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Evaluation efficace à la volée pour le

mu-calcul régulier sans alternance

Résumé : La vérification basée sur les modèles (model-checking) est une technique uti-
lisée avec succès pour la vérification automatique des systèmes concurrents à états finis.
Lors de la construction d’un évaluateur (model-checker), il est nécessaire d’effectuer un bon
compromis entre l’expressivité du formalisme de description des propriétés, la complexité
du problème de la vérification et la facilité d’utilisation de l’interface. Nous présentons une
logique temporelle et une méthode de vérification associée conçues afin de satisfaire ces
critères. La logique est une extension du µ-calcul sans alternance avec des formules sur
actions comme en Actl et des expressions régulières comme en Pdl, permettant une des-
cription concise et intuitive des propriétés de sûreté, vivacité et équité sur des systèmes de
transitions étiquetées. La méthode de vérification est basée sur une traduction succincte
du problème vers un système d’équations booléennes qui est résolu au moyen d’un algo-
rithme efficace ayant une bonne complexité moyenne. L’algorithme permet aussi de générer
des diagnostics (exemples et contre-exemples) pour les formules temporelles. Cette méthode
sert de base à l’évaluateur Evaluator 3.0 que nous avons implémenté dans la bôite à outils
Cadp en utilisant l’environnement générique de vérification à la volée Open/Caesar.

Mots-clés : diagnostic, logique temporelle, mu-calcul, spécification, système d’équations
booléennes, système de transitions étiquetées, vérification basée sur les modèles
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1 Introduction

Formal verification is essential in order to improve the reliability of complex, critical applica-
tions such as communication protocols and distributed systems. A state-of-the-art technique
for automatic verification of concurrent finite-state systems is called model-checking. In this
approach, the application under design is first translated into a finite labeled transition sys-
tem (Lts) model, on which the desired correctness properties (expressed e.g., as temporal
logic formulas) are verified using appropriate model-checking algorithms.

When designing and building a model-checker, several important criteria must be con-
sidered. Firstly, the specification formalism should be sufficiently powerful to describe the
main temporal property classes usually encountered (safety, liveness, fairness). Among the
wide range of temporal logics proposed in the literature, the modal µ-calculus [18] is partic-
ularly powerful, subsuming linear-time logics as Ltl [22], branching-time logics as Ctl [4]
or Actl [25], and regular logics as Pdl [12] or Pdl-∆ [27].

Secondly, the underlying model-checking problem should have a sufficiently low complex-
ity, in order to offer reasonable response times on practical applications. Optimizing this is
often contradictory with the first criterion above, because the model-checking complexity
of temporal logics usually increases with their expressive power. Since the model-checking
problem of the full µ-calculus is exponential-time, various sublogics of lower complexity
have been defined. Among these, the alternation-free fragment [7] makes a good compro-
mise between expressiveness (allowing direct encodings of Ctl and Actl) and efficiency of
model-checking (several linear-time algorithms being available [5,1,29,20]).

Thirdly, the model-checker interface should allow an intuitive, concise, and flexible de-
scription of properties, in order to avoid specification errors and to facilitate the verification
task for non-expert users. Moreover, the model-checker must provide enough feedback infor-
mation to make the debugging of the applications feasible; in practice, this means to provide
a precise diagnostic in addition to a simple yes/no answer for a temporal property.

In this paper, we present a temporal logic and an associated model-checking method
attempting to fulfill the aforementioned criteria. The temporal logic adopted is an extension
of the alternation-free µ-calculus with Actl-like action formulas and Pdl-like regular ex-
pressions, allowing a concise and intuitive description of safety, liveness, and (some) fairness
properties without sacrificing the efficiency of verification. The method proposed for verify-
ing a temporal formula over an Lts has a linear-time worst-case complexity (both in Lts size
and formula size) and is based upon a succinct translation of the verification problem into
a boolean equation system (Bes). The method works on-the-fly, by exploring the Lts in a
demand-driven way during the verification of the formula. The resulting Bes is solved using
a new linear-time local algorithm based on a depth-first search of the corresponding boolean
graph. Compared to other linear-time local algorithms [1,29], our algorithm is simpler to
understand and has a good average complexity, achieved by a careful bookkeeping of the in-
formation in the portion of boolean graph visited during the search. Moreover, our algorithm
is easily connected to the diagnostic generation algorithms given in [24], allowing to produce
examples and counterexamples (subgraphs of the Lts) fully explaining the truth values of
the formulas. This verification method has been used as a basis for the Evaluator 3.0

RR n
�

3899



4 R. Mateescu, M. Sighireanu

model-checker that we developed within the Cadp (Cæsar/Aldébaran) toolset [9] using
the generic Open/Cæsar environment for on-the-fly verification [13].

The paper is organized as follows. Section 2 defines the syntax and semantics of the
temporal logic proposed and illustrates its use by means of various examples of properties.
Section 3 presents in detail the model-checking method and Section 4 discusses its imple-
mentation within the Cadp toolset. Finally, Section 5 gives some concluding remarks and
directions for future work.

2 Regular alternation-free µ-calculus

The logic that we propose, called regular alternation-free µ-calculus, is an extension of the
alternation-free fragment of the modal µ-calculus [18,7] with action formulas as in Actl [25]
and with regular expressions over action sequences as in Pdl [12]. It allows direct encodings
of “pure” branching-time logics like Actl or Ctl [4], as well as of regular logics like Pdl
or Pdl-∆ [27]. We first define its syntax and semantics, and then we show its usefulness by
means of several examples of commonly encountered temporal properties.

2.1 Syntax and semantics

We consider as interpretation models finite labeled transition systems (Ltss), which are
particularly suitable for action-based description formalisms such as process algebras. An
Lts is a tuple L = (S, A, T, s0), where: S is a finite set of states, A is a finite set of actions, T ⊆
S×A×S is the transition relation, and s0 ∈ S is the initial state. A transition (s, a, s′) ∈ T ,

also noted s
a
→ s′, indicates that the system can move from state s to state s′ by performing

action a.
The regular alternation-free µ-calculus is built from three types of formulas, according

to the syntax given on Figure 1.

Action formulas α ::= a
∣

∣ ¬α
∣

∣ α1 ∧ α2

Regular formulas β ::= α
∣

∣ β1.β2

∣

∣ β1|β2

∣

∣ β∗

State formulas ϕ ::= F

∣

∣ T

∣

∣ ϕ1 ∨ ϕ2

∣

∣ ϕ1 ∧ ϕ2

∣

∣ 〈β〉ϕ
∣

∣ [β] ϕ
∣

∣ Y
∣

∣ µY.ϕ
∣

∣ νY.ϕ

Fig. 1. Syntax of regular alternation-free µ-calculus

Action formulas α are built from action names a ∈ A by using the standard boolean
operators. Derived boolean connectives are defined as usual: F = a∧¬a for some a, T = ¬F,
α1∨α2 = ¬(¬α1∧¬α2), etc. Regular formulas β are built from action formulas α by using the
standard regular expression operators: concatenation (.), choice (|), and transitive-reflexive

INRIA



Efficient Model-Checking for Regular Mu-Calculus 5

closure (∗). The empty sequence operator ε and the transitive closure operator + are defined
as ε = F∗ and β+ = β.β∗. State formulas ϕ are built from propositional variables Y ∈ Y by
using the standard boolean operators, the possibility and necessity operators 〈β〉ϕ and [β] ϕ,
and the minimal and maximal fixed point operators µY.ϕ and νY.ϕ. The µ and ν operators
act as binders for Y variables in a way similar to quantifiers in first-order logic. A formula ϕ

without free occurrences of Y variables is closed. Formulas ϕ are assumed to be alternation-

free, i.e., without mutually recursive minimal and maximal fixed point subformulas (〈β〉ϕ′

and [β] ϕ′ modalities, where β contains ∗ operators, must be considered as “hidden” minimal
and maximal fixed point subformulas, respectively).

[[a]] = {a}

Action formulas [[¬α]] = A \ [[α]]

[[α1 ∧ α2]] = [[α1]] ∩ [[α2]]

||α|| = {(s, s′) ∈ S × S | ∃a ∈ A.s
a
→ s′ ∧ a ∈ [[α]]}

Regular formulas
||β1.β2|| = ||β1|| ◦ ||β2||

||β1|β2|| = ||β1|| ∪ ||β2||
||β∗|| = ||β||∗

[[F]] ρ = ∅
[[T]] ρ = S

[[ϕ1 ∨ ϕ2]] ρ = [[ϕ1]] ρ ∪ [[ϕ2]] ρ
[[ϕ1 ∧ ϕ2]] ρ = [[ϕ1]] ρ ∩ [[ϕ2]] ρ

State formulas [[〈β〉ϕ]] ρ = {s ∈ S | ∃s′ ∈ S.(s, s′) ∈ ||β|| ∧ s′ ∈ [[ϕ]] ρ}

[[[β] ϕ]] ρ = {s ∈ S | ∀s′ ∈ S.(s, s′) ∈ ||β|| ⇒ s′ ∈ [[ϕ]] ρ}
[[Y ]] ρ = ρ(Y )

[[µY.ϕ]] ρ =
⋂

{S′ ⊆ S | Φρ(S
′) ⊆ S′}

[[νY.ϕ]] ρ =
⋃

{S′ ⊆ S | S′ ⊆ Φρ(S
′)}

where Φρ : 2S → 2S , Φρ(S
′) = [[ϕ]] (ρ � [S′/Y ])

Fig. 2. Semantics of regular alternation-free µ-calculus

The semantics of the logic is shown on Figure 2. The interpretation [[α]] ⊆ A of action
formulas gives the set of Lts actions satisfying α. The interpretation ||β|| ⊆ S ×S of regular
formulas gives a binary relation between the source and target states of transition sequences
satisfying β (◦, ∪, and ∗ denote composition, union, and transitive-reflexive closure of binary

relations). The α regular formula characterizes one-step sequences s
a
→ s′ such that a satisfies

α. The β1.β2 formula states that a sequence is the concatenation of two sequences satisfying
β1 and β2; β1|β2 states that a sequence can satisfy β1 or β2; and β∗ states that a sequence is
the concatenation of (zero or more) sequences satisfying β. The interpretation [[ϕ]] ρ ⊆ S of
state formulas, where the propositional context ρ : Y → 2S assigns state sets to propositional
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6 R. Mateescu, M. Sighireanu

variables, gives the set of Lts states satisfying ϕ in the context of ρ (� denotes context
overriding). The modalities 〈β〉ϕ and [β] ϕ characterize the states for which some (all)
outgoing transition sequences satisfying β lead to states satisfying ϕ. The formulas µY.ϕ

and νY.ϕ denote the minimal and maximal solutions (over 2S) of the fixed point equation
Y = ϕ.

Let L = (S, A, T, s0) be an Lts. An action a ∈ A satisfies a formula α (written as a |= α)
iff a ∈ [[α]]. A state s ∈ S satisfies a closed formula ϕ (written s |= ϕ) iff s ∈ [[ϕ]]. L is
a ϕ-model (written L |= ϕ) iff [[ϕ]] = S. Since an on-the-fly model-checker only decides
whether s0 |= ϕ, the user should be aware that verifying L |= ϕ amounts to check on-the-fly
the formula [T∗] ϕ (equivalent to the Actl formula AGTϕ), stating that ϕ holds on every
state reachable from s0.

2.2 Examples

The regular alternation-free µ-calculus allows to express intuitively and concisely various
useful properties of Ltss. Table 1 shows several examples of typical formulas representing
safety, liveness, and fairness properties.

Table 1. Examples of properties in regular alternation-free µ-calculus

Class Property Formula

Absence of Error actions [T∗.Error]F

Safety
Unreachability of a Recv action
before a Send

[(¬Send)∗.Recv]F

Mutual exclusion of sections de-
limited by Open and Close

[T∗.Open1.(¬Close1)∗.Open2]F

Deadlock freedom: absence of
states without successors

[T∗] 〈T〉T

Liveness
Potential reachability (via some
Errors) of a Recv after a Send

〈T∗.Send.(T∗.Error)∗.Recv〉T

Inevitable reachability of a
Grant action after a Request

[T∗.Request] µY. 〈T〉T ∧ [¬Grant] Y

Livelock freedom: absence of
tau-circuits

[T∗] µY. [tau] Y
Fairness

Fair reachability (by skipping
circuits) of a Recv after a Send

[T∗.Send.(¬Recv)∗] 〈(¬Recv)∗.Recv〉T

Note that boolean connectives (negation in particular) over actions improve the concise-
ness of formulas: without these operators, it would be impossible to express the inevitable
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Efficient Model-Checking for Regular Mu-Calculus 7

reachability of an action without referring to other actions in the Lts. Also, regular opera-
tors (although theoretically they do not increase the expressive power of the alternation-free
modal µ-calculus) improve the readability of formulas: without these operators, the second
liveness property given in Table 1 would be described by the equivalent fixed point formula
µY1.(〈Send〉µY2.(〈Recv〉T ∨ µY3.(〈Error〉Y2 ∨ 〈T〉Y3)) ∨ 〈T〉Y1).

Other, more elaborate examples of generic temporal properties encoded in regular
alternation-free µ-calculus can be found in Section 4.

3 On-the-fly model-checking

We present in this section a method for on-the-fly model-checking of regular alternation-
free µ-calculus formulas over finite Ltss. The method works by translating the verification
problem into a boolean equation system, which is simultaneously solved using an efficient
local algorithm.

3.1 Translation into boolean equation systems

Consider an Lts L = (S, A, T, s0) and a closed formula ϕ in normal form (i.e., in which
all propositional variables are unique). The verification problem we are interested in con-
sists of deciding whether s0 |= ϕ. An efficient method used for the Actl logic [8] and for
the alternation-free µ-calculus [5,1] is to translate the problem into a boolean equation sys-
tem (Bes) [1,21], which is solved using specific local algorithms [1,29,28]. For the regular
alternation-free µ-calculus, one way to proceed could be first to translate a state formula
ϕ in plain alternation-free µ-calculus and then to apply the above procedure. This means
to encode the regular modalities of ϕ using fixed point operators, e.g., by applying the
Emerson-Lei translation from Pdl to alternation-free µ-calculus [7]. This translation is suc-
cinct (it produces at most a linear blow-up in the size of ϕ), but requires the identification
and sharing of common subformulas.

However, we can also devise a succinct translation of the verification problem s0 |= ϕ into
a Bes resolution without computing common subformulas, but using instead an equational
intermediate representation. The translation that we propose involves three steps, described
below.

Translation into PDL with recursion. The first step is to translate a regular alternation-
free µ-calculus formula ϕ into Pdl with recursion (PdlR), which is a generalization of
the Hennessy-Milner logic with recursion HmlR [19]. A PdlR specification (see Figure 3)
consists of a propositional variable Y and a fixed point equation system with propositional
variables in left-hand sides and Pdl formulas in right-hand sides. The equation system is
given as a list M1. . . . .Mp of σ-blocks (. denotes concatenation), i.e., subsystems of equations
with the same sign σ ∈ {µ, ν}. We consider here only alternation-free PdlR specifications,
in which every σ-block Mj (for 1 ≤ j < p) depends only upon (has free variables that may be
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8 R. Mateescu, M. Sighireanu

bound in) Mj+1, . . . , Mp. The Y variable must be defined in one of the σ-blocks M1, . . . , Mp

(usually in M1). A PdlR specification is closed if all variables occurring in it are bound in
the equation system.

Syntax of a PdlR specification:
P = (Y, M1. . . . .Mp)

where Mj = {Yj i

σj
= ϕj i}1≤i≤nj

for all 1 ≤ j ≤ p

Semantics w.r.t. an Lts (S, A, T, s0) and a context ρ : Y → 2S:
[[(Y, M1. . . . .Mp)]] ρ = (ρ � [[M1. . . . .Mp]] ρ)(Y )

[[Mj . . . . .Mp]] ρ = ([[Mj ]] (ρ � [[Mj+1. . . . .Mp]] ρ)). [[Mj+1. . . . .Mp]] ρ

[[{Yj i

σj
= ϕj i}1≤i≤nj

]] ρ = [σjΦjρ/(Yj1, . . . , Yjnj
)]

where Φjρ:(2
S)nj→(2S)nj , Φjρ(U1, ..., Unj) = ([[ϕi]] (ρ� [U1/Y1, ..., Unj/Ynj ]))1≤i≤nj

Fig. 3. Syntax and semantics of PdlR

A PdlR specification (Y, M1. . . . .Mp) interpreted over an Lts yields the set of states
associated to Y in the solution of M1. . . . .Mp. The solution of M1. . . . .Mp is a propositional
context in Y → 2S obtained by concatenating the solutions of all σ-blocks Mj (1 ≤ j < p),
each one being calculated in the context of the subsystem Mj+1. . . . .Mp. The solution of a
σ-block Mj with nj variables is a context mapping Mj ’s variables to the σj fixed point of
an associated vectorial functional defined over (2S)nj . The semantics of an empty system
{ } is the empty context [ ].

Before translating a closed regular alternation-free µ-calculus formula ϕ in PdlR, we
must convert ϕ into expanded form, by performing two actions: (a) add a new µY (νY )
operator, where Y is a “fresh” variable, in front of every 〈β〉ϕ1 ([β] ϕ1) subformula of ϕ in
which β contains a ∗ operator (recall from Section 2.1 that these modalities are considered
as “hidden” fixed point operators); (b) if the resulting formula ϕ0 is not a fixed point one,
add in front of ϕ0 a σY0 operator, where σ ∈ {µ, ν} and Y0 is another “fresh” variable.

The translation of an expanded formula σY0.ϕ0 into a PdlR specification
(T1(σY0.ϕ0, σ),T2(σY0.ϕ0, σ)) is obtained using two syntactic functions T1 and T2, de-
fined inductively in Figure 4. T1(ϕ, σ) yields a formula obtained from ϕ by substituting
each fixed point subformula by its corresponding variable. T2(ϕ, σ) yields a system contain-
ing, for each fixed point subformula of ϕ, an equation with the corresponding variable in
the left-hand side and a Pdl formula in the right-hand side. The first σ-block, denoted by
hd(T2(ϕ, σ)), contains the equations of sign σ associated to the topmost fixed point sub-
formulas of ϕ. The remainder of the system, denoted by tl(T2(ϕ, σ)), contains the σ-blocks
already constructed from subformulas of ϕ. A new σ-block is created every time that a fixed
point subformula with a sign σ̃ dual to σ is encountered (µ̃ = ν and ν̃ = µ).

INRIA



Efficient Model-Checking for Regular Mu-Calculus 9

ϕ T1(ϕ, σ) T2(ϕ, σ)

F F
{ }

T T

〈β〉ϕ1 〈β〉T1(ϕ1, σ)
T2(ϕ1, σ)

[β] ϕ1 [β]T1(ϕ1, σ)

ϕ1 ∨ ϕ2 T1(ϕ1, σ) ∨ T1(ϕ2, σ) (hd(T2(ϕ1, σ)) ∪ hd(T2(ϕ2, σ))).
ϕ1 ∧ ϕ2 T1(ϕ1, σ) ∧ T1(ϕ2, σ) tl(T2(ϕ1, σ)).tl(T2(ϕ2, σ))

Y { }

σY.ϕ1 Y ({Y
σ
= T1(ϕ1, σ)} ∪ hd(T2(ϕ1, σ))).tl(T2(ϕ1, σ))

σ̃Y.ϕ1 { }.({Y
σ̃
= T1(ϕ1, σ̃)} ∪ hd(T2(ϕ1, σ̃))).tl(T2(ϕ1, σ̃))

Fig. 4. Translation of state formulas in PdlR

We illustrate this translation by an example. Consider the following formula (already
written in expanded form), stating that every Send action in the Lts will be eventually
followed by a Recv:

ϕ = νY0. [T
∗.Send] µY1. 〈T〉T ∧ [¬Recv] Y1

The translation (T1(ϕ, ν),T2(ϕ, ν)) yields the PdlR specification below:

(

Y0, {Y0
ν
= [T∗.Send] Y1}.{Y1

µ
= 〈T〉T ∧ [¬Recv] Y1}

)

Using Bekić’s theorem [3], we can show that the translation from regular
alternation-free µ-calculus to PdlR preserves the semantics of formulas: [[σY.ϕ]] ρ =
[[(T1(σY.ϕ, σ),T2(σY.ϕ, σ))]] ρ for any context ρ : Y → 2S and σ ∈ {µ, ν}. Note also that
the size of the PdlR specification obtained is linear in the size of ϕ: there are as many
equations in the system as variables in (the expanded form of) ϕ and as many operators in
the right-hand sides as operators in ϕ. However, in order to obtain a succinct translation
into Bess, we need simple PdlR specifications, i.e., in which all Pdl formulas in right-hand
sides contain at most one boolean or modal operator. This is easily done by splitting the
Pdl formulas and introducing new variables, and may cause at most a linear blow-up in
the size of the equation system. For the example above, we obtain the following equivalent
simple PdlR specification:

(

Y0, {Y0
ν
= [T∗.Send] Y1}.{Y1

µ
= Y2 ∧ Y3, Y2

µ
= 〈T〉T, Y3

µ
= [¬Recv] Y1}

)

Translation into HML with recursion. The second step is to translate a simple PdlR
specification into HmlR, which amounts to eliminate all regular operators inside the modal
formulas present in the right-hand sides of the equation system. This translation is performed
by the syntactic function R defined in Figure 5. Every equation containing a modality
with a regular expression is translated into (one or more) equations of the same sign that
contain modalities with simpler regular formulas (having less regular operators). This process
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10 R. Mateescu, M. Sighireanu

continues recursively until all resulting modalities in the right-hand sides belong to Hml,
i.e., they contain only pure action formulas.

R(Y, M1. . . . .Mp) = (Y,R(M1). . . . .R(Mp))

R({Yi
σ
= ϕi}1≤i≤n) =

⋃n

i=1
R(Yi

σ
= ϕi)

R(Y
σ
= 〈α〉ϕ) = {Y

σ
= 〈α〉ϕ}

R(Y
σ
= [α] ϕ) = {Y

σ
= [α] ϕ}

R(Y
σ
= 〈β1.β2〉ϕ) = R(Y

σ
= 〈β1〉Y1) ∪ R(Y1

σ
= 〈β2〉ϕ)

R(Y
σ
= [β1.β2] ϕ) = R(Y

σ
= [β1] Y1) ∪ R(Y1

σ
= [β2] ϕ)

R(Y
σ
= 〈β1|β2〉ϕ) = {Y

σ
= Y1 ∨ Y2} ∪ R(Y1

σ
= 〈β1〉ϕ) ∪ R(Y2

σ
= 〈β2〉ϕ)

R(Y
σ
= [β1|β2] ϕ) = {Y

σ
= Y1 ∧ Y2} ∪ R(Y1

σ
= [β1] ϕ) ∪ R(Y2

σ
= [β2] ϕ)

R(Y
σ
= 〈β∗〉ϕ) = {Y

σ
= ϕ ∨ Y1} ∪ R(Y1

σ
= 〈β〉Y )

R(Y
σ
= [β∗] ϕ) = {Y

σ
= ϕ ∧ Y1} ∪ R(Y1

σ
= [β] Y )

Fig. 5. Translation of simple PdlR specifications in HmlR

For the simple PdlR specification obtained in the previous example, the translation R

yields the following (simple) HmlR specification:

(

Y0, {Y0
ν
= Y4 ∧ Y5, Y4

ν
= [Send] Y1, Y5

ν
= [T]Y0}.

{Y1
µ
= Y2 ∧ Y3, Y2

µ
= 〈T〉T, Y3

µ
= [¬Recv] Y1}

)

The translation from PdlR to HmlR preserves the semantics of specifications:
[[(Y, M1. . . . .Mp)]] ρ = [[R(Y, M1. . . . .Mp)]] ρ for any context ρ : Y → 2S . Moreover, it is
easy to see that R may cause at most a linear blow-up in the size of the equation system.

Translation into BESs. The third step is to translate a simple HmlR specification into
an (alternation-free) boolean equation system. A Bes (see Figure 6) consists of a boolean
variable x and a fixed point equation system B1. . . . .Bp with boolean variables in left-
hand sides and boolean formulas in right-hand sides. For simplicity, we consider only pure
disjunctive or conjunctive boolean formulas. An empty disjunction is equivalent to F and an
empty conjunction is equivalent to T. The semantics of a Bes is defined in a way similar
to a PdlR specification, except that it produces the boolean value associated to x in the
solution of B1. . . . .Bp.

The local model-checking of a (simple) HmlR specification (Y, M1. . . . .Mp) on the initial
state s0 of an Lts L = (S, A, T, s0) means to decide whether the set of states denoted by
Y contains s0. This is translated into a Bes by the semantic function B defined inductively
in Figure 7. To every propositional variable Y in the left-hand side of an equation and to
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Efficient Model-Checking for Regular Mu-Calculus 11

Syntax of a Bes:
E = (x, B1. . . . .Bp)

where Bj = {xj i

σj
= opj i

Xj i}1≤i≤nj
, xji ∈ X , opj i

∈ {∨,∧}, and Xj i ⊆ X
for all 1 ≤ j ≤ p, 1 ≤ i ≤ nj

Semantics w.r.t. Bool = {F, T} and a context δ : X → Bool:
[[(x, B1. . . . .Bp)]] δ = (δ � [[B1. . . . .Bp]] δ)(x)

[[Bj. . . . .Bp]] δ = ([[Bj ]] (δ � [[Bj+1. . . . .Bp]] δ)). [[Bj+1. . . . .Bp]] δ

[[{xj i

σj
= opj i

Xj i}1≤i≤nj
]] δ = [σjΨ jδ/(xj1, . . . , xjnj

)]

where [[op{x1, ..., xk}]] δ = δ(x1) op . . . op δ(xk) and Ψ jδ:Boolnj→Boolnj ,
Ψ jδ(b1, ..., bnj) = ([[opji

Xj i]](δ � [b1/x1, ..., bnj/xnj ]))1≤i≤nj

Fig. 6. Syntax and semantics of boolean equation systems

every state s ∈ S is associated a boolean variable Ys encoding the fact that s belongs to the
set of states denoted by Y . To every Hml formula ϕ in a right-hand side and to every state
s is associated a boolean formula B(ϕ, s) encoding the fact that s satisfies ϕ.

B(Y, M1. . . . .Mp) = (Ys0
,B(M1). . . . .B(Mp))

B({Yi
σ
= ϕi}1≤i≤n) = {Yi,s

σ
= B(ϕi, s)}1≤i≤n,s∈S

B(F, s) = F

B(T, s) = T

B(ϕ1 ∨ ϕ2, s) = B(ϕ1, s) ∨ B(ϕ2, s)
B(ϕ1 ∧ ϕ2, s) = B(ϕ1, s) ∧ B(ϕ2, s)

B(〈α〉ϕ, s) =
∨

{s
a
→s′ | a|=α}

B(ϕ, s′)

B([α] ϕ, s) =
∧

{s
a
→s′ | a|=α}

B(ϕ, s′)

B(Yi, s) = Yi,s

Fig. 7. Translation of simple HmlR specifications into Bess

The B function is similar to other translations from modal equation systems to
Bess [2,5,1,29,21]. B produces a Bes whose size is linear in the size of the HmlR spec-
ification (which in turn is linear in the size of the initial state formula) and the size of the
Lts (number of states and transitions). It is important to note that during the translation
of modal formulas (see Figure 7), the transitions in the Lts are traversed forwards, which
enables to construct the Lts in a demand-driven way during the verification.
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12 R. Mateescu, M. Sighireanu

3.2 Local resolution of BESs

The final step of the model-checking procedure is the local resolution of the alternation-free
Bes obtained by translating the local verification of a formula ϕ on an Lts (S, A, T, s0). As
we saw in Section 3.1, the verification of a fixed point formula σY.ϕ on the initial state s0

amounts to compute the value of the boolean variable Ys0
contained in the first σ-block of

the Bes.
For simplicity, we consider here the resolution of Bess containing a single µ-block (the

solving routine for ν-blocks is completely dual). Multiple-block alternation-free Bess can be
handled by associating to each σ-block in the Bes its corresponding solving routine. Every
time a variable xj bound in a σ-block Bj is required in another block Bi that depends on Bj ,
the solving routine of Bj is called to compute xj . The computation of xj may require in turn
the values of other variables that are free in Bj and defined in other blocks, leading to calls
of the routines corresponding to those blocks, and so on. This process will eventually stop,
because the Bes being alternation-free, there are no cyclic dependencies between blocks.
During the resolution, the same variable of a block may be required several times in other
blocks; therefore, the computation results must be persistent between subsequent calls of
the same solving routine1.

Extended Boolean Graphs. Our resolution algorithm is easier to develop using a
representation of Bess as extended boolean graphs [24], which are a slight generalization
of the boolean graphs proposed in [1]. An extended boolean graph (Ebg) is a tuple
G = (V, E, L, F ), where: V is the set of vertices; E ⊆ V ×V is the set of edges; L : V → {∨,∧}
is the vertex labeling; and F ⊆ V is the frontier of G. Intuitively, the frontier of an Ebg
G contains the only vertices of G starting at which new edges can be added when G is
embedded in another Ebg. The set of successors of a vertex x ∈ V is noted E(x).

A closed Bes can be represented by an Ebg G = (V, E, L, ∅), where V denotes the set of
boolean variables, E denotes the dependencies between variables, and L labels the vertices as
disjunctive or conjunctive according to the operator in the corresponding equation of the Bes
(the frontier set is empty since G is not meant to be embedded in another graph). Figure 8
shows a closed Bes and its associated Ebg, where black (white) vertices denote variables
that are true (false) in the Bes solution. The grey area delimits a subgraph containing the
vertices {x0, x3, x4, x5, x8} and having the frontier {x0, x5, x8}.

Every Ebg G = (V, E, L, F ) induces a Kripke structure G = (V, E, L). Such a Kripke
structure is represented in an implicit manner when the “successor” function E(x) can be
computed for every vertex x ∈ V without knowing the whole set V (this is the case for the
successor function implemented by the translation B given in Figure 7).

Let P∨ and P∧ be two atomic propositions denoting the ∨- and ∧-vertices of a Kripke
structure G induced by a Bes. The Bes solution can be characterized by the following
µ-calculus formula interpreted over G [24]:

Ex = µY.(P∨ ∧ 〈T〉Y ) ∨ (P∧ ∧ [T]Y )
1 This resolution scheme could be naturally implemented using coroutines.

INRIA



Efficient Model-Checking for Regular Mu-Calculus 13
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µ
= x4 ∧ x6

x8

µ
= x0 ∨ x7

Fig. 8. A Bes, its associated Ebg, and a subgraph

A variable x of the Bes is true iff the vertex x satisfies Ex in G, noted x |=G Ex. Intuitively,
Ex expresses that some (all) successors of a ∨-vertex (∧-vertex) lead, in a finite number of
steps, to vertices corresponding to T variables of the Bes (these are ∧-vertices without
successors, characterized by the formula P∧ ∧ [T] F). For the Ebg in Figure 8, it is easy to
check that the set {x0, x3, x4, x5, x8} of black vertices is equal to the interpretation of Ex on
G, noted [[Ex]]

G
. Thus, the local resolution of a Bes amounts to the local model-checking

of the Ex formula on the corresponding Kripke structure.

Consider an Ebg G = (V, E, L, ∅), its associated Kripke structure G = (V, E, L), and
x ∈ V . The local model-checking of Ex on x does not always require to entirely explore
G (e.g., on Figure 8, one could explore only the outlined subgraph in order to check Ex
on x0), but rather to explore a part G′ of G such that the value of x can be computed
based only on the information in G′. Formally, this means to compute a subgraph G′ =
(V ′, E′, L′, F ′) of G that contains x and is solution-closed [24], i.e., the satisfaction of Ex
by x is the same in G′ and G: [[Ex]]

G′ = [[Ex]]
G

∩ V ′. A subgraph G′ is solution-closed
iff the satisfaction of Ex on its frontier F ′ can be decided using only the information in
G′: F ′ ⊆ [[(P∨ ∧ Ex) ∨ (P∧ ∧ ¬Ex)]]

G′ . For the Ebg on Figure 8, it is easy to see that
the subgraph outlined is solution-closed: its frontier {x0, x5, x8} contains only ∨-vertices
satisfying Ex.

Local resolution algorithm. The Solve algorithm that we propose (see Figure 9) takes
as input an implicit Kripke structure G = (V, E, L) induced by an Ebg G and a vertex x ∈ V

on which the Ex formula must be checked. Starting from x, Solve performs a depth-first
search (Dfs) of G and simultaneously checks Ex on all visited vertices, which are stored in
a set A ⊆ V . Upon termination, the subgraph GA of G containing all vertices in A and all
edges traversed during the Dfs is solution-closed ([[Ex]]

GA
= [[Ex]]

G
∩A), meaning that the

truth value of Ex on x computed in GA is the same as that in G.

Solve is similar in spirit with other graph-based local resolution algorithms like those
of Andersen [1] and Vergauwen-Lewi [29]. However, since it implements the Dfs iteratively,
using an explicit stack and two nested while-loops, we believe that Solve is easier to under-
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14 R. Mateescu, M. Sighireanu

procedure Solve (x, (V, E, L)) is

var A, B : 2V ; d : V → 2V ; c, p : V → Nat;
y, z, u, w : V ; stack : V ∗;

c(x) := if L(x) = ∧ then |E(x)| else 1;
p(x) := 0; d(x) := ∅;
A := {x}; stack := push(x,nil);
while stack 6= nil do

y := top(stack );
if c(y) = 0 then

if d(y) 6= ∅ then

B := {y};
while B 6= ∅ do

let u ∈ B; B := B \ {u};
forall w ∈ d(u) do

if c(w) > 0 then

c(w) := c(w) − 1;
if c(w) = 0 then

B := B ∪ {w}
endif

endif

end;
d(u) := ∅

end

else

stack := pop(stack )
endif

elsif p(y) ≤ |E(y)| − 1 then

z := (E(y))p(y); p(y) := p(y) + 1;
if z ∈ A then

d(z) := d(z) ∪ {y}
if c(z) = 0 then

stack := push(z, stack )
endif

else

c(z) := if L(z) = ∧ then |E(z)| else 1
p(z) := 0; d(z) := {y};
A := A ∪ {z}; stack := push(z, stack )

endif

else

stack := pop(stack )
endif

end

end

Fig. 9. Graph-based local resolution of a Bes with sign µ
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Efficient Model-Checking for Regular Mu-Calculus 15

stand than e.g., Andersen’s algorithm, which uses a while-loop and two mutually recursive
functions.

The successors E(y) of every vertex y ∈ V are assumed to be ordered from (E(y))0 to
(E(y))|E(y)|−1. For every vertex y ∈ A, a counter p(y) denotes the current successor of y

that must be explored. Every time a vertex y such that y |=G Ex is encountered on top of
the stack (this can be either a “new” ∧-sink vertex, or an already visited vertex), the Ex
formula is reevaluated in GA.

This reevaluation is carried out by the inner while-loop by keeping a work set B ⊆ A

containing the vertices u such that u |=GA
Ex and Ex has not yet been reevaluated on the

nodes that depend upon u. To keep track of these backward dependencies, to each vertex
y ∈ A we associate the set d(y) ⊆ A containing the currently visited predecessor vertices
of y (these vertices directly depend upon y and Ex must be reevaluated on them when Ex
becomes true on y). To efficiently perform the reevaluation of Ex, we use the counter-based
technique introduced in [2,5]: to every vertex y ∈ A, we associate a counter c(y) denoting
the least number of successors of y that currently have to satisfy Ex in order to ensure
y |=GA

Ex (c(y) is initialized to 1 for ∨-vertices and to |E(y)| for ∧-vertices). Thus, for
every y ∈ A, y |=GA

Ex iff c(y) = 0.
Figure 10 shows the result of executing Solve for the variable x0 and the Ebg in Figure 8

(during the Dfs, the successors of each vertex are visited as if the right-hand side of the
corresponding equation was evaluated from left to right). The subgraph GA computed by
Solve, containing the vertices {x0, x1, x2, x3, x4, x5}, is solution-closed, because its frontier
{x0, x5} contains only ∨-vertices satisfying Ex in GA.

01 7
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Fig. 10. A solution-closed subgraph computed by Solve

During the execution of Solve, the Dfs stack repeatedly takes one of the three forms
outlined on Figure 11.

In form a), all vertices y pushed on the stack are “unstable” (c(y) > 0), meaning that the
truth of Ex on y depends on the portion V \A of G that has not been explored yet: so, the
Dfs must continue. In form b), a vertex y that is “stable” (c(y) = 0) has been encountered
and pushed on top of the stack, meaning that some vertices depending on y may also
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16 R. Mateescu, M. Sighireanu

a) b) c)

A A A

x x x

c > 0

c = 0

c > 0
c > 0

c = 0

Fig. 11. Structure of the Dfs stack during the execution of Solve

become stable: therefore, Ex must be reevaluated in GA. In form c), this reevaluation has
been finished, possibly leading to stabilization of some vertices in A: then, all stable vertices
present on the stack will be popped, since no further information is needed for them. The
Dfs properties ensure that all stable vertices on the stack are adjacent to the top2, and thus
after they are popped the stack takes again the form a).

Solve has a linear-time worst-case complexity, since every edge in GA is traversed at
most twice: forwards (when its target vertex is visited by the Dfs) and backwards (when
Ex is reevaluated on its source vertex). Moreover, Solve has also a good average-case
complexity, improving on Andersen and Vergauwen-Lewi’s algorithms, since it stops as soon
as x |=GA

Ex and explores only vertices that are likely to influence x. Also, backward
dependencies d(u) of stable vertices u are freed during the inner while-loop, thus reducing
memory consumption.

Diagnostic generation. Practical applications of Bes resolution, such as temporal logic
model-checking, often require a more detailed feedback than a simple yes/no answer. To
allow an efficient debugging of the temporal formulas, it is desirable to have also diagnostic

information explaining the truth value obtained for the boolean variable of interest. Both
positive diagnostics (examples) and negative diagnostics (counterexamples) are needed in
order to have a full explanation of a temporal formula.

Let G = (V, E, L, F ) be an Ebg and x ∈ V the variable of interest. A diagnostic for
x is a solution-closed subgraph G′ of G that contains x and is minimal w.r.t. to subgraph
inclusion, i.e., it contains the minimal amount of information needed in order to decide the
satisfaction of Ex by x. A diagnostic G′ is called example if x |=G′ Ex and counterexample

if x 6|=G′ Ex.

2 The reevaluation of Ex, which involves a backwards traversal of edges in GA, can affect only
those vertices in the Dfs tree that are descendants of stable vertices present on the stack, outlined
by the grey portion on Figure 11 c).
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Efficient Model-Checking for Regular Mu-Calculus 17

The Solve algorithm does not directly produce diagnostics; however, it can be easily
coupled with the diagnostic generation algorithms proposed in [24]. These algorithms take as
input a solution-closed subgraph (in which the semantics of Ex has been already computed)
and construct a diagnostic for a given variable by performing efficient traversals of the
subgraph. Figure 12 shows an example for the variable x0 obtained by traversing again the
solution-closed subgraph on Figure 10 previously computed by Solve.
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Fig. 12. An example for x0

Since these diagnostic generation algorithms have a linear complexity in the size of the
solution-closed subgraph they are executed upon, they affect neither the worst-case, nor the
average-case complexity of Solve.

4 Implementation and use

We used the model-checking method presented in Section 3 as a basis for developing the
Evaluator 3.0 model-checker within the Cadp (Cæsar/Aldébaran) toolset [9]. The tool
has been built using the Open/Cæsar environment [13], which provides a generic Api for
on-the-fly exploration of transition systems. As a consequence, Evaluator 3.0 can be used
in conjunction with every compiler that is Open/Cæsar–compliant (i.e., that implements
a translation from its input language to the Open/Cæsar Api), and particularly with the
Cæsar compiler [14] for Lotos.

4.1 Additional operators and property patterns

Practical experience in using model-checking has shown the need for abstraction mechanisms
enabling the specifier to define and use his own temporal operators in addition to those
predefined in the model-checker. The input language of Evaluator 3.0 offers a macro-
expansion mechanism allowing to define parameterized formulas and an inclusion mechanism
allowing to group these definitions into separate libraries that can be reused in temporal
specifications.
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18 R. Mateescu, M. Sighireanu

An immediate application was to build libraries for particular logics like Ctl or Actl
by translating their temporal operators as fixed point formulas in regular alternation-free
µ-calculus. For example, the E

[

ϕ1α1
Uα2

ϕ2

]

operator of Actl (stating the existence of a

sequence s1
a1→ s2

a2→ · · · sk
ak→ sk+1 such that si |= ϕ1 for all 1 ≤ i ≤ k, aj |= α1 for all

1 ≤ j < k, ak |= α2, and sk+1 |= ϕ2) can be encoded as a macro EU A A(ϕ1, α1, α2, ϕ2) =
µY.(ϕ1 ∧ (〈α2〉ϕ2 ∨ 〈α1〉Y )). Of course, these particular operators can be freely mixed with
the built-in ones in temporal formulas, thus providing added flexibility to advanced users.

Another source of flexibility is provided by the use of wildcards (regular expressions on
character strings) instead of action names in the formulas. If transition labels are represented
as character strings (as it is currently the case with the Open/Cæsar Api), this allows to
specify a set of labels using a single action predicate. For example, the wildcard ’SEND.*’

represents all transition labels denoting communication of 0 or more values on gate SEND.
In practice, it appears that in many cases, temporal properties tend to belong to partic-

ular classes of high-level “property patterns”, such as absence, existence, universality, prece-

dence, and response. These patterns have been identified in [6] after an important statistical
study concerning over 500 applications of temporal logic model-checking. The knowledge
embedded in this pattern system is important for both expert and non-expert users, since
it reduces the risk of specification errors and facilitates the learning of temporal logic-based
formalisms.

These property patterns have been expressed in [6] using several specification formalisms
(Ctl, Ltl, regular expressions, etc.) but none of them was directly applicable to description
languages with action-based semantics such as process algebras. Therefore, we developed in
Evaluator 3.0 a library of parameterized formulas implementing the property patterns in
regular alternation-free µ-calculus. It turned out that many of them could be expressed in
a much more concise and readable form than with the other formalisms used in [6]. Table 2
shows the first three patterns contained in the library.

Besides facilitating the user task at the specification level, it is also important to offer
enough feedback on the verification results to allow an easy debugging of the applications.
This is achieved through the diagnostic generation facilities provided by Evaluator 3.0,
which allows to produce examples and counterexamples explaining the truth value of reg-
ular alternation-free µ-calculus formulas. As a side effect, this enables the user to get full
diagnostics for particular temporal logics implemented as libraries, such as Ctl and Actl.
Moreover, Evaluator 3.0 can be used to search regular execution sequences in Ltss, by
checking Pdl basic modalities: a transition sequence starting at the initial state and satis-
fying a regular formula β can be obtained either as an example for the 〈β〉T formula, or as
a counterexample for the [β] F formula.
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Table 2. Property patterns in regular alternation-free µ-calculus

Pattern Scope Formula

Globally [T∗.α1]F

Before α2 [(¬α2)
∗.α1.T

∗.α2]F

Absence
(α1 is false)

After α2 [(¬α2)
∗.α2.T

∗.α1]F

Between α2 and α3 [T∗.α2.(¬α3)
∗.α1.T

∗.α3]F

After α2 until α3 [T∗.α2.(¬α3)
∗.α1]F

Globally µY. 〈T〉T ∧ [¬α1] Y

Before α2 [(¬α1)
∗.α2]F

Existence
(α1 becomes true)

After α2 [(¬α2)
∗.α2] µY. 〈T〉T ∧ [¬α1] Y

Between α2 and α3 [T∗.α2.(¬α1)
∗.α3]F

After α2 until α3
[T∗.α2] ([(¬α1)

∗.α3]F ∧
µY. 〈T〉T ∧ [¬α1] Y )

Globally [T∗.¬α1]F

Before α2 [(¬α2)
∗.¬(α1 ∨ α2).(¬α2)

∗.α2]F

Universality
(α1 is true)

After α2 [(¬α2)
∗.α2.T

∗.¬α1]F

Between α2 and α3 [T∗.α2.(¬α3)
∗.¬(α1 ∨ α3).T

∗.α3]F

After α2 until α3 [T∗.α2.(¬α3)
∗.¬(α1 ∨ α3)]F
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4.2 Experimental results

We illustrate below the behaviour of Evaluator 3.0 by means of a simple benchmark
example: the Alternating Bit Protocol (Abp for short) described in Lotos. The protocol
specification (available in the Cadp release) contains four parallel processes: a sender entity,
a receiver entity, and two channels modelling the communication of messages and acknowl-
edgements, respectively. The sender accepts messages from a local user through a gate Put

and the receiver delivers the messages to a remote user through a gate Get. Messages are
represented by natural numbers between 0 and n, where n is a parameter of the specification.

We formulated and verified several safety, liveness, and fairness properties of the Abp
(see Table 3). For each property, the table gives its informal meaning, its corresponding
regular alternation-free µ-calculus formula, and its truth value on the Lotos specification.
Action predicates Puti and Geti denote the communication of message i on gates Put and
Get, respectively. Predicates Putany and Getany (wildcards) denote the communication of
arbitrary messages on gates Put and Get. Every property containing an occurrence of Puti

and/or Geti has been checked for all values of i between 0 and n.

Table 3. Properties of the Alternating Bit Protocol

No. Property Formula Value

P1
Initially, a Put will be eventually
reached

µY. 〈T〉T ∧ [¬Putany ] Y false

P2
Initially, a Put will be fairly
reached

[(¬Putany)
∗] 〈T∗.Putany〉T true

P3
Initially, no Get can be reached
before the corresponding Put

[(¬Puti)
∗.Geti]F true

P4
Between two consecutive Put,
there is a corresponding Get

[T∗.Puti.(¬Geti)
∗.Putany ]F true

P5
Between two consecutive Get,
there is a corresponding Put

[T∗.Getany .(¬Puti)
∗.Geti]F true

P6
After a Put, the corresponding
Get is eventually reachable

[T∗.Puti] µY. 〈T〉T ∧ [¬Geti] Y false

P7
After a Put, the corresponding
Get is fairly reachable

[T∗.Puti.(¬Geti)
∗] 〈(¬Geti)

∗.Geti〉T true

Properties P1 and P6, which express the inevitable reachability of Put and Get actions,
are false because of the livelocks (τ -loops) present in the Lotos description. These two prop-
erties can be reformulated — as P2 and P7, respectively — in order to state the inevitable
reachability only over fair execution sequences (i.e., by skipping loops).

We performed several experiments with Evaluator 3.0, by checking all properties
on the Abp specification for different values of n. For comparison, we also used the
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Evaluator 2.0 model-checker developed at Verimag, which accepts as input plain
alternation-free µ-calculus formulas and implements the Fernandez-Mounier local boolean
resolution algorithm [11]. All experiments have been performed on a Sparc Ultra 1 machine
with 256 Mbytes of memory.

The results are shown in Table 4. For each experiment, the table gives the number
of states of the Lts, the time (in minutes) required for the local model-checking of each
property, and the percentage of states explored by each tool. The Solve algorithm performs
uniformly better than the Fernandez-Mounier algorithm, the time needed being at least
50% smaller and the percentage of Lts states explored being always smaller or equal. For
properties P1, P2, and P6, which require to explore only a very small part of the Lts in
order to decide their truth value, Evaluator 3.0 stops almost instantaneously (less than a
second) in all cases, while Evaluator 2.0 takes up to one hour for n = 100.

Table 4. Local model-checking statistics

n = 20 n = 40 n = 60 n = 80 n = 100
No. |S| = 39 800 |S| = 153 200 |S| = 340 200 |S| = 600 800 |S| = 935 000

time expl.% time expl.% time expl.% time expl.% time expl.%

a 0
��

0�01 0
��

0�00 0
��

0�00 0
��

0�00 0
��

0�00�
1

b 20
��

93�1 1
�
42

��
96�4 4

�
49

��
97�6 10

�
04

��
98�2 18

�
23

��
98�5

a 0
��

0�01 0
��

0�00 0
��

0�00 0
��

0�00 0
��

0�00�
2

b 1
�
02

��
100 5

�
11

��
100 14

�
29

��
100 30

�
59

��
100 56

�
28

��
100

a 8′′ 91.7 35′′ 95.7 1′20′′ 97.1 2′28′′ 97.8 4′03′′ 98.2
P3

b 16′′ 91.7 1′09′′ 95.7 2′53′′ 97.1 5′49′′ 97.8 9′57′′ 98.2

a 9′′ 100 37′′ 100 1′25′′ 100 2′35′′ 100 4′13′′ 100
P4

b 19′′ 100 1′14′′ 100 3′05′′ 100 6′05′′ 100 10′17′′ 100

a 18′′ 100 1′15′′ 100 2′58′′ 100 5′48′′ 100 10′07′′ 100
P5

b 38′′ 100 3′01′′ 100 8′20′′ 100 17′40′′ 100 31′53′′ 100

a 0
��

0�02 0
��

0�00 0
��

0�00 0
��

0�00 0
��

0�00�
6

b 48
��

100 3
�
34

��
100 9

�
16

��
100 18

�
54

��
100 33

�
26

��
100

a 10′′ 100 38′′ 100 1′26′′ 100 2′36′′ 100 4′15′′ 100
P7

b 20′′ 100 1′18′′ 100 3′06′′ 100 6′08′′ 100 10′23′′ 100

(a) Evaluator 3.0 (Solve algorithm)
(b) Evaluator 2.0 (Fernandez-Mounier algorithm)
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5 Conclusion and future work

We presented an efficient method for on-the-fly model-checking of regular alternation-free
µ-calculus formulas over finite labeled transition systems. The method is based on a suc-
cinct reduction of the verification problem to a boolean equation system, which is solved
using an efficient local algorithm. Used in conjunction with specialized diagnostic generation
algorithms [24], the method also allows to produce examples and counterexamples fully ex-
plaining the truth values of the formulas. The method has been implemented in the model-
checker Evaluator 3.0 that we developed as part of the Cadp (Cæsar/Aldébaran)
protocol engineering toolset [9] using the Open/Cæsar environment [13].

The input language of Evaluator 3.0 allows to define reusable libraries containing new
temporal logic operators expressed in regular alternation-free µ-calculus. At the present
time, we developed libraries encoding the operators of Ctl [4], Actl [25], and a collec-
tion of generic property patterns proposed in [6] intended to facilitate the temporal logic
specification activity.

Evaluator 3.0 has been successfully experimented on various specifications of commu-
nication protocols and distributed applications (see for instance the examples in the Cadp
release). The diagnostic generation features and the possibility of defining separate libraries
of temporal operators appeared to be extremely useful in practice. Moreover, a connection
between Evaluator 3.0 and the Orccad environment for robot controller design [26],
including a graphical interface for the property pattern system, is currently under develop-
ment.

In the future, we plan to apply Evaluator 3.0 also for bisimulation/preorder check-
ing, by using the characteristic formula approach [16] that allows to compare two labeled
transition systems M1 and M2 by constructing a characteristic formula of M1 and verifying
it on M2. Also, the diagnostic generation features could be useful in the framework of test
generation based on verification [10]. Using again the characteristic formula approach, test
purposes could be described as temporal formulas and the corresponding test cases would
be obtained as diagnostics for these formulas.

Finally, we plan to extend the logic of Evaluator 3.0 with data variables, which allow
to reason more naturally about systems described in value-passing process algebras such as
µCrl [15] and full Lotos [17]. This can be done by translating data-based temporal logic
formulas into parameterized boolean equation systems, which can be solved on-the-fly [23].
The implementation of these algorithms within the Cadp toolset will require the extension
of the Open/Cæsar environment with data-handling facilities.
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Unité de recherche INRIA Rhône-Alpes
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