts to combine the best features of imperative pro-
gramming languages and value-passing process algebras. Lotos NT has a user-
friendly syntax and a formal operational semantics defined in terms of labeled
transition systems (Ltss). Lotos NT is supported by the Lnt.Open tool of
Cadp [12], which allows the on-the-fly exploration of the Ltss corresponding
to Lotos NT specifications. As target of our translation, we use only a small
fragment of Lotos NT, whose syntax and semantics are given in Figure 2.

Lotos NT terms (denoted by B) are built from actions, choice (“select”),
conditional (“if”), sequential composition (“;”), hiding (“hide”), and parallel
composition (“par”). Communication is carried out by rendezvous on gates G
with bidirectional transmission of multiple values (for simplicity, in Fig. 2 we

4 R. Mateescu and G. Salaün

B ::= stop | null | G(!E, ?x) where E′ | B1; B2 | if E then B end if

| var x:T in x := E; B end var | hide G in B end hide

| select [var x1:T1, ..., xn:Tn in] B1[]...[]Bn end select

| par G in B1||...||Bn end par | P [g1, ..., gm](E1, ..., En)

Lnt-Null null
δ
→ stop Lnt-Act

v′ ∈ type(x) ∧ [[E′{v′/x}]] = true

G(!E, ?x) where E′; B
G ![[E]] !v′

→ B{v′/x}

Lnt-Seq-1
B1

β
→ B′

1

B1; B2
β
→ B′

1; B2

Lnt-Seq-2
B1

δ
→ B′

1 B2
β
→ B′

2

B1; B2
β
→ B′

2

Lnt-If
[[E]] = true B

β
→ B′

if E then B end if
β
→ B′

Lnt-Var
B{[[E]]/x}

β
→ B′

var x:T in x := E; B end var
β
→ B′

Lnt-Hid-1
B

β
→ B′ gate(β) 6= G

hide G in B end hide
β
→ hide G in B′ end hide

Lnt-Hid-2
B

β
→ B′ gate(β) = G

hide G in B end hide
i

→ hide G in B′ end hide

Lnt-Sel
i ∈ [1, n] Bi

β
→ B′

i

select [var x1:T1, ..., xn:Tn in] B1[]...[]Bn end select
β
→ B′

i

Lnt-Par
i ∈ [1, n] Bi

β
→ B′

i gate(β) 6= G

par G in B1||...||Bn end par
β
→ par G in B1||...||B′

i||...||Bn end par

Lnt-Com
I ⊆ [1, n] ∀i ∈ I.Bi

β
→ B′

i gate(β) = G j ∈ I

par G in B1||...||Bn end par
β
→ par G in B1||...||B′

j ||...||Bn end par

Lnt-Ide
B{g1/G1, ..., gm/Gm}{[[E1]]/x1, ..., [[En]]/xn}

β
→ B′

P [g1, ..., gm](E1, ..., En)
β
→ B′

where process P [G1, ..., Gm](x1:T1, ..., xn:Tn) is B end process

Fig. 2. Syntax and early operational semantics of the Lotos NT fragment

considered actions with only two values being sent in both directions). Syn-
chronizations may also contain optional guards (“where”) expressing boolean
conditions on received values. The gate on which an action β takes place is
denoted by gate(β). The special action δ is used for defining the semantics of
sequential composition. An action G(...) can occur in isolation, in which case it is
considered to be equivalent to G(...);null. The internal action is denoted by the
special gate i, which cannot be used for synchronization. The parallel composi-
tion operator allows multiway rendezvous on the same gate. As in Lotos [16],
processes are parameterized by gates and data variables.

The reader familiar with Lotos may notice that the Lotos NT frag-
ment considered is not far from Lotos itself, which could also serve as the
target language for the translation. However, as it will become clear in Sec-
tion 3, Lotos NT presents at least two advantages w.r.t. Lotos for translat-
ing π-calculus agents: (a) the symmetric sequential composition operator “;”
of Lotos NT makes it possible to group together the behaviour following the

Translating Pi-Calculus into LOTOS NT 5

branches of a “select” statement, thus enabling a succinct translation of nested
action prefixes occurring in π-calculus agents, and (b) as opposed to the sequen-
tial composition operator “>>” of Lotos, the semantics of the “;” operator of
Lotos NT does not create spurious internal actions in the Lts, making possible
to achieve a one-to-one correspondence between the transitions of a π-calculus
agent and those of the Lotos NT term resulting after translation.

3 Translation from Pi-Calculus to LOTOS NT

The translation presented below maps each π-calculus agent P to a Lotos NT
behaviour term t(P, G, k), where G is the set of Lotos NT gates on which the
term communicates with its environment and k ≥ 1 is a natural number identi-
fying the corresponding concurrent activity (i.e., the operand of the immediately
enclosing parallel composition operator, if any, which contains the term). Two
classes of channels are distinguished: public channels correspond to the free chan-
nel names occurring in P , whereas private channels correspond to channel names
bound by ν operators occurring in P . The set G includes two predefined gates
Gpub and Gpriv , which serve to model the non-synchronized communications on
public and private channels, respectively.
Channel names. Since the communication in Lotos NT takes place along
static gates, we cannot use directly these gates to represent mobile communica-
tion. Instead, we represent π-calculus channel names as values of a Lotos NT
data type Chan, and we model channel mobility between π-calculus agents
by communicating values of this type along gates between the corresponding
Lotos NT processes. The example below shows the definition of the Lotos NT
type Chan for the π-calculus agent (νx)(ab.cx.0).

type Chan is

a, b, c, x (id:Nat) with ”==”, ”!=”
end type

function new id () : Nat is

!external null

end function

function is public (ch:Chan) : Bool is
case ch in

a | b | c -> return true
| any -> return false

end case

end function

The Chan type is equipped with the comparison operators “==” and “!=”. It pro-
vides a constant constructor for each public channel and a constructor parame-
terized by a natural number id for each private channel. The predicate is public
characterizes public channels. To create new Chan values when a ν operator is
evaluated, we use a function new id defined externally in C, which returns a new
natural number at each invocation.
Inaction and action prefix. The null π-calculus agent 0 is naturally translated
into the stop Lotos NT operator, which does not perform any action. The pre-
fix operator is translated using the choice operator “select” and the sequential
composition operator “;” as shown below. In order to capture all potential inter-
actions that may become possible during execution due to mobility of channels,
the communication on a channel x is modeled by a nondeterministic choice on
all the gates connecting the current Lotos NT term to its environment.

6 R. Mateescu and G. Salaün

Binary synchronizations between the current term and its environment are
enforced by emitting the value x of type Chan corresponding to x and the iden-
tifier k of the current term, which acts as sender (resp. receiver) for output
(resp. input) actions. The semantics of Lotos NT parallel composition (used
to translate the | operator, see below) ensures that only the terms corresponding
to different concurrent activities (having different identifiers k) and sharing the
same value x can communicate in an unidirectional manner by transmitting a
value y of type Chan on some gate. Variables s and r act as placeholders for the
identifiers of the sender and receiver terms, respectively.

t(xy.P, {G1, ..., Gn, Gpub, Gpriv}, k) =
select var r:Nat in

G1 (!x, !y, !k, ?r) [] ...
Gn (!x, !y, !k, ?r) []
Gpub (!x, !y, !true)

where is public (x) []
Gpriv (!x, !y, !true)

where not (is public (x))
end select ;
t(P, {G1, ..., Gn, Gpub , Gpriv}, k)

t(x(y).P, {G1, ..., Gn, Gpub , Gpriv}, k) =
select var s:Nat, y:Chan in

G1 (!x, ?y, ?s, !k) [] ...
Gn (!x, ?y, ?s, !k) []

Gpub (!x, ?y, !false)
where is public (x) []

Gpriv (!x, ?y, !false)
where not (is public (x))

end select ;
t(P, {G1, ..., Gn, Gpub , Gpriv}, k)

When x denotes a public (resp. private) channel, an action on gate Gpub (resp.
Gpriv) is added in order to model the possibly non-synchronized execution of
send/receive actions, which comprise the emission of a true/false boolean value
in order to differentiate them in the Lts of the resulting Lotos NT term. Note
that the translation makes no difference between free and bound output, these
actions being distinguished by the value y of type Chan being sent, which can
be either public or private.
Sum, match, and mismatch. The sum operator is naturally translated by
using the choice operator of Lotos NT. The match and mismatch operators
are translated in terms of the conditional operator.

t(P1 + P2, G, k) = select t(P1, G, k) [] t(P2, G, k) end select

t([x = y]P, G, k) = if x == y then t(P, G, k) end if

t([x 6= y]P, G, k) = if x != y then t(P, G, k) end if

Note that in the translation of the operands P1, P2, and P the set of gates G
and the identifier k of the current term do not change, since the sum operator
is sequential (i.e., it does not create new concurrent activities).
Parallel composition. The parallel composition operator is translated using
the “par” operator of Lotos NT. A fresh gate Gnew is introduced to model the
communication between the two Lotos NT terms resulting from the translation
of the operands P1 and P2. Since the parallel operator creates two concurrent
activities, two new distinct identifiers 2k and 2k + 1 are assigned to the corre-
sponding Lotos NT terms. Given that Gnew is added to the sets of gates con-
necting the two terms to their environment, every send/receive communication
carried out by P1|P2 will also be executed by the whole Lotos NT term. Indeed,

Translating Pi-Calculus into LOTOS NT 7

according to the translation of the action prefix (see above), all input/output
operations of P1 and P2 will also occur in the two Lotos NT terms as actions
along Gnew , and the “par” operator will enforce their proper synchronization3.
All synchronizations on Gnew are renamed into the internal action i using the
“hide” operator to reflect the semantics of the π-calculus communication.

t(P1|P2, G, k) = hide Gnew in par Gnew in

t(P1, G ∪ {Gnew}, 2k) || t(P2, G ∪ {Gnew}, 2k + 1)
end par end hide

The scheme for assigning concurrent activity identifiers yields a contiguous num-
bering if the direct nestings of parallel operators in the π-calculus agents are
arranged to form balanced binary trees. Given that the parallel operator is as-
sociative, this can be easily obtained by an adequate insertion of parentheses,
e.g., ((P1|P2)|(P3|P4)) instead of (((P1|P2)|P3)|P4), which would be the default
parsing of the agent in absence of parentheses.
Channel creation. The channel creation operator (νx) is translated by creating
a new private value of type Chan and storing it in a variable x, which can be
subsequently used by the Lotos NT term.

t((νx)P,G, k) = var x:Chan in x := x (new id ()); t(P, G, k) end var

This translation rule does not directly forbid the Lotos NT term to perform
an emission along the channel x, in the sense that some action xa present in P
(whose execution is forbidden by the rule Res in Fig. 1) will be translated as
an action “G (!x, !a, !k, ?r)” on some gate G ∈ G. Such emissions are forbid-
den indirectly by the way in which action prefix and parallel composition are
translated (see above). Indeed, for the synchronization on G to take place, the
environment must propose on G an action containing the same fresh value x. This
is impossible unless x has been previously sent by the current Lotos NT term
to the environment, by an emission corresponding to a bound output previously
executed by the agent. Thus, scope extrusions are modeled by the communica-
tion of fresh values of type Chan, which can be subsequently used by different
Lotos NT terms for communication.
Agent definition and instantiation. Agent definitions A are mapped to
Lotos NT process definitions as shown below. In addition to the channel names
x1, ..., xr(A) (represented as values of type Chan), the process is parameterized

by the gate set G and the identifier k, which capture the context of the call.

t(A(x1, ..., xr(A))
def
= P, G, k) = process Ad [G] (x1, ..., xr(A):Chan, k:Nat) is

t(P, G, k)
end process

t(A(y1, ..., yr(A)), G, k) = Ad [G] (y1, ..., yr(A), k)

3 The translation of an agent P1|...|Pn requires n−1 gates, one for each | operator. The
number of gates could be reduced to 1 by using the generalized parallel composition
operator (not yet fully implemented in Lotos NT) proposed in [13], which can
model binary synchronization between n processes.

8 R. Mateescu and G. Salaün

Since an agent identifier may be invoked at several places in the π-calculus
agent under translation, and Lotos NT processes have a fixed number of gate
parameters, we chose to produce one Lotos NT process definition Ad for each
occurrence of the agent identifier A in a context where |G| = d. This increases
the size of the Lotos NT specification by only a logarithmic factor w.r.t. the
size of the input π-calculus specification (see the discussion on complexity be-
low). Finally, the restriction to finite control agents ensures that all (direct or
transitive) recursive invocations of the agent identifier A inside its body P will
occur inside the same concurrent activity, and therefore all the corresponding
calls to process Ad will have the same context G and k. This enables to translate
each π-calculus agent definition into a finite number of Lotos NT processes.
Pi-calculus specification. The π-calculus agent occurring at the top-level of
a specification is translated in a context consisting of the gates Gpub and Gpriv

(which model the communications on public and private channels, respectively)
and a concurrent activity with identifier 1.

π2lnt(P) = par Gpriv in t(P, {Gpub , Gpriv}, 1) || stop end par

The translation of action prefix and channel creation operator (see above) pro-
duces extra synchronizations on gate Gpriv , which must be forbidden in order to
reflect that the environment of the π-calculus agent is not aware of the private
channels of P . This is done by a synchronization on Gpriv with “stop”, the sim-
plest environment not aware of private channels, added at the top-level of the
resulting Lotos NT term.
Correctness and complexity of the translation. While devising the trans-
lation, we sought to preserve the behaviour by ensuring a one-to-one corre-
spondence between the transitions performed by the π-calculus agent and those
performed by the Lotos NT term. The actions α of the agent are related to
Lotos NT actions by the function h(α, G, k), where G is a gate name and k ≥ 1:

α h(α, G, k)

τ i

xy G !x !y !k ?r:Nat

x(z) G !x !z !k ?r:Nat where ¬is public(z)

xy G !x ?y:Chan ?s:Nat !k

We also define the set Ck
def
= {2l · k + r | l ≥ 0 ∧ r < 2l}, which represents

the set of concurrent activity identifiers generated as children of activity k. The
following proposition states the correctness of the translation.

Proposition 1 (Behaviour preservation). Let P be a π-calculus agent, G a

set of Lotos NT gates, and k ≥ 1. Then, for every action α and agent P ′:

P
α
→ P ′ iff ∃k′ ∈ Ck . ∀G ∈ G . t(P, G, k)

h(α,G,k′)
→ t(P ′, G, k).

The proof of this proposition (omitted here due to space limitations) is by in-

duction on the depth of the derivation leading to the transition P
α
→ P ′. When

Translating Pi-Calculus into LOTOS NT 9

translating a top-level π-calculus agent P in the context given by {Gpub , Gpriv}
and activity identifier 1 (see the rule for π-calculus specification), Proposition 1
and the semantics of the “par” operator ensure that each internal transition of
P is mapped to one internal transition of the Lotos NT term and each com-
munication on a public channel corresponds to an action on gate Gpub . On the
other hand, since the synchronizations on Gpriv are blocked, there are no com-
munications between P and its environment along the private channels of P .
Thus, every action performed by a top-level π-calculus agent is mapped into a
single action (either i, or an action on Gpub) of the resulting Lotos NT term.

In order to estimate the complexity of the translation, we calculate the size
of the output Lotos NT term w.r.t. the size |P | of the input π-calculus agent
P . The size is defined as the number of operators contained in the Lotos NT
term and in the π-calculus agent, respectively. The definition of type Chan has a
size linear w.r.t. |P | and each translation rule given above invokes the translation
t only once for each operand of P . The only sources of increase in size are the
translation rules for action prefixes and for agent definitions. In the worst case,
the former rule expands each action of P into |G|max actions, and the latter
duplicates the definition of an agent as many times as |G|max , the maximum
size of the set G. Assuming that all nestings of parallel operators inside P are
arranged to form balanced binary trees, |G|max is bounded by O(log |P |), which
makes the size of the whole Lotos NT term proportional to O(|P | · log |P |).

4 Tool Support: Pic2Lnt

We developed an automatic translator tool from π-calculus to Lotos NT,
named Pic2Lnt, implemented using the Syntax+Traian compiler construc-
tion technology [11]. It consists of about 900 lines of Syntax code, 2, 300 lines
of Lotos NT code, and 500 lines of C code. Although the π-calculus version
used in Sections 2 and 3 to illustrate the translation is monadic, the Pic2Lnt
translator implements a polyadic version of the π-calculus, by exploiting the fact
that Lotos NT allows the communication of multiple values on the same gate.
The concrete syntax of polyadic π-calculus accepted by Pic2Lnt subsumes the
syntax implemented in Mwb, with the restriction to finite control agents. Fig-
ure 3 gives an overview of the tool chain that makes possible the verification of
π-calculus specifications using the Cadp toolbox [12].

We applied Pic2Lnt on a benchmark of π-calculus specifications, which in-
cludes most of the examples provided with Mwb (except those with self-recursion
along the parallel operator), as well as unitary tests that we wrote ourselves. Our
benchmark currently contains 160 files, which consist of about 2, 000 lines of π-
calculus and were translated in about 23, 000 lines of Lotos NT. This expansion
in size is caused partly by the complexity of the translation (estimated at the
end of Section 3) and partly by the fact that Lotos NT is more verbose than
the π-calculus (e.g., Lotos NT requires more keywords, gates have to be de-
clared explicitly and passed as parameters to each process call, variables must
be declared before usage, etc.).

10 R. Mateescu and G. Salaün

Pic2Lnt Lnt2Lotos

.pic pic2lnt.t

.lnt .lotos Open/Cæsar

Cadp tools

Lnt.Open

Fig. 3. Overview of the translation and verification process

Once a π-calculus specification is translated into Lotos NT, the Lnt.Open
tool connects, by means of an intermediate translation into Lotos (the pic2lnt.t
file contains the external C definition of the function new id()), the resulting
specification to the Open/Cæsar environment [10], which gives access to all the
state-of-the-art on-the-fly verification tools of Cadp. In particular, one can use
the Evaluator 4.0 model checker [17] to verify temporal properties specified
in Mcl (an extension of alternation-free µ-calculus with regular expressions,
data-based constructs, and fairness operators) involving channel names and/or
data values present on transition labels. The counterexamples provided by the
model checker are translated back into the π-calculus format by using the label
renaming features provided by Cadp.

5 Case Study: A Dispatcher Web Service

With the recent advent of Web services, the π-calculus has found a new ap-
plication area. Many works have focused on the application of the π-calculus
for modelling Web services and their composition, see e.g., [7, 14, 25]. As far
as implementation languages are concerned, Bpel is an Xml-based executable
language for implementing Web services orchestrations, and its specification [5]
includes some dynamic communication primitives, namely endpoint references.
As written in the Bpel specification: “An endpoint reference makes it possible

in Bpel to dynamically select a provider for a particular type of service and to

invoke their operations”.
In this section, we present an example of Web service (a dispatcher) involving

dynamicity in the system architecture. This service receives requests from some
clients, and depending on the product searched by the client, forwards this re-
quest to the adequate server. The server receives this request from the dispatcher
as well as a private channel (x), and uses this new channel to interact directly
with the client. First, it sends to him/her some information about the product
(e.g., price, availability, etc.) and next it receives the client’s final decision (pur-

chase or refuse). The client stops as soon as (s)he accepts the purchase. We show

Translating Pi-Calculus into LOTOS NT 11

below the π-calculus specification of a system composed of one client and three
servers selling different products (identified by a, b, c). In the specification, we
use four private channels (req, a, b, and c) and three public channels (request,
purchase, and refuse). Polyadic emissions are enclosed between angle brackets.

Main = (ν req , a, b, c)(Client(req , a, b, c) | Dispatcher (req) |
Server(a) | Server(b) | Server (c))

Client(req , a, b, c) = (νx)(request a.req〈a, x〉.ClientAux(req , a, a, b, c, x)) +
(νx)(request b.req〈b, x〉.ClientAux(req , b, a, b, c, x)) +
(νx)(request c.req〈c, x〉.ClientAux (req , c, a, b, c, x))

ClientAux (req , k, a, b, c, x) = x(info).(x purchase .purchase k.0 +

x refuse .refuse k.Client(req , a, b, c))

Dispatcher (req) = req(k, x).k x.Dispatcher (req)
Server (k) = k(x).x info.x(decision).Server (k)

Figure 4(a) shows the Lts generated using the Lnt.Open tool from the
Lotos NT specification (an excerpt of which can be found in Appendix A)
produced by the Pic2Lnt translator. The transition labels have been renamed
using Cadp to keep only the relevant information about channels. The system
starts emitting a request for one of the three possible products (state 0). Then,
the dispatcher interacts with the concerned server, and this server with the client.
This corresponds to sequences of τ transitions in the Lts because private inter-
actions result in hidden transitions according to the π-calculus semantics. At
that point of the execution, if the client decides to purchase the product (states
13, 15, 17), the system terminates (state 19). If the client decides to refuse the
purchase (states 14, 16, 18), state 20 is reached where the client can submit
another request.

17

0

18

1

20

19

2
3

4 56

7 8

10

9

1112

13 14 1516

REQUEST !a

i

i

REQUEST !c

ii

PURCHASE !c

i

REQUEST !b

i

PURCHASE !b

i REFUSE !c i

REQUEST !a

i
REFUSE !b

i

i

PURCHASE !a

i

REFUSE !a

i

REQUEST !c

i

REQUEST !b

i

(a)
0

4

1

5

26

3

REQUEST !a

i

i

REQUEST !a

i

REFUSE !a

i

(b)

Fig. 4. (a) Lts of the dispatcher specification. (b) Lasso-shaped counterexample.

12 R. Mateescu and G. Salaün

Next, we illustrate how the Evaluator 4.0 model checker [17] of Cadp
can be used for analyzing this simple example. This tool accepts as input Mcl
formulas expressing properties on actions but also on data parameters. In par-
ticular, for Lts models generated from π-calculus specifications, Mcl makes it
possible to specify properties about channels appearing either as subject or ob-
ject of a communication. For example, the Mcl formula below expresses that
each request submitted by the client is eventually answered positively:

[true∗.{request ?x:String}] µX.(〈true〉true ∧ [¬{purchase !x}]X)

The first box modality matches all transition sequences starting at the initial
state of the Lts and ending with a request action. The channel value (encoded as
a character string) communicated via request is captured in the x variable, which
is reused later on in the minimal fixed point formula expressing the inevitable
reachability of a purchase action involving x. This formula fails on the Lts in
Figure 4(a) because a client can indefinitely refuse a product, as illustrated in
Figure 4(b) by the lasso-shaped counterexample exhibited by Evaluator 4.0.

The other Mcl formula below states that no positive or negative answer can
be delivered for product a without a corresponding request being issued:

[(¬{request !”a”})∗.{purchase !”a”} ∨ {refuse !”a”}]false

This box modality forbids the existence of a sequence consisting of (0 or more)
actions different from a request for a, followed by a purchase or a refuse action
concerning a. Using Evaluator 4.0, we checked that this property holds on the
Lts shown in Figure 4(a).

6 Related Work

During the past two decades, various approaches were followed for analyzing π-
calculus specifications automatically. One of the first analysis tools specifically
dedicated to the π-calculus was the Mobility Workbench (Mwb) [28], developed
in the 90s for manipulating and analyzing mobile concurrent systems. The main
features of Mwb are checking open bisimulation equivalences [26] and modal
µ-calculus formulas using a sequent-calculus based model checker.

Other works considered automata-based representations of finite control π-
calculus agents, with the goal of reusing the equivalence checkers and model
checkers available for automata. Several decidability results about the strong
and weak equivalence of π-calculus agents under certain assumptions on name
spaces were presented in [6]. In a similar line of work, [21] introduce an irre-

dundant unfolding notion that enables to check efficiently bisimilarity of finitary
agents using an ordinary partition refinement algorithm, and also to minimize
single agents. This line of work was continued in [8] by associating ordinary
finite state automata to equivalent π-calculus agents using HD-automata as in-
termediate representation. This enabled to reuse the automata-based verification
environment Jack for analyzing mobile processes, both by means of equivalence

Translating Pi-Calculus into LOTOS NT 13

checking (using the Mauto tool) and by model checking formulas specified in π-
logic (a variant of modal µ-calculus dedicated to the π-calculus), by translating
them into Actl and applying the Amc model checker of the Jack environment.

A logical encoding of the operational semantics of the π-calculus into Mmc
processes was proposed in [30]. Mmc is a model checker for mobile systems
which builds on Xmc, a model checker for Milner’s value passing Ccs imple-
mented using the Xsb tabled logic-programming engine. This connection allows
the specification of correctness properties in an expressive subset of the π-logic
and their verification using Mmc. A probabilistic / stochastic version of the π-
calculus was considered in [23], where an automated procedure was proposed
for generating first the corresponding symbolic transition graphs, and second
Markov decision processes or continuous-time Markov chains. These models can
be used as input of existing probabilistic model checkers such as Prism, where
properties are typically specified using the temporal logics Pctl and Csl.

Compared to these works, we chose to follow here a different approach, by
translating a π-calculus specification into an equivalent description in a high-
level language equipped with tools for the generation and manipulation of the
underlying transition system. This translation-based approach was subject to
several proposals concerning various languages. In [2], the authors show how
to map the π-calculus into the Monstr graph rewriting language. This work,
which was not targeted to verification purposes, illustrated the convenience of
representing an evolving network of communicating agents in a graph manip-
ulation formalism, but also pointed out the heavy cost in practice of faithfully
implementing the communication primitive of mobile process calculi.

Another way of analyzing π-calculus specifications, proposed independently
in [29, 27], consists in translating them in Promela and verifying Ltl formulas
using the Spin model checker. As regards channel mobility, Promela is suitable
as a target language because it allows channel names to be communicated be-
tween processes as ordinary data values. The rule-based translation of [29] was
implemented in the Pi2Promela tool and successfully applied to model the
Bluetooth service discovery protocol. In [27] a different translation is proposed
(only for the monadic π-calculus) and implemented as an add-on to the Mwb
tool. The verification of Ltl properties on the generated Promela code requires
the manual specification of an environment whose role is to close the Promela
description and to define the variables needed in the Ltl formulas. Therefore,
as observed in [27], the verification approach based on translation to Promela
cannot be completely automated. Moreover, no attempt is made in [29, 27] to
justify that the translations proposed preserve the π-calculus semantics. Indeed,
Promela is not equipped with an Lts semantics and the underlying state space
model is suited mainly for Ltl model checking in the state-based setting, whereas
the π-calculus semantics relies on Ltss and bisimulation relations.

Finally, another group of works aimed at modelling the mobility in the Lotos
specification language. A first method for modelling dynamic communication
structures by encoding link names as data values was proposed in [9], together
with a sufficient condition on the communication structures (binary group com-

14 R. Mateescu and G. Salaün

munication) guaranteeing that the modelling is possible. This method is illus-
trated in [9] by specifying the handover procedure implemented in a mobile
telecommunication network. In [22], the authors introduce M-Lotos, a mobile
extension of Lotos based on the π-calculus, which preserves the other Lotos
specification styles. An operational semantics of M-Lotos and a notion of early
bisimulation are defined, and the usage of the language is illustrated by several
examples, including an Odp trader.

Our translation from π-calculus to Lotos NT makes the state-of-the-art
verification tools of Cadp directly available for analyzing π-calculus specifica-
tions: µ-calculus model checking with Evaluator [17], equivalence checking
(branching, weak, etc.) with Bisimulator [3], compositional and distributed
verification, rapid prototyping, etc.

7 Conclusion and Future Work

We have presented a translation from the finite control fragment of the π-calculus
to Lotos NT, which is one of the input languages of the Cadp toolbox. Con-
sequently, this translation makes it possible to use all the state-of-the-art ver-
ification tools of Cadp to analyze π-calculus specifications. The translation is
completely automated by the Pic2Lnt tool and validated on many examples.
The restriction to the finite control fragment of the π-calculus, first considered
in [21, 6], does not hamper the practical usability of the language: even if the
number of π-calculus agents must be statically known, the mobility of commu-
nication channels can be fully exploited.

We plan to continue our work by extending the π-calculus with data-handling
features, with the goal of widening its possible application domains. This can
be done by extending the language grammar and the translation to support
typed variables and data expressions. As language for describing data, a natural
candidate would be Lotos NT itself: indeed, the data types and functions used
in the π-calculus specification could be described in Lotos NT and directly
incorporated to the Lotos NT code produced by translation. This would result
in an applied π-calculus, such as the variant of the calculus proposed in [1] for
the verification of security properties.

References

1. M. Abadi, B. Blanchet, and C. Fournet. Just Fast Keying in the Pi-Calculus. ACM
Trans. Inf. Syst. Secur., 10(3), 2007.

2. R. Banach, J. Balazs, and G. Papadoupolous. A Translation of the Pi-Calculus
Into MONSTR. J. UCS, 1(6):339–398, 1995.

3. D. Bergamini, N. Descoubes, C. Joubert, and R. Mateescu. BISIMULATOR: A
Modular Tool for On-the-Fly Equivalence Checking. In Proc. of TACAS’05, volume
3440 of LNCS, pages 581–585. Springer, 2005.

4. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F. Lang, W. Serwe, and
G. Smeding. Reference Manual of the LOTOS NT to LOTOS Translator (Ver-
sion 5.0). INRIA/VASY, 107 pages, Mar. 2010.

Translating Pi-Calculus into LOTOS NT 15

5. OASIS Technical Committee. Web Services Business Process Execution Language
Version 2.0, 2007.

6. M. Dam. On the Decidability of Process Equivalences for the pi-Calculus. Theor.
Comput. Sci., 183(2):215–228, 1997.

7. S. Deng, Z. Wu, M. Zhou, Y. Li, and J. Wu. Modeling Service Compatibility with
Pi-Calculus for Choreography. In Proc. of ER’06, volume 4215 of LNCS, pages
26–39. Springer, 2006.

8. G. L. Ferrari, G. Ferro, S. Gnesi, U. Montanari, M. Pistore, and G. Ristori. An
Automated Based Verification Environment for Mobile Processes. In Proc. of
TACAS’97, volume 1217 of LNCS, pages 275–289. Springer, 1997.

9. L.-Å. Fredlund and F. Orava. Modelling Dynamic Communication Structures in
LOTOS. In Proc. of FORTE’91, volume C-2 of IFIP Transactions, pages 185–200.
North-Holland, 1991.

10. H. Garavel. OPEN/CÆSAR: An Open Software Architecture for Verification,
Simulation, and Testing. In Proc. of TACAS’98, volume 1384 of LNCS, pages
68–84. Springer, 1998.

11. H. Garavel, F. Lang, and R. Mateescu. Compiler Construction using LOTOS NT.
In Proc. of CC’02, volume 2304 of LNCS, pages 9–13. Springer, 2002.

12. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In Proc. of CAV’07, volume
4590 of LNCS, pages 158–163. Springer, 2007.

13. H. Garavel and M. Sighireanu. A Graphical Parallel Composition Operator for
Process Algebras. In Proc. of FORTE/PSTV’99, pages 185–202. IFIP, Kluwer
Academic Publishers, Oct. 1999.

14. R. Lucchi and M. Mazzara. A Pi-Calculus based Semantics for WS-BPEL. J. Log.
Algebr. Program., 70(1):96–118, 2007.

15. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization, Genève, Sept. 2001.

16. ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization, Genève, Sept. 1989.

17. R. Mateescu and D. Thivolle. A Model Checking Language for Concurrent Value-
Passing Systems. In Proc. of FM’08, volume 5014 of LNCS, pages 148–164.
Springer, 2008.

18. R. Milner. Communication and Concurrency, Prentice-Hall, 1989.
19. R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-

versity Press, 1999.
20. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes. Information

and Computation, 100(1):1–77, 1992.
21. U. Montanari and M. Pistore. Checking Bisimilarity for Finitary Pi-Calculus. In

Proc. of CONCUR’95, volume 962 of LNCS, pages 42–56. Springer, 1995.
22. E. Najm, J.-B. Stefani, and A. Février. Towards a Mobile LOTOS. In Proc. of

FORTE’95, volume 43 of IFIP Conference Proceedings, pages 127–142. Chapman
& Hall, 1995.

23. G. Norman, C. Palamidessi, D. Parker, and P. Wu. Model Checking Probabilis-
tic and Stochastic Extensions of the Pi-Calculus. IEEE Trans. Software Eng.,
35(2):209–223, 2009.

24. J. Parrow. An introduction to the pi-calculus, In Handbook of Process Algebra,
chapter 8, pages 479–544. North-Holland, 2001.

25. F. Puhlmann. Why Do We Actually Need the Pi-Calculus for Business Process
Management? In Proc. of BIS’06, volume 85 of LNI, pages 77–89. GI, 2006.

16 R. Mateescu and G. Salaün

26. D. Sangiorgi. A Theory of Bisimulation for the pi-Calculus. Acta Inf., 33(1):69–97,
1996.

27. H. Song and K. J. Compton. Verifying Pi-Calculus Processes by Promela Trans-
lation. Technical Report CSE-TR-472-03, University of Michigan, USA, 2003.

28. B. Victor and F. Moller. The Mobility Workbench – A Tool for the π-Calculus. In
Proc. of CAV’94, volume 818 of LNCS, pages 428–440. Springer, 1994.

29. P. Wu. Interpreting Pi-Calculus with Spin/Promela. In Proc. of NCTCS’03, vol-
ume 8 (supplement) of Computer Science, pages 7–9, 2003.

30. P. Yang, C. R. Ramakrishnan, and S. A. Smolka. A Logical Encoding of the
Pi-Calculus: Model Checking Mobile Processes using Tabled Resolution. STTT,
6(1):38–66, 2004.

A Dispatcher Web Service Translated to LOTOS NT

We show below an excerpt of the Lotos NT code (processes MAIN and Dis-
patcher 4 corresponding to the agents Main and Dispatcher) generated by the
Pic2Lnt translator from the π-calculus specification of the dispatcher Web ser-
vice given in Section 5. The names of Lotos NT processes are indexed by the
number of gates in G (not counting the Gpub and Gpriv gates).

process MAIN [PUBLIC,PRIVATE:any] is

var req, a, b, c:Chan in

req:=req(new_id()); a:=a(new_id()); b:=b(new_id()); c:=c(new_id());

hide G0:any in par G0 in hide G1:any in par G1 in

hide G2:any in par G2 in hide G3:any in par G3 in

Client_4 [PUBLIC,PRIVATE,G0,G1,G2,G3] (req,a,b,c,2)

|| Dispatcher_4 [PUBLIC,PRIVATE,G0,G1,G2,G3] (req,6) end par end hide

|| Server_3 [PUBLIC,PRIVATE,G0,G1,G2] (a,14) end par end hide

|| Server_2 [PUBLIC,PRIVATE,G0,G1] (b,30) end par end hide

|| Server_1 [PUBLIC,PRIVATE,G0] (c,31) end par end hide

end var

end process

process Dispatcher_4[PUBLIC,PRIVATE,G0,G1,G2,G3:any](req:Chan,pid:Nat) is

select var k,x:Chan, s:Nat in

G0 (!req, ?k, ?x, ?s, !pid) [] G1 (!req, ?k, ?x, ?s, !pid) []

G2 (!req, ?k, ?x, ?s, !pid) [] G3 (!req, ?k, ?x, ?s, !pid) []

PUBLIC (!req, ?k, ?x, !false) where is_public(req) []

PRIVATE (!req, ?k, ?x, !false) where not(is_public(req))

end select ;

select var r:Nat in

G0 (!k, !x, !pid, ?r) [] G1 (!k, !x, !pid, ?r) []

G2 (!k, !x, !pid, ?r) [] G3 (!k, !x, !pid, ?r) []

PUBLIC (!k, !x, !true) where is_public(k) []

PRIVATE (!k, !x, !true) where not(is_public(k))

end select ; Dispatcher_4 [PUBLIC,PRIVATE,G0,G1,G2,G3] (req,pid)

end process

