
Efficient On-the-Fly Model-Checking for

Regular Alternation-Free Mu-Calculus

Radu Mateescu a,1, Mihaela Sighireanu b,2

aINRIA Rhône-Alpes / VASY, 655, avenue de l’Europe, F-38330 Montbonnot
Saint Martin, France

bUniversité Paris 7 / LIAFA, 2, place Jussieu, F-75251 Paris, France

Abstract

Model-checking is a successful technique for automatically verifying concurrent
finite-state systems. When designing a model-checker, a good compromise must
be made between the expressive power of the property description formalism, the
complexity of the model-checking problem, and the user-friendliness of the interface.
We present a temporal logic and an associated model-checking method that attempt
to fulfill these criteria. The logic is an extension of the alternation-free µ-calculus
with Actl-like action formulas and Pdl-like regular expressions, allowing a concise
and intuitive description of safety, liveness, and fairness properties over labeled tran-
sition systems. The model-checking method is based upon a succinct translation of
the verification problem into a boolean equation system, which is solved by means
of an efficient local algorithm having a good average complexity. The algorithm also
allows to generate full diagnostic information (examples and counterexamples) for
temporal formulas. This method is at the heart of the Evaluator 3.0 model-checker
that we implemented within the Cadp toolbox using the generic Open/Caesar
environment for on-the-fly verification.

Key words: Boolean equation system, Diagnostic, Labeled transition system,
Model-checking, Mu-calculus, Specification, Temporal logic, Verification

1 Introduction

Formal verification is essential in order to improve the reliability of complex,
critical applications such as communication protocols and distributed systems.

1 E-mail: Radu.Mateescu@inria.fr
2 E-mail: Mihaela.Sighireanu@liafa.jussieu.fr

Article published in Science of Computer Programming 46 (2003) 255–281

A state-of-the-art technique for automatic verification of concurrent finite-
state systems is called model-checking. In this approach, the application under
design is first translated into a finite labeled transition system (Lts) model,
on which the desired correctness properties (expressed e.g., as temporal logic
formulas) are verified using appropriate model-checking algorithms.

When designing and building a model-checker, several important criteria must
be considered. Firstly, the specification formalism should be sufficiently power-
ful to describe the main temporal property classes usually encountered (safety,
liveness, fairness). Among the wide range of temporal logics proposed in
the literature, the modal µ-calculus [32] is particularly powerful, subsuming
linear-time logics such as Ltl [37], branching-time logics such as Ctl [8] or
Actl [13], and regular logics such as Pdl [22] or Pdl-∆ [43].

Secondly, the underlying model-checking problem should have a sufficiently
low complexity, in order to offer reasonable response times on practical appli-
cations. Optimizing this is often contradictory with the first criterion above,
because the model-checking complexity of temporal logics usually increases
with their expressive power. Since the model-checking problem of the full
µ-calculus is exponential-time, various sublogics of lower complexity have been
studied. Among these, the alternation-free fragment [17] makes a good com-
promise between expressiveness (it allows e.g., direct encodings of Ctl and
Actl) and efficiency of the verification (there are several model-checking al-
gorithms with linear-time complexity [10,2,47,34]).

Thirdly, the model-checker interface should allow an intuitive, concise, and
flexible description of properties, in order to reduce the risk of specification
errors and to facilitate the verification task for non-expert users. Moreover,
the model-checker must offer enough feedback information to enable the de-
bugging of applications; in practice, this means to provide a precise diagnostic
in addition to a simple yes/no answer for a temporal property.

In this paper, we present a temporal logic and an associated model-checking
method attempting to fulfill the aforementioned criteria. The temporal logic
adopted is an extension of the alternation-free µ-calculus with Actl-like ac-
tion formulas and Pdl-like regular expressions, allowing a concise and intuitive
description of safety, liveness, and (some) fairness properties without sacrific-
ing the efficiency of verification. The method proposed for verifying a temporal
formula over an Lts has a linear-time worst-case complexity (both in Lts size
and formula size) and is based upon a succinct translation of the verification
problem into a boolean equation system (Bes). The method works on-the-fly,
by exploring the Lts in a demand-driven way during the verification of the
formula. The resulting Bes is solved using a linear-time local algorithm based
on a depth-first search of the corresponding boolean graph. Compared to clas-
sical linear-time local algorithms [2,47], our algorithm is simpler to understand

2

and has a good average complexity, achieved by a careful bookkeeping of the
information in the portion of boolean graph visited during the search. More-
over, our algorithm is easily connected to the diagnostic generation algorithms
given in [39], allowing to produce examples and counterexamples (subgraphs
of the Lts) fully explaining the truth values of the formulas. This verification
method has been used as a basis for the Evaluator 3.0 model-checker that
we developed within the Cadp toolbox [19] using the generic Open/Caesar
environment for on-the-fly verification [23].

The extension of temporal logics with regular operators has been extensively
studied in the literature. As regards linear-time logics, the first extension
of Ltl with operators defined by means of regular grammars was proposed
in [48], leading to a strictly more expressive logic called Etl. More elaborate
extensions of Ltl with various types of automata were studied in [49,46]. As
regards branching-time logics, extensions of Ctl and Ctl∗ with Büchi au-
tomata have been proposed in [27] and [44], respectively. Since we aim to be
adequate with action-based description formalisms like process algebras and
related languages like Lotos [31], in this paper we focused on branching-time,
action-based logics such as the modal µ-calculus. The idea of extending the
alternation-free µ-calculus with the regular modalities of Pdl has been put
forward in [6]. Although theoretically this extension does not increase the ex-
pressive power of the alternation-free µ-calculus (since this logic can encode
Pdl modalities [17]), in practice it significantly improves the readability of
formulas, by allowing in many cases to replace complex fixed point formulas
by regular modalities.

The paper is organized as follows. Section 2 defines the syntax and semantics
of the temporal logic proposed and illustrates its use by means of various ex-
amples of properties. Section 3 presents in detail the model-checking method.
Section 4 discusses the implementation of the model-checker within the Cadp
toolbox and presents several applications. Finally, Section 5 gives some con-
cluding remarks and directions for future work.

2 Regular alternation-free µ-calculus

The logic that we propose, called regular alternation-free µ-calculus, is an ex-
tension of the alternation-free fragment of the modal µ-calculus [32,17] with
action formulas as in Actl [13] and with regular expressions over action se-
quences as in Pdl [22]. It allows direct encodings of “pure” branching-time
logics like Actl or Ctl [8], as well as of regular logics like Pdl or Pdl-∆ [43].
We first define its syntax and semantics, and then we show its usefulness by
means of several examples of commonly encountered temporal properties.

3

2.1 Syntax and semantics

We consider as interpretation models labeled transition systems (Ltss), which
are suitable for action-based description formalisms such as process algebras.
An Lts is a tuple L = (S, A, T, s0), where S is a finite set of states, A is a
finite set of actions, T ⊆ S×A×S is the transition relation, and s0 ∈ S is the
initial state. A transition (s, a, s′) ∈ T , also noted s

a
→ s′, indicates that the

system can evolve from state s to state s′ by performing action a.

The regular alternation-free µ-calculus contains three types of formulas, namely
action formulas (noted α), regular formulas (noted β), and state formulas
(noted ϕ), as expressed by the grammar in Table 1. Action formulas are
built upon action names a ∈ A and the standard boolean operators. Derived
boolean connectives are defined as usual: F = a ∧ ¬a for some a, T = ¬F,
α1 ∨ α2 = ¬(¬α1 ∧ ¬α2), etc. Regular formulas are built upon action formu-
las and the standard regular expression operators, namely concatenation (.),
choice (|), and transitive-reflexive closure (∗). The empty sequence operator ε
and the transitive closure operator + are defined as ε = F∗ and β+ = β.β∗.
State formulas are built upon propositional variables Y ∈ Y and the standard
boolean operators, the possibility and necessity modal operators 〈β〉ϕ and
[β]ϕ, and the minimal and maximal fixed point operators µY.ϕ and νY.ϕ.
The µ and ν operators act as binders for Y variables in a way similar to quan-
tifiers in first-order logic. A formula ϕ without free occurrences of Y variables
is said closed.

Table 1
Syntax of regular alternation-free µ-calculus

α ::= a | ¬α | α1 ∧ α2

β ::= α | β1.β2 | β1|β2 | β∗

ϕ ::= F | T | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 〈β〉ϕ | [β] ϕ | Y | µY.ϕ | νY.ϕ

State formulas are assumed to be alternation-free [17], which intuitively means
that mutual recursion between minimal and maximal fixed point variables is
forbidden. For our logic, this syntactic condition is more subtle than for the
standard alternation-free µ-calculus because of the 〈β〉ϕ and [β] ϕ modalities
with ∗ operators inside β, which are equivalent to “hidden” minimal and
maximal fixed point formulas, respectively. A state formula is alternation-free
if for every fixed point subformula µY.ϕ, the variable Y has no free occurrences
inside a subformula of ϕ of the form νZ.ϕ′ or [β] ϕ′ where β contains a ∗
operator (a dual condition holds for maximal fixed point subformulas νY.ϕ).

The semantics of the logic is shown in Table 2. The interpretation [[α]] ⊆ A of
action formulas gives the set of Lts actions satisfying α. The interpretation
||β|| ⊆ S×S of regular formulas gives a binary relation between the source and

4

Table 2
Semantics of regular alternation-free µ-calculus

[[a]] = {a} ||α|| = {(s, s′) ∈ S × S | ∃a ∈ [[α]] .s
a
→ s′}

[[¬α]] = A \ [[α]] ||β1.β2|| = ||β1|| ◦ ||β2||

[[α1 ∧ α2]] = [[α1]] ∩ [[α2]] ||β1|β2|| = ||β1|| ∪ ||β2||

||β∗|| = ||β||∗

[[F]] ρ = ∅

[[T]] ρ = S

[[ϕ1 ∨ ϕ2]] ρ = [[ϕ1]] ρ ∪ [[ϕ2]] ρ

[[ϕ1 ∧ ϕ2]] ρ = [[ϕ1]] ρ ∩ [[ϕ2]] ρ

[[〈β〉ϕ]] ρ = {s ∈ S | ∃s′ ∈ S.(s, s′) ∈ ||β|| ∧ s′ ∈ [[ϕ]] ρ}

[[[β] ϕ]] ρ = {s ∈ S | ∀s′ ∈ S.(s, s′) ∈ ||β|| ⇒ s′ ∈ [[ϕ]] ρ}

[[Y]] ρ = ρ(Y)

[[µY.ϕ]] ρ =
⋂

{S′ ⊆ S | Φρ(S
′) ⊆ S′}

[[νY.ϕ]] ρ =
⋃

{S′ ⊆ S | S′ ⊆ Φρ(S
′)}

where Φρ : 2S → 2S , Φρ(S
′) = [[ϕ]] (ρ � [S′/Y])

target states of transition sequences satisfying β (◦, ∪, and ∗ denote respec-
tively composition, union, and transitive-reflexive closure of binary relations).
The α regular formula characterizes one-step sequences s

a
→ s′ such that a

satisfies α. The β1.β2 formula states that a sequence is the concatenation of
two sequences satisfying β1 and β2; β1|β2 states that a sequence can satisfy β1

or β2; and β∗ states that a sequence is the concatenation of (zero or more) se-
quences satisfying β. The interpretation [[ϕ]] ρ ⊆ S of state formulas, where the
propositional context ρ : Y → 2S assigns state sets to propositional variables,
gives the set of Lts states satisfying ϕ in the context of ρ (the � notation
denotes context overriding: (ρ1 � ρ2)(Y) is equal to ρ2(Y) if Y is assigned
by ρ2 and to ρ1(Y) otherwise). The modalities 〈β〉ϕ and [β]ϕ characterize
the states for which some (all) outgoing transition sequences satisfying β lead
to states satisfying ϕ. The formulas µY.ϕ and νY.ϕ denote the minimal and
maximal solutions (over 2S) of the fixed point equation Y = ϕ.

Let L = (S, A, T, s0) be an Lts. An action a ∈ A satisfies a formula α (written
a |= α) iff a ∈ [[α]]. A state s ∈ S satisfies a closed formula ϕ (written s |= ϕ)
iff s ∈ [[ϕ]]. L is a ϕ-model (written L |= ϕ) iff [[ϕ]] = S. Because an on-the-
fly model-checker only decides whether s0 |= ϕ, the reader should be aware
that verifying L |= ϕ amounts to check on-the-fly the formula [T∗] ϕ (which
is equivalent to the Actl formula AGTϕ or the Ctl formula AGϕ), stating
that ϕ holds on every state reachable from s0.

5

2.2 Examples

The regular alternation-free µ-calculus allows to express intuitively and con-
cisely various useful properties of Ltss. Table 3 shows some typical examples
of formulas. Usual safety properties, stating the absence of “bad” execution
sequences characterized by regular formulas β, can be encoded by a single box
modality [β] F. Basic liveness properties, stating the existence of “good” execu-
tion sequences characterized by β, can be encoded by a single diamond modal-
ity 〈β〉T; more complex properties, stating the existence of certain branching
patterns (e.g., inevitable reachability) can be expressed using minimal fixed
point operators. Some fairness properties, such as reachability over strongly
fair execution sequences (i.e., by exiting circuits after a finite number of steps),
can be encoded using nested box and diamond modalities.

Note that boolean connectives (particularly ¬) over actions improve the con-
ciseness of the formulas, allowing for instance to express the inevitable reach-
ability of an action without referring to other actions in the Lts. Also, reg-
ular operators improve readability: without these operators, the second live-
ness property given in Table 3 would be described by the equivalent formula
µY1.(〈Send〉µY2.(〈Recv〉T ∨ µY3.(〈Error〉Y2 ∨ 〈T〉Y3)) ∨ 〈T〉 Y1).

Table 3
Examples of properties in regular alternation-free µ-calculus

Class Property Formula

Safety Absence of Error actions [T∗.Error] F

Unreachability of a Recv action
before a Send

[(¬Send)∗.Recv] F

Mutual exclusion of sections de-
limited by Open and Close

[T∗.Open1.(¬Close1)∗.Open2] F

Liveness Deadlock freedom: absence of
states without successors

[T∗] 〈T〉T

Potential reachability of a Recv

after a Send (and some Errors)
〈T∗.Send.(T∗.Error)∗.Recv〉T

Inevitable reachability of a
Grant action after a Req

[T∗.Req] µY. 〈T〉T ∧ [¬Grant] Y

Fairness Livelock freedom: absence of
tau-circuits

[T∗]µY. [tau]Y

Fair reachability (by skipping
circuits) of a Recv after a Send

[T∗.Send.(¬Recv)∗] 〈T∗.Recv〉T

Other, more elaborate examples of generic temporal properties encoded in
regular alternation-free µ-calculus can be found in Section 4.

6

3 On-the-fly model-checking

We present in this section a method for on-the-fly model-checking of regular
alternation-free µ-calculus formulas over finite Ltss. The method works by
translating the verification problem into a boolean equation system, which is
simultaneously solved using an efficient local algorithm.

3.1 Translation into boolean equation systems

Consider an Lts L = (S, A, T, s0) and a closed formula ϕ in normal form
(i.e., in which all variables bound by fixed point operators are distinct). The
verification problem we are interested in consists of deciding whether s0 |= ϕ.
An efficient method used for the Actl logic [18] and for the alternation-free
µ-calculus [10,2] is to translate the problem into a boolean equation system
(Bes) [2,36], which is solved using specific local algorithms [2,47,45]. For the
regular alternation-free µ-calculus, one way to proceed could be first to trans-
late a state formula ϕ in plain alternation-free µ-calculus and then to apply the
above procedure. This would mean to encode the regular modalities of ϕ using
fixed point operators, e.g., by applying the Emerson-Lei translation from Pdl
to alternation-free µ-calculus [17]. This translation is succinct (it produces at
most a linear blow-up in the size of ϕ), but rather tedious to apply in practice
because it requires the identification and sharing of common subformulas. On
the other hand, since we seek to reduce the verification problem s0 |= ϕ to a
Bes resolution, it seems more natural to use an equation-based intermediate
representation instead of a formula-based one as in [17]. Moreover, this allows
to devise a simpler, yet succinct translation of the verification problem into a
Bes resolution without identifying common subformulas.

The translation that we propose consists of three steps: (a) translation of a
formula ϕ into a fixed point equation system containing Pdl modalities; (b)
simplification of the equation system by translating Pdl modalities into Hml
modalities; and (c) translation of the model-checking problem of the resulting
system over an Lts into a Bes resolution. The first two steps are purely
syntactic, i.e., they take into account only the temporal logic specification,
whereas the third one involves semantic information contained in the Lts.
The following three sections describe in detail each translation step.

3.1.1 Translation into PDL with recursion

The first step is to translate a regular alternation-free µ-calculus formula ϕ
into Pdl with recursion (PdlR), which is a generalization of the Hennessy-
Milner logic with recursion HmlR [33]. A PdlR specification (see Table 4)

7

consists of a propositional variable Y and a fixed point equation system with
propositional variables in left-hand sides and Pdl formulas in right-hand sides.
The equation system is given as a list M1.Mp of σ-blocks (. denotes con-
catenation), i.e., subsystems of equations with the same sign σ ∈ {µ, ν}. We
consider here only alternation-free PdlR specifications, in which every σ-
block Mj (for 1 ≤ j < p) depends only upon (has free variables that may
be bound in) Mj+1, . . . , Mp. The Y variable must be defined in one of the
σ-blocks M1, . . . , Mp (usually in M1). A PdlR specification is closed if all
variables occurring in it are bound in the equation system.

Table 4
Syntax and semantics of PdlR

Syntax of a PdlR specification:

P = (Y,M1.Mp)

where Mj = {Yj i

σj
= ϕj i}1≤i≤nj

for all 1 ≤ j ≤ p

Semantics w.r.t. an Lts (S,A, T, s0) and a context ρ : Y → 2S :

[[(Y,M1.Mp)]] ρ = (ρ � [[M1.Mp]] ρ)(Y)

[[Mj.Mp]] ρ = ([[Mj]] (ρ � [[Mj+1.Mp]] ρ)). [[Mj+1.Mp]] ρ

[[{Yj i

σj
= ϕj i

}1≤i≤nj
]] ρ = [σjΦjρ

/(Yj1, . . . , Yjnj
)]

where Φjρ
:(2S)nj→(2S)nj ,

Φjρ
(U1, ..., Unj) = ([[ϕi]] (ρ �

[

U1/Y1, ..., Unj/Ynj

]

))1≤i≤nj

A PdlR specification (Y, M1.Mp) interpreted over an Lts yields the
set of states associated to Y in the solution of M1.Mp. The solution of
M1.Mp is a propositional context in Y → 2S obtained by concatenating
the solutions of all σ-blocks Mj (1 ≤ j < p), each one being calculated in
the context of the subsystem Mj+1.Mp.The solution of a σ-block Mj with
nj variables is a context mapping Mj ’s variables to the σj fixed point of an
associated vectorial functional defined over (2S)nj . The semantics of an empty
system { } is the empty context [].

Before translating a closed regular alternation-free µ-calculus formula ϕ in
PdlR, we must convert ϕ into expanded form, by performing two actions:
(a) add a new µY (νY) operator, where Y is a “fresh” variable, in front of
every 〈β〉ϕ1 ([β]ϕ1) subformula of ϕ in which β contains a ∗ operator (recall
from Section 2.1 that these modalities are equivalent to “hidden” fixed point
operators); (b) if the resulting formula ϕ0 is not a fixed point one, add in front
of ϕ0 a σY0 operator, where σ ∈ {µ, ν} and Y0 is another “fresh” variable.

The translation of an expanded formula σY0.ϕ0 into a PdlR specification
(Tσ

1
(σY0.ϕ0),T

σ
2
(σY0.ϕ0)) is obtained using two syntactic functions T1 and

8

T2, defined inductively in Table 5. Tσ
1
ϕ yields a formula obtained from ϕ by

substituting each fixed point subformula by its corresponding variable. Tσ
2
ϕ

yields a system containing, for each fixed point subformula of ϕ, an equation
with the corresponding variable in the left-hand side and a Pdl formula in
the right-hand side. The first σ-block, denoted by hd(Tσ

2
ϕ), contains the equa-

tions of sign σ associated to the topmost fixed point subformulas of ϕ. The
remainder of the system, denoted by tl(Tσ

2
ϕ), contains the σ-blocks already

constructed from subformulas of ϕ. A new σ-block is created every time that a
fixed point subformula with a sign σ̃ dual to σ is encountered (µ̃ = ν, ν̃ = µ).

Table 5
Translation of state formulas in PdlR

ϕ T
σ
1
ϕ T

σ
2
ϕ

F F { }

T T { }

〈β〉ϕ1 〈β〉Tσ
1
ϕ1 T

σ
2
ϕ1

[β] ϕ1 [β]Tσ
1
ϕ1 T

σ
2
ϕ1

ϕ1 ∨ ϕ2 T
σ
1
ϕ1 ∨ T

σ
1
ϕ2 (hd(Tσ

2
ϕ1) ∪ hd(Tσ

2
ϕ2)).tl(T

σ
2
ϕ1).tl(T

σ
2
ϕ2)

ϕ1 ∧ ϕ2 T
σ
1
ϕ1 ∧ T

σ
1
ϕ2 (hd(Tσ

2
ϕ1) ∪ hd(Tσ

2
ϕ2)).tl(T

σ
2
ϕ1).tl(T

σ
2
ϕ2)

Y Y { }

σY.ϕ1 Y ({Y
σ
= T

σ
1
ϕ1} ∪ hd(Tσ

2
ϕ1)).tl(T

σ
2
ϕ1)

σ̃Y.ϕ1 Y { }.({Y
σ̃
= T

σ̃
1
ϕ1} ∪ hd(Tσ̃

2
ϕ1)).tl(T

σ̃
2
ϕ1)

We illustrate this translation by an example. Consider the following formula
(already written in expanded form), which states that every Send action in
the Lts will be eventually followed by a Recv:

ϕ = νY0. [T
∗.Send]µY1. 〈T〉T ∧ [¬Recv] Y1

The translation (Tν
1
ϕ,Tν

2
ϕ) yields the PdlR specification below:

(Y0, {Y0
ν
= [T∗.Send]Y1}.{Y1

µ
= 〈T〉T ∧ [¬Recv]Y1})

The functions T1 and T2 are similar to those proposed in [36, chap. 3] for
translating nested fixed point expressions into equation systems. Using Bekić’s
theorem [5], it can be shown that the translation defined by T1 and T2 pre-
serves the semantics of state formulas: [[σY.ϕ]] ρ = [[(Tσ

1
(σY.ϕ),Tσ

2
(σY.ϕ))]] ρ

for any context ρ : Y → 2S and σ ∈ {µ, ν}. Note also that the size of the PdlR
specification obtained is linear in the size of ϕ: there are as many equations in
the system as variables in (the expanded form of) ϕ and as many operators
in the right-hand sides as operators in ϕ. However, in order to obtain a suc-
cinct translation into Bess, we need simple PdlR specifications, i.e., in which

9

all Pdl formulas in right-hand sides contain at most one boolean or modal
operator. This is easily done by splitting the Pdl formulas and introducing
new variables, and may cause at most a linear blow-up in the size of the equa-
tion system. For the example above, we obtain the following equivalent simple
PdlR specification:

(Y0, {Y0
ν
= [T∗.Send]Y1}.{Y1

µ
= Y2 ∧ Y3, Y2

µ
= 〈T〉T, Y3

µ
= [¬Recv]Y1})

3.1.2 Translation into HML with recursion

The second step is to translate a simple PdlR specification into HmlR, which
amounts to eliminate all regular operators inside the modal formulas present
in the right-hand sides of the equation system. This translation is performed
by the (overloaded) syntactic functions R defined in Table 6. Every equation
containing a modality with a regular expression is translated into (one or
more) equations of the same sign that contain modalities with simpler regular
formulas (having less regular operators). This process continues recursively
until all resulting modalities in the right-hand sides belong to Hml, i.e., they
contain only pure action formulas.

Table 6
Translation of simple PdlR specifications in HmlR

R(Y,M1.Mp) = (Y,R(M1).R(Mp))

R({Yi
σ
= ϕi}1≤i≤n) =

⋃n
i=1 R(Yi

σ
= ϕi)

R(Y
σ
= 〈α〉ϕ) = {Y

σ
= 〈α〉ϕ}

R(Y
σ
= [α] ϕ) = {Y

σ
= [α] ϕ}

R(Y
σ
= 〈β1.β2〉ϕ) = R(Y

σ
= 〈β1〉Y ′) ∪ R(Y ′ σ

= 〈β2〉ϕ)

R(Y
σ
= [β1.β2]ϕ) = R(Y

σ
= [β1]Y

′) ∪ R(Y ′ σ
= [β2] ϕ)

R(Y
σ
= 〈β1|β2〉ϕ) = {Y

σ
= Y ′ ∨ Y ′′} ∪ R(Y ′ σ

= 〈β1〉ϕ) ∪R(Y ′′ σ
= 〈β2〉ϕ)

R(Y
σ
= [β1|β2]ϕ) = {Y

σ
= Y ′ ∧ Y ′′} ∪ R(Y ′ σ

= [β1]ϕ) ∪ R(Y ′′ σ
= [β2]ϕ)

R(Y
σ
= 〈β∗〉ϕ) = {Y

σ
= ϕ ∨ Y ′} ∪ R(Y ′ σ

= 〈β〉Y)

R(Y
σ
= [β∗]ϕ) = {Y

σ
= ϕ ∧ Y ′} ∪ R(Y ′ σ

= [β] Y)

For the simple PdlR specification obtained in the previous example, the trans-
lation R yields the following (simple) HmlR specification:

(Y0, {Y0
ν
= Y4 ∧ Y5, Y4

ν
= [Send] Y1, Y5

ν
= [T] Y0}.

{Y1
µ
= Y2 ∧ Y3, Y2

µ
= 〈T〉T, Y3

µ
= [¬Recv] Y1})

10

Intuitively, the function R applies (by taking care to keep a single operator
in the right-hand sides of the equations) the well-known equivalences on Pdl
formulas [22,17]: 〈β1.β2〉ϕ = 〈β1〉 〈β2〉ϕ, 〈β1|β2〉ϕ = 〈β1〉ϕ ∨ 〈β2〉ϕ, 〈β∗〉ϕ =
ϕ∨〈β〉 〈β∗〉ϕ (and their dual counterparts for box modalities). Therefore, the
translation R preserves the semantics of specifications: [[(Y, M1.Mp)]] ρ =
[[R(Y, M1.Mp)]] ρ for any context ρ : Y → 2S. Moreover, R may cause at
most a linear blow-up in the size of the equation system.

3.1.3 Translation of the model-checking problem into BESs

The third step is to translate the verification problem of a simple HmlR spec-
ification on an Lts into the local resolution of an alternation-free boolean
equation system (Bes). A Bes (see Table 7) consists of a boolean variable
x and a fixed point equation system B1.Bp with boolean variables in
left-hand sides and boolean formulas in right-hand sides. For simplicity, we
consider only pure disjunctive or conjunctive boolean formulas, empty dis-
junctions and conjunctions being equivalent to F and T, respectively. One can
easily transform a Bes with arbitrary formulas into this simple form by intro-
ducing new variables and equations associated to nested subformulas, at the
price of at most a linear blow-up in the size of the system [3,2,47]. The seman-
tics of a Bes is defined in a way similar to a PdlR specification, except that
it produces the boolean value associated to x in the solution of B1.Bp.

Table 7
Syntax and semantics of boolean equation systems

Syntax of a Bes:

E = (x,B1.Bp)

where Bj = {xj i

σj
= opji

Xj i
}1≤i≤nj

, xj i
∈ X , opj i

∈ {∨,∧}, and Xj i
⊆ X

for all 1 ≤ j ≤ p, 1 ≤ i ≤ nj

Semantics w.r.t. Bool = {F,T} and a context δ : X → Bool:

[[(x,B1.Bp)]] δ = (δ � [[B1.Bp]] δ)(x)

[[Bj.Bp]] δ = ([[Bj]] (δ � [[Bj+1.Bp]] δ)). [[Bj+1.Bp]] δ

[[{xj i

σj
= opj i

Xj i}1≤i≤nj
]] δ = [σjΨjδ/(xj1, . . . , xjnj

)]

where [[op{x1, ..., xk}]] δ = δ(x1) op . . . op δ(xk) and Ψjδ
:Bool

nj→Bool
nj ,

Ψjδ
(b1, ..., bnj) = ([[opji

Xji
]](δ �

[

b1/x1, ..., bnj/xnj

]

))1≤i≤nj

The local model-checking of a HmlR specification (Y, M1.Mp) on the
initial state s0 of an Lts L = (S, A, T, s0) means to decide whether the set of
states denoted by Y contains s0. This is translated into a Bes by the semantic
function B defined inductively in Table 8. To every propositional variable Y

11

in the left-hand side of an equation and to every state s ∈ S is associated a
boolean variable Ys encoding the fact that s belongs to the set of states denoted
by Y . To every Hml formula ϕ in a right-hand side and to every state s is
associated a boolean formula B(ϕ, s) encoding the fact that s satisfies ϕ.

Table 8
Translation of simple HmlR specifications into Bess

B(Y,M1.Mp) = (Ys0
,B(M1).B(Mp))

B({Yi
σ
= ϕi}1≤i≤n) = {Yi,s

σ
= B(ϕi, s)}1≤i≤n,s∈S

B(F, s) = F

B(T, s) = T

B(ϕ1 ∨ ϕ2, s) = B(ϕ1, s) ∨ B(ϕ2, s)

B(ϕ1 ∧ ϕ2, s) = B(ϕ1, s) ∧ B(ϕ2, s)

B(〈α〉ϕ, s) =
∨

{s
a
→s′ | a|=α}

B(ϕ, s′)

B([α] ϕ, s) =
∧

{s
a
→s′ | a|=α}

B(ϕ, s′)

B(Yi, s) = Yi,s

The B function is similar to other translations from modal equation systems
to Bess [3,10,2,47,36]. B produces a Bes whose size is linear in the size of
the HmlR specification (which in turn is linear in the size of the initial state
formula) and the size of the Lts (number of states and transitions). It is
important to note that during the translation of modal formulas (see Table 8),
the transitions in the Lts are traversed forwards, which enables to construct
the Lts in a demand-driven way during the verification.

3.2 Local resolution of BESs

The final step of the model-checking procedure is the local resolution of the
alternation-free Bes obtained by translating the local verification of a formula
ϕ on an Lts (S, A, T, s0). As we saw in Section 3.1, the verification of a fixed
point formula σY.ϕ on the initial state s0 amounts to compute the value of
the boolean variable Ys0

contained in the first σ-block of the resulting Bes.

For simplicity, we consider here the resolution of Bess containing a single
µ-block (the solving routine for ν-blocks is completely dual). Multiple-block
alternation-free Bess can be handled by associating to each σ-block in the
Bes its corresponding solving routine. Every time a variable xj bound in a
σ-block Bj is required in another block Bi that depends on Bj , the solving

12

routine of Bj is called to compute xj. The computation of xj may require
in turn the values of other variables that are free in Bj and defined in other
blocks, leading to calls of the routines corresponding to those blocks, and so
on. This process will eventually terminate, because the Bes being alternation-
free, there are no cyclic dependencies between blocks. During the resolution,
the same variable of a block may be required several times in other blocks;
therefore, to keep a linear-time worst-case complexity, the computation results
must be persistent between subsequent calls of the same solving routine 3 .

3.2.1 Extended Boolean Graphs

Our resolution algorithm is easier to develop using a representation of Bess as
extended boolean graphs [39], which are a slight generalization of the boolean
graphs proposed in [2]. An extended boolean graph (Ebg) is a tuple G =
(V, E, L, F), where: V is the set of vertices; E ⊆ V × V is the set of edges;
L : V → {∨,∧} is the vertex labeling; and F ⊆ V is the frontier of G.
Intuitively, the frontier of an Ebg G contains the only vertices of G at which
new outgoing edges can be added when G is embedded in another Ebg. The
set of successors of a vertex x ∈ V is noted E(x).

A closed Bes can be represented by an Ebg G = (V, E, L, ∅), where V denotes
the set of boolean variables, E denotes the dependencies between variables,
and L labels the vertices as disjunctive or conjunctive according to the opera-
tor in the corresponding equation of the Bes (the frontier set is empty since G
is not meant to be embedded in another graph). Figure 1 shows a closed Bes
and its associated Ebg, where black (white) vertices denote variables that are
true (false) in the Bes solution. The grey area delimits a subgraph containing
the vertices {x0, x3, x4, x5, x8} and having the frontier {x0, x5, x8}.

∧ ∨

∨
∨9∨

∧

∧

4 532

71

∧
x8

µ

= x0 ∨ x7

x6

µ

= x4 ∧ x6

x9

µ

= x7 ∧ x8

x7

µ

= F

x5

µ

= x3 ∨ x6

x4

µ

= x3 ∧ x5

x3

µ

= T

x2

µ

= x1 ∧ x3

x1

µ

= x2 ∧ x3

x0

µ

= x1 ∨ x4 ∨ x9

∧

∧

6

0 8

Fig. 1. A Bes, its associated Ebg, and a subgraph

Every Ebg G = (V, E, L, F) induces a Kripke structure G = (V, E, L). Such
a Kripke structure is represented in an implicit manner when the “successor”
function E(x) can be computed for every vertex x ∈ V without knowing the
whole set V (this is the case for the successor function implemented by the
translation B given in Table 8).

3 This resolution scheme could be naturally implemented using coroutines.

13

Let P∨ and P∧ be two atomic propositions denoting the ∨- and ∧-vertices of a
Kripke structure G induced by a Bes. The Bes solution can be characterized
using a µ-calculus formula, called example formula, interpreted over G [39]:

Ex = µY.(P∨ ∧ 〈T〉 Y) ∨ (P∧ ∧ [T] Y)

A variable x of the Bes is true iff the vertex x satisfies Ex in G, noted
x |=G Ex. Intuitively, Ex expresses that some (all) successors of a ∨-vertex
(∧-vertex) lead, in a finite number of steps, to vertices corresponding to T
variables of the Bes (these are ∧-vertices without successors, characterized
by the formula P∧ ∧ [T] F). For the Ebg in Figure 1, it is easy to check that
the set {x0, x3, x4, x5, x8} of black vertices is equal to the interpretation of Ex
on G, noted [[Ex]]

G
. Thus, the local resolution of a Bes amounts to the local

model-checking of the Ex formula on the corresponding Kripke structure.

Consider an Ebg G = (V, E, L, ∅), its associated Kripke structure G =
(V, E, L), and x ∈ V . The local model-checking of Ex on x does not always
require to entirely explore G (e.g., on Figure 1, one could explore only the
outlined subgraph in order to check Ex on x0), but rather to explore a part
G′ of G such that the value of x can be computed based only on the informa-
tion in G′. Formally, this means to compute a subgraph G′ = (V ′, E ′, L′, F ′)
of G that contains x and is solution-closed [39], i.e., the satisfaction of Ex by
x is the same in G′ and G: [[Ex]]

G′ = [[Ex]]
G
∩ V ′. A subgraph G′ is solution-

closed iff the satisfaction of Ex on its frontier F ′ can be decided using only
the information in G′: F ′ ⊆ [[(P∨ ∧Ex) ∨ (P∧ ∧ ¬Ex)]]

G′. For the Ebg on
Figure 1, it is easy to see that the outlined subgraph is solution-closed: its
frontier {x0, x5, x8} contains only ∨-vertices satisfying Ex.

3.2.2 Local resolution algorithm

The Solve algorithm that we propose (see Figure 2) takes as input an implicit
Kripke structure G = (V, E, L) induced by an Ebg G and a vertex x ∈ V
on which the Ex formula must be checked. Starting from x, Solve performs
a depth-first search (Dfs) of G and simultaneously checks Ex on all visited
vertices, which are stored in a set A ⊆ V . Upon termination, the subgraph
GA of G containing all vertices in A and all edges traversed during the Dfs is
solution-closed ([[Ex]]

GA
= [[Ex]]

G
∩ A), meaning that the truth value of Ex

on x computed in GA is the same as the value computed in G.

Solve is similar in spirit with other graph-based local resolution algorithms
like those of Andersen [2] and Vergauwen-Lewi [47]. However, since it imple-
ments the Dfs iteratively, using an explicit stack and two nested while-loops,
we believe that Solve is easier to understand than e.g., Andersen’s algorithm,
which uses a while-loop and two mutually recursive functions.

14

procedure Solve (x, (V, E, L)) is
var A, B : 2V ; d : V → 2V ; c, p : V → Nat;

y, z, u, w : V ; stack : V ∗;
c(x) := if L(x) = ∧ then |E(x)| else 1;
p(x) := 0; d(x) := ∅;
A := {x}; stack := push(x, nil);
while stack 6= nil do

y := top(stack);
if c(y) = 0 then

if d(y) 6= ∅ then
B := {y};
while B 6= ∅ do

let u ∈ B; B := B \ {u};
forall w ∈ d(u) do

if c(w) > 0 then
c(w) := c(w) − 1;
if c(w) = 0 then

B := B ∪ {w}
endif

endif
end;
d(u) := ∅

end
else

stack := pop(stack)
endif

elsif p(y) < |E(y)| then
z := (E(y))p(y); p(y) := p(y) + 1;
if z ∈ A then

d(z) := d(z) ∪ {y};
if c(z) = 0 then

stack := push(z, stack)
endif

else
c(z) := if L(z) = ∧ then |E(z)| else 1;
p(z) := 0; d(z) := {y};
A := A ∪ {z}; stack := push(z, stack)

endif
else

stack := pop(stack)
endif

end
end

Fig. 2. Graph-based local resolution of a Bes with sign µ

15

The successors E(y) of every vertex y ∈ V are assumed to be ordered from
(E(y))0 to (E(y))|E(y)|−1. For every vertex y ∈ A, a counter p(y) denotes the
current successor of y that must be explored. Every time a vertex y such that
y |=G Ex is encountered on top of the stack (this can be either a “new” ∧-sink
vertex, or an already visited vertex), the Ex formula is reevaluated in GA.

This reevaluation is carried out by the inner while-loop by keeping a work set
B ⊆ A containing the vertices u such that u |=GA

Ex and Ex has not yet been
reevaluated on the nodes that depend upon u. To keep track of these backward
dependencies, to each vertex y ∈ A we associate the set d(y) ⊆ A containing
the currently visited predecessor vertices of y (these vertices directly depend
upon y and Ex must be reevaluated on them when Ex becomes true on
y). To efficiently perform the reevaluation of Ex, we use the counter-based
technique introduced in [3,10]: to every vertex y ∈ A, we associate a counter
c(y) denoting the least number of successors of y that currently have to satisfy
Ex in order to ensure y |=GA

Ex (c(y) is initialized to 1 for ∨-vertices and to
|E(y)| for ∧-vertices). Thus, for every y ∈ A, y |=GA

Ex if c(y) = 0.

Figure 3 shows the result of executing Solve for the variable x0 and the
Ebg in Figure 1 (during the Dfs, the successors of each vertex are visited
as if the right-hand side of the corresponding equation was evaluated from
left to right). The subgraph GA computed by Solve, containing the vertices
{x0, x1, x2, x3, x4, x5}, is solution-closed, because its frontier {x0, x5} contains
only ∨-vertices satisfying Ex in GA.

4

∧

532

71 0

∧

∨ 9

∨∧

∨

6∧

∧

∧

8∨

Fig. 3. A solution-closed subgraph computed by Solve

During the execution of Solve, the Dfs stack repeatedly takes one of the three
forms outlined on Figure 4. In form a), all vertices y pushed on the stack are
“unstable” (c(y) > 0), meaning that the truth of Ex on y depends on the
portion V \A of G that has not been explored yet: so, the Dfs must continue.
In form b), a vertex y that is “stable” (c(y) = 0) has been encountered and
pushed on top of the stack, meaning that some vertices depending on y may
also become stable: therefore, Ex must be reevaluated in GA. In form c),
this reevaluation has been finished, possibly leading to stabilization of some
vertices in A: then, all stable vertices present on the stack will be popped,
since no further information is needed for them. The Dfs properties ensure

16

that all stable vertices on the stack are adjacent to the top 4 , and thus after
they are popped the stack takes again the form a). A proof of the partial
correctness of the Solve algorithm can be found in Annex A.

a) b) c)

A A A

x x x

c > 0

c = 0

c > 0
c > 0

c = 0

Fig. 4. Structure of the Dfs stack during the execution of Solve

Solve has a linear-time worst-case complexity, since every edge in GA is
traversed at most twice: forwards (when its target vertex is visited by the
Dfs) and backwards (when Ex is reevaluated on its source vertex). Moreover,
Solve has also a good average-case complexity, improving on Andersen and
Vergauwen-Lewi’s algorithms, since it stops as soon as x |=GA

Ex and explores
only vertices that are likely to influence x. Also, backward dependencies d(u) of
stable vertices u are freed during the inner while-loop, thus reducing memory
consumption.

3.2.3 Diagnostic generation

Practical applications of Bes resolution, such as temporal logic model-
checking, often require a more detailed feedback than a simple yes/no answer.
To allow an efficient debugging of the temporal formulas, it is desirable to
have also diagnostic information explaining the truth value obtained for the
boolean variable of interest. Both positive diagnostics (examples) and negative
diagnostics (counterexamples) are needed in order to have a full explanation
of a temporal formula.

Let G = (V, E, L, F) be an Ebg and x ∈ V the variable of interest. A diagnos-
tic for x is a solution-closed subgraph G′ of G that contains x and is minimal
w.r.t. subgraph inclusion, i.e., it contains the minimal amount of information
needed in order to decide the satisfaction of Ex by x. A diagnostic G′ is called
example if x |=G′ Ex and counterexample if x 6|=G′ Ex.

The Solve algorithm does not directly produce diagnostics; however, it can
be easily coupled with the diagnostic generation algorithms proposed in [39].

4 The reevaluation of Ex, which involves a backwards traversal of edges in GA, can
affect only those vertices in the Dfs tree that are descendants of stable vertices
present on the stack, outlined by the grey portion on Figure 4 c).

17

These algorithms take as input a solution-closed subgraph (in which the se-
mantics of Ex has been already computed) and construct a diagnostic for
a given variable by performing efficient traversals of the subgraph. Figure 5
shows an example for the variable x0 obtained by traversing again the solution-
closed subgraph on Figure 3 previously computed by Solve.

∧

4 532

71 0 9∨

∨∧

∨

6∧

∧

∧

8∨

∧

Fig. 5. An example for x0

Since these diagnostic generation algorithms have a linear complexity in the
size of the solution-closed subgraph they are executed upon [39], they affect
neither the worst-case, nor the average-case complexity of Solve.

4 Implementation and applications

We used the model-checking method presented in Section 3 as a basis for de-
veloping the Evaluator 3.0 model-checker within the Cadp toolbox [19].
The tool has been constructed using the Open/Caesar environment [23],
which provides a generic Api for on-the-fly exploration of (labeled) transi-
tion systems. As a consequence, Evaluator 3.0 can be used in conjunction
with every compiler that is Open/Caesar–compliant (i.e., that implements
a translation from its input language to the Open/Caesar Api), and par-
ticularly with the Caesar compiler [24] for Lotos [31].

4.1 Additional operators and property patterns

Practical experience in using model-checking has shown the need for abstrac-
tion mechanisms enabling the specifier to define and use his own temporal
operators in addition to those predefined in the model-checker. The input lan-
guage of Evaluator 3.0 offers a macro-expansion mechanism for defining
parameterized formulas and an inclusion mechanism for grouping these defi-
nitions into separate libraries that can be reused in temporal specifications.

An immediate application was to build libraries for particular logics like Ctl
or Actl by translating their temporal operators as fixed point formulas in
regular alternation-free µ-calculus. For example, the E[ϕ1α1

Uα2
ϕ2] operator of

18

Actl (stating the existence of a sequence s1
a1→ s2

a2→ · · · sk
ak→ sk+1 such that

si |= ϕ1 for all 1 ≤ i ≤ k, aj |= α1 for all 1 ≤ j < k, ak |= α2, and sk+1 |= ϕ2)
can be encoded as a macro EU A A(ϕ1, α1, α2, ϕ2) = µY.(ϕ1 ∧ (〈α2〉ϕ2 ∨
〈α1〉 Y)). Of course, these particular operators can be freely mixed with the
built-in ones in temporal formulas, thus providing added flexibility to advanced
users. Another source of flexibility is obtained by using wildcards (regular
expressions on character strings) as atomic predicates in action formulas. If
actions of the Lts are represented as character strings (as it is currently the
case with the Open/Caesar Api), this allows to specify a set of actions
using a single predicate. For example, the wildcard ’SEND.*’ represents all
Lts actions denoting the communication of 0 or more values on a gate SEND.

Table 9
Property patterns in regular alternation-free µ-calculus

Pattern Scope Formula

Absence Globally [T∗.α1] F

(α1 is false) Before α2 [(¬α2)
∗.α1.(¬α2)

∗.α2] F

After α2 [(¬α2)
∗.α2.T

∗.α1] F

Between α2 and α3 [T∗.α2.(¬α3)
∗.α1.(¬α3)

∗.α3] F

After α2 until α3 [T∗.α2.(¬α3)
∗.α1] F

Existence Globally µY. 〈T〉T ∧ [¬α1]Y

(α1 becomes true) Before α2 [(¬α1)
∗.α2] F

After α2 [(¬α2)
∗.α2] µY. 〈T〉T ∧ [¬α1] Y

Between α2 and α3 [T∗.α2.(¬(α1 ∨ α3))
∗.α3] F

After α2 until α3 [T∗.α2] µY. 〈T〉T ∧ [α3] F ∧ [¬α1]Y

Universality Globally [T∗.¬α1] F

(α1 is true) Before α2 [(¬α2)
∗.¬(α1 ∨ α2).(¬α2)

∗.α2] F

After α2 [(¬α2)
∗.α2.T

∗.¬α1] F

Between α2 and α3 [T∗.α2.(¬α3)
∗.¬(α1 ∨ α3).(¬α3)

∗.α3] F

After α2 until α3 [T∗.α2.(¬α3)
∗.¬(α1 ∨ α3)] F

In practice, it appears that in many cases, temporal properties tend to be-
long to particular classes of high-level “property patterns”, such as absence,
existence, universality, precedence, and response. These patterns have been
identified in [16] after an important statistical study concerning over 500 ap-
plications of temporal logic model-checking. The knowledge embedded in this
pattern system is important for both expert and non-expert users, since it
reduces the risk of specification errors and facilitates the learning of tem-
poral logic-based formalisms. These property patterns have been expressed

19

in [16] using several specification formalisms (Ctl, Ltl, regular expressions,
etc.) but none of them was directly applicable to description languages with
action-based semantics such as process algebras. Therefore, we developed in
Evaluator 3.0 a library of parameterized formulas implementing the prop-
erty patterns in regular alternation-free µ-calculus. It turned out that many
of them could be expressed in a much more concise and readable form than
with the other formalisms used in [16]. Table 9 shows the first three patterns
contained in the library.

Besides facilitating the user task at the specification level, it is also important
to offer enough feedback on the verification results to allow an easy debugging
of the applications. This is achieved through the diagnostic generation facili-
ties provided by Evaluator 3.0, which allows to produce examples and coun-
terexamples explaining the truth value of regular alternation-free µ-calculus
formulas. As a side effect, this enables the user to get full diagnostics for
particular temporal logics implemented as libraries, such as Ctl and Actl.
Evaluator 3.0 can be also used to search regular execution sequences in
Ltss by checking basic Pdl modalities: a transition sequence starting at the
initial state and satisfying a regular formula β can be obtained either as an
example for the 〈β〉T formula, or as a counterexample for the [β] F formula.

4.2 Experimental results

We illustrate below the behaviour of Evaluator 3.0 by means of a simple
benchmark example: the Alternating Bit Protocol (Abp for short) described
in Lotos. The protocol specification (available in the Cadp release) contains
four parallel processes: a sender entity, a receiver entity, and two channels
modeling the communication of messages and acknowledgements, respectively.
The sender accepts messages from a local user through a gate Put and the
receiver delivers the messages to a remote user through a gate Get. Messages
are represented by natural numbers between 0 and n, where n is a parameter
of the specification.

We formulated and verified several safety, liveness, and fairness properties of
the Abp (see Table 10). For each property, the table gives its informal meaning,
its corresponding regular alternation-free µ-calculus formula, and its truth
value on the Lotos specification. Action predicates Puti and Geti denote the
communication of message i on gates Put and Get, respectively. Predicates
Putany and Getany (abbreviations for ’Put.*’ and ’Get.*’ wildcards) denote
the communication of an arbitrary message on gate Put and Get, respectively.
Each property containing an occurrence of Puti and/or Geti has been checked
for all values of i between 0 and n.

20

Table 10
Properties of the Alternating Bit Protocol

No. Property Formula Value

P1 Initially, a Put will be eventu-
ally reached

µY. 〈T〉T ∧ [¬Putany] Y F

P2 Initially, a Put will be fairly
reached

[(¬Putany)∗] 〈T∗.Putany〉T T

P3 Initially, no Get is reached be-
fore the corresponding Put

[(¬Puti)
∗.Geti] F T

P4 Between two consecutive Put,
there is a corresponding Get

[T∗.Puti.(¬Geti)
∗.Putany] F T

P5 Between two consecutive Get,
there is a corresponding Put

[T∗.Getany .(¬Puti)
∗.Geti] F T

P6 After a Put, the correspond-
ing Get is eventually reachable

[T∗.Puti]µY. 〈T〉T ∧ [¬Geti]Y F

P7 After a Put, the correspond-
ing Get is fairly reachable

[T∗.Puti.(¬Geti)
∗] 〈T∗.Geti〉T T

Properties P1 and P6, which express the inevitable reachability of Put and Get

actions, are false because of the livelocks (τ -circuits) present in the Lotos de-
scription. These two properties can be reformulated — as P2 and P7, respec-
tively — in order to state the inevitable reachability only over fair execution
sequences (i.e., by skipping circuits).

We performed several experiments with Evaluator 3.0, by checking all prop-
erties on the Abp specification for different values of n. For comparison, we
also used the previous version Evaluator 2.0, which accepts as input plain
alternation-free µ-calculus formulas and implements the Fernandez-Mounier
local boolean resolution algorithm [21]. All experiments have been performed
on a Sparc Ultra 1 machine with 256 Mbytes of memory.

The results are shown in Table 11. For each experiment, the table gives the
number of states of the Lts, the time (in minutes) required for the local model-
checking of each property, and the percentage of states explored by each tool.
The Solve algorithm performs uniformly better than the Fernandez-Mounier
algorithm, the time needed being at least 50% smaller and the percentage of
Lts states explored being always smaller or equal. For properties P1, P2, and
P6, which require to explore only a very small part of the Lts in order to
decide their truth value, Evaluator 3.0 stops almost instantaneously (less
than a second) in all cases, while Evaluator 2.0 takes up to one hour for
n = 100.

These results can be explained by a few observations. For invariant properties

21

that are true on the specification (e.g., P4, P5, and P7), the speed-up obtained
is roughly constant, since in this case both algorithms entirely explore the
underlying boolean graph in order to decide the validity of the formulas. For
properties that are either false (e.g., P1 and P6), or involve only a fragment
of the Lts (e.g., P2), the significant speed-ups obtained are mainly due to the
different ways in which the two algorithms handle the portion of the boolean
graph already explored. The Solve algorithm performs a single Dfs traversal
of the boolean graph, storing the values of the variables as soon as they have
been computed, whereas the Fernandez-Mounier algorithm avoids as much as
possible to store intermediate results, and therefore may perform multiple Dfs
traversals of the graph when the values of some variables need to be reused
during the computation. It is worth noticing that, since both algorithms are
based upon Dfs traversals of the boolean graph (which induce Dfs traversals
of the Lts), changes in the order in which successor states are visited may
strongly influence the time and memory required for the verification.

Table 11
Local model-checking statistics. a) Evaluator 3.0 (Solve algorithm); b)
Evaluator 2.0 (Fernandez-Mounier algorithm)

n = 40 n = 60 n = 80 n = 100

No. |S| = 153 200 |S| = 340 200 |S| = 600 800 |S| = 935 000

time exp.% time exp.% time exp.% time exp.%

P1 a 0′′ 0.00 0′′ 0.00 0′′ 0.00 0′′ 0.00

b 1′42′′ 96.4 4′49′′ 97.6 10′04′′ 98.2 18′23′′ 98.5

P2 a 0′′ 0.00 0′′ 0.00 0′′ 0.00 0′′ 0.00

b 5′11′′ 100 14′29′′ 100 30′59′′ 100 56′28′′ 100

P3 a 35′′ 95.7 1′20′′ 97.1 2′28′′ 97.8 4′03′′ 98.2

b 1′09′′ 95.7 2′53′′ 97.1 5′49′′ 97.8 9′57′′ 98.2

P4 a 37′′ 100 1′25′′ 100 2′35′′ 100 4′13′′ 100

b 1′14′′ 100 3′05′′ 100 6′05′′ 100 10′17′′ 100

P5 a 1′15′′ 100 2′58′′ 100 5′48′′ 100 10′07′′ 100

b 3′01′′ 100 8′20′′ 100 17′40′′ 100 31′53′′ 100

P6 a 0′′ 0.00 0′′ 0.00 0′′ 0.00 0′′ 0.00

b 3′34′′ 100 9′16′′ 100 18′54′′ 100 33′26′′ 100

P7 a 38′′ 100 1′26′′ 100 2′36′′ 100 4′15′′ 100

b 1′18′′ 100 3′06′′ 100 6′08′′ 100 10′23′′ 100

22

4.3 Further applications

In order to compare the performance of Evaluator 3.0 with other model-
checking tools, we carried out the verification of a communication protocol, the
i-Protocol, which was proposed in [15] as a benchmark example for several
widely-used model-checkers: Cospan [28], Murϕ [14], Smv [9], Spin [29],
and Xmc [40]. The i-Protocol is an optimized sliding window protocol,
contained in the Gnu Uucp package (available from the Free Software Foun-
dation), designed to ensure ordered reliable duplex communication between
two sites. At its lower interface, the i-Protocol assumes an unreliable (lossy)
packet-based Fifo connection. A problem with this protocol, which occurred
when transmitting large data files over serial lines, was that, under certain
message-loss conditions, the protocol will enter a livelock state from which
no more data packet exchange can occur, ending up with a connection clos-
ing. The purpose of the benchmark proposed in [15] was to test the ability of
different model-checkers to detect a livelock error in a real-life protocol.

Based on a description of the i-Protocol in Vpl (Value Passing Language)
provided in [15], we developed a Lotos specification of the protocol. It is
worth noticing that, since Vpl is an imperative language and Lotos is a
functional one, the specification obtained is not as suitable as it could be for
the Caesar compiler. We encoded the desired liveness property (which is
very similar to the property P6 shown in Table 10) as a regular alternation-
free µ-calculus formula [T∗.Send] µY. 〈T〉T∧ [¬Recv] Y stating that a message
sent will be eventually received.

We checked this formula on the Lotos specification by considering the same
protocol configuration used in [15] (sliding window of size 2). The verification
time needed by Evaluator 3.0 (about one second on a Sparc Ultra 1 machine
with 256 Mbytes of memory) compares favourably with the time reported for
Xmc (about five seconds on a Sgi Ip25 Challenge machine with 1.9 Gbytes
of memory), which was rated best on this example among the five model-
checkers considered in [15]. The diagnostic generated by Evaluator 3.0 was
a small counterexample sequence (15 transitions) containing a Send action
and leading to a cycle without reaching a Recv action.

Evaluator 3.0 has been also used for the verification of other industrial
applications: the Splice software coordination architecture for building dis-
tributed control systems [11,12], the Gprs mobile data packet radio service for
Gsm [35], an air traffic control system [41], a steam-boiler system [7], a truck
lifting system [26], a distributed locker system [4], and a dynamic reconfigu-
ration protocol for agent-based applications [1]. These experiments assessed
the performance of the Solve algorithm and the usefulness of the diagnostic
generation features.

23

5 Conclusion and future work

We presented an efficient method for on-the-fly model-checking of regular
alternation-free µ-calculus formulas over finite labeled transition systems. The
method is based on a succinct reduction of the verification problem to a
boolean equation system, which is solved using an efficient local algorithm.
Used in conjunction with specialized diagnostic generation algorithms [39],
the method also allows to produce examples and counterexamples fully ex-
plaining the truth values of the formulas. The method has been implemented
in the model-checker Evaluator 3.0 that we developed as part of the Cadp
protocol engineering toolbox [19] using the Open/Caesar environment [23].

The input language of Evaluator 3.0 allows to construct reusable libraries
containing new temporal logic operators expressed in regular alternation-free
µ-calculus. At the present time, we developed libraries encoding the operators
of Ctl [8], Actl [13], and a collection of generic property patterns proposed
in [16] intended to facilitate the temporal logic specification activity.

Besides the applications cited in Sections 4.2 and 4.3, Evaluator 3.0 has
been successfully experimented on various specifications of communication
protocols and distributed systems described in Lotos, which are available in
the Cadp distribution. The diagnostic generation features and the possibility
of defining separate libraries of temporal operators appeared to be extremely
useful in practice (in particular, for teaching purposes). Moreover, a connection
between Evaluator 3.0 and the Orccad environment for robot controller
design [42], including a graphical interface for the property pattern system, is
currently under development.

In the future, we plan to apply Evaluator 3.0 also for bisimulation/preorder
checking, by using the characteristic formula approach [30] that allows to com-
pare two labeled transition systems M1 and M2 by constructing a character-
istic formula of M1 and verifying it on M2. Also, the diagnostic generation
features could be useful in the framework of test generation based on verifica-
tion [20]. Using again the characteristic formula approach, test purposes could
be described as temporal formulas and the corresponding test cases would be
obtained as diagnostics for these formulas.

Finally, we plan to extend the logic of Evaluator 3.0 with data variables,
which allow to reason more naturally about systems described in value-passing
process algebras such as µCrl [25] and full Lotos [31]. This can be done by
translating data-based temporal logic formulas into parameterized boolean
equation systems, which can be solved on-the-fly [38]. The implementation of
these algorithms within the Cadp toolbox will require the extension of the
Open/Caesar environment with data-handling facilities.

24

Acknowledgements

We are grateful to the anonymous referees for their valuable comments and
suggestions for improvements. We also thank Frédéric Lang for his careful
proofreading of the text, and Hubert Garavel for his support on the design and
development of the Evaluator 3.0 model-checker. This work was partially
supported by the Inria Cooperative Research Action Tolere directed by
Alain Girault.

A Correctness proof of the SOLVE algorithm

This annex is devoted to the partial correctness proof of the Solve algorithm
described in Section 3.2.2. For conciseness, we do not give all the details of the
proof, but we focus instead on the essential properties ensuring the invariants
of the while-loops of Solve. A complete formal proof, using e.g., Hoare’s logic,
could be constructed in a straightforward (but rather tedious) way.

A few additional notations are necessary. Let G = (V, E, L, ∅) and x ∈ V
be the arguments of Solve and let GA = (A, {(y, z) | y ∈ A ∧ z ∈ E(y) ∩
A}, L|A, {y ∈ A | p(y) < |E(y)|}) be the subgraph containing the vertices and
edges that have been currently explored during the Dfs traversal of G (L|A
denotes the restriction to A of the labeling function L : V → {∨,∧}). Let
G and GA be the Kripke structures induced by G and GA. The functional
ΦEx

GA
: 2S → 2S, associated to the Ex formula on GA, is defined as follows:

ΦEx
GA

(U) = [[(P∨ ∧ 〈T〉 Y) ∨ (P∧ ∧ [T] Y)]]
GA

[U/Y]. For simplicity, we use the
same symbol stack to denote the Dfs stack and the set of vertices it contains.

The following lemma precises the invariants preserved by the while-loops of
the Solve algorithm.

Lemma 1 (invariants of the while-loops of SOLVE)
The outer while-loop of Solve preserves the main invariants I1–I3 given in
Table A.1 and the auxiliary invariants J1–J3, K1–K3, and L1–L3 given in
Table A.2. The inner while-loop of Solve preserves the invariants M1–M4

given in Table A.3.

Table A.1
Main invariants of the while-loop of Solve

I1 ΦEx
GA

({y ∈ A | c(y) = 0}) \ stack = {y ∈ A \ stack | c(y) = 0}

I2 {y ∈ A | c(y) = 0} ⊆ [[Ex]]
GA

I3 ∀y ∈ A \ stack .p(y) < |E(y)| ⇒ (c(y) = 0 ∧ L(y) = ∨)

25

Table A.2
Auxiliary invariants of the while-loop of Solve

J1 x ∈ stack ⊆ A

J2 ∀y ∈ A.E(y) ∩ A = {z ∈ A | ∃0 ≤ i < p(y).z = (E(y))i}

J3 ∀y ∈ stack . if y → y1 → · · · → yk → top(stack) is a sequence in G

then yy1 · · · yktop(stack) is a suffix of stack

K1 stack 6= nil ∧ c(top(stack)) > 0 ⇒ ∀y ∈ stack .c(y) > 0

K2 stack 6= nil ∧ c(top(stack)) = 0 ∧ d(top(stack)) 6= ∅ ⇒

d(top(stack)) = {top(pop(stack))} ∧ ∀y ∈ pop(stack).c(y) = 0

K3 stack 6= nil ∧ c(top(stack)) = 0 ∧ d(top(stack)) = ∅ ⇒

the vertices in {y ∈ stack | c(y) = 0} form a suffix of stack

L1 ∀y ∈ A.c(y) > 0 ⇒ d(y) = {z ∈ A | y ∈ E(z)}

L2 ∀y ∈ A.

c(y) =

|E(y)| − |{z ∈ A ∩ E(y) | c(z) = 0 ∧ y 6∈ d(z)}| if L(y) = ∧

max(0, 1 − |{z ∈ A ∩ E(y) | c(z) = 0 ∧ y 6∈ d(z)}|) if L(y) = ∨

L3 ∀y ∈ A.

c(y) = 0 ∧ (stack 6= nil ∧ d(top(stack)) 6= ∅ ⇒ y 6= top(stack)) ⇒ d(y) = ∅

Table A.3
Invariants of the inner while-loop of Solve

M1 ∀y ∈ B.c(y) = 0

M2 ∀y ∈ {z ∈ A | c(z) = 0} \ B.d(y) = ∅

M3 ∀y ∈ A.

c(y) =

|E(y)| − |E(y) ∩ ({z ∈ A | c(z) = 0} \ B)| if L(y) = ∧

max(0, 1 − |E(y) ∩ ({z ∈ A | c(z) = 0} \ B)|) if L(y) = ∨

M4 ∀w ∈ B. there exists a sequence w → w1 → · · · → wk → top(stack) in GA

such that c(w) = c(w1) = · · · = c(wk) = c(top(stack)) = 0

Proof (sketch) Invariants I1–I3 are implied by the auxiliary invariants J1–
J3, K1–K3, and L1–L3 of the outer while-loop and by the invariants M1–M4

of the inner while-loop.

Invariants J1, J2, and J3 express general properties of the Dfs traversal, inde-
pendent of the Solve algorithm: J1 states that the stack is included in A and
contains x, which ensures that x is contained in GA at the end of the while-
loop; J2 states that edges (y, z) of GA are precisely the successor vertices of y
numbered from 0 to p(y)− 1; and J3 states that from any vertex y present on

26

the stack, the only sequence in GA that leads from y to the stack top is the
suffix of the stack beginning at y.

Invariants K1, K2, and K3 characterize the stack structure during the Dfs
(they correspond to the three cases outlined in Figure 4): K1 models case a),
when every vertex on the stack is unstable; K2 models case b), when only the
top of the stack is stable, but this information has not yet been propagated to
its predecessors; and K3 models case c), when this propagation has terminated
and all stable vertices present on the stack are adjacent to the top.

Invariants L1, L2, and L3 express the relationship between the counters c(y)
and the backward dependencies d(y) for all y ∈ A: L1 states that for every
unstable vertex y, all its predecessors in GA are contained in d(y); L2 states
that c(y) counts all successors of y that remain to become stable in order to
make y stable too; and L3 states that every dependency to a stable vertex y
has been taken into account and deleted from d(y) (except for the top of the
stack in the case characterized by K2).

Invariants M1, M2, M3, and M4 express the basic properties of the inner while-
loop, which performs (in the case characterized by K2) the reevaluation of Ex
on all vertices that depend upon the top of the stack: M1, M2, and M3 state
that all vertices contained in the work set B are stable, but this information
has not yet been propagated through their backward dependencies; and M4

states that from every vertex in B there is a sequence of stable vertices leading
to the top of the Dfs stack.

Invariants K1–K3 are implied by the general Dfs properties J1–J3 and by the
invariants M1–M4 of the inner while-loop. Invariants L1–L3 are implied by
K1–K3 and M1–M4. Finally, the main invariants I1–I3 are implied by L1–L3

together with M1–M4. �

The following theorem states the partial correctness of the Solve algorithm.

Theorem 2 (partial correctness of SOLVE)
Upon termination of the Solve procedure, the following conditions hold:

(i) [[Ex]]
GA

= {y ∈ A | c(y) = 0}
(ii) GA is a solution-closed subgraph of G containing x

meaning that x |=G Ex (i.e., the variable x is true in the Bes denoted by G)
iff c(x) = 0.

Proof To show conditions (i) and (ii), we use the main invariants I1, I2, and
I3 of the outer while-loop of Solve, outlined in Table A.1. At the end of the

27

while-loop, these invariants ensure the properties below. Invariant I1 implies
that ΦEx

GA
({y ∈ A | c(y) = 0}) = {y ∈ A | c(y) = 0}, i.e., {y ∈ A | c(y) = 0} is

a fixed point of ΦEx
GA

. By definition of [[Ex]]
GA

and invariant I2, this implies

property (i): [[Ex]]
GA

= µΦEx
GA

⊆ {y ∈ A | c(y) = 0} ⊆ [[Ex]]
GA

. Invariant I3

implies that the frontier of GA contains only ∨-vertices satisfying Ex in GA:
{y ∈ A | p(y) < |E(y)|} ⊆ {y ∈ A | c(y) = 0 ∧ L(y) = ∨} = [[P∨ ∧ Ex]]

GA
.

Using the characterization of solution-closed Ebgs given in [39], this implies
condition (ii), i.e., GA is a solution-closed subgraph of G. �

References

[1] M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma, Specification
and Verification of a Dynamic Reconfiguration Protocol for Agent-Based
Applications, in: A. Laurentowski, J. Kosinski, Z. Mossurska, R. Ruchala
(Eds.), Proceedings of the 3rd IFIP WG 6.1 International Working Conference
on Distributed Applications and Interoperable Systems DAIS’2001 (Krakow,
Poland), pp. 229–242, Kluwer Academic Publishers, 2001. Full version available
as INRIA Research Report RR-4222.

[2] H. R. Andersen, Model Checking and Boolean Graphs, Theoretical Computer
Science 126 (1):3–30, 1994.

[3] A. Arnold, P. Crubillé, A Linear Algorithm to Solve Fixed-Point Equations on
Transition Systems, Information Processing Letters 29:57–66, 1988.

[4] T. Arts, C. Benac Earle, Development of a Verified Erlang Program for
Resource Locking, in: S. Gnesi, U. Ultes-Nitsche (Eds.), Proceedings of the
6th International Workshop on Formal Methods for Industrial Critical Systems
FMICS’2001 (Paris, France), Univ. Paris 7 – LIAFA and INRIA Rhône-Alpes,
pp. 131–145.

[5] H. Bekić, Definable Operations in General Algebras, and the Theory of
Automata and Flowcharts, in: C. B. Jones (Ed.), Programming Languages
and their Definition, Lecture Notes in Computer Science Vol. 177, pp. 30–55,
Springer-Verlag, 1984.

[6] J. Bradfield, Verifying Temporal Properties of Systems, Birkhäuser, Berlin,
1992.

[7] P. J. F. Carreira, M. E. F. Costa, Automatically Verifying an Object-Oriented
Specification of the Steam-Boiler System, in: S. Gnesi, I. Schieferdecker, A.
Rennoch (Eds.), Proceedings of the 5th International Workshop on Formal
Methods for Industrial Critical Systems FMICS’2000 (Berlin, Germany), GMD
Report 91, Berlin, 2000, pp. 345–360.

[8] E. M. Clarke, E. A. Emerson, A. P. Sistla, Automatic Verification of Finite-State
Concurrent Systems using Temporal Logic Specifications, ACM Transactions on
Programming Languages and Systems 8 (2):244–263, 1986.

28

[9] E. M. Clarke, K. McMillan, S. Campos, V. Hartonas-GarmHausen, Symbolic
Model Checking, in: R. Alur, T. A. Henzinger (Eds.), Proceedings of the
8th International Conference on Computer-Aided Verification CAV’96 (New
Brunswick, NJ, USA), Lecture Notes in Computer Science Vol. 1102, pp. 419–
422, Springer-Verlag, 1996.

[10] R. Cleaveland, B. Steffen, A Linear-Time Model-Checking Algorithm for
the Alternation-Free Modal Mu-Calculus, in: K. G. Larsen, A. Skou (Eds.),
Proceedings of 3rd Workshop on Computer Aided Verification CAV’91
(Aalborg, Denmark), Lecture Notes in Computer Science Vol. 575, pp. 48–58,
Springer-Verlag, 1991.

[11] P. F. G. Dechering and I. A. van Langevelde, Towards Automated Verification
of Splice in µCrl, Technical Report Sen-R0015, Cwi, Amsterdam, 2000.

[12] P. F. G. Dechering and I. A. van Langevelde, On the Verification of
Coordination, in: A. Porto and G.-C. Roman (Eds.), Proceedings of the 4th
International Conference on Coordination Models and Languages (Limassol,
Cyprus), Lecture Notes in Computer Science Vol. 1906, pp. 335–340, Springer-
Verlag, 2000.

[13] R. D. Nicola, F. W. Vaandrager, Action versus State Based Logics for Transition
Systems, in: I. Guessarian (Ed.), Semantics of Systems of Concurrent Processes
(La Roche Posay, France), Lecture Notes in Computer Science Vol. 469, pp.
407–419, Springer-Verlag, 1990.

[14] D. L. Dill, The Murϕ Verification System, in: R. Alur, T. A. Henzinger (Eds.),
Proceedings of the 8th International Conference on Computer-Aided Verification
CAV’96 (New Brunswick, NJ, USA), Lecture Notes in Computer Science Vol.
1102, pp. 390–393, Springer-Verlag, 1996.

[15] Y. Dong, X. Du, Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan,
S. A. Smolka, O. Sokolsky, E. W. Stark, D. S. Warren, Fighting Livelock in
the i-Protocol: A Comparative Study of Verification Tools, in: R. Cleaveland
(Ed.), Proceedings of the 5th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems TACAS’99 (Amsterdam, The
Netherlands), Lecture Notes in Computer Science Vol. 1579, pp. 74–88,
Springer-Verlag, 1999.

[16] M. B. Dwyer, G. S. Avrunin, J. C. Corbett, Patterns in Property Specifications
for Finite-State Verification, in: Proceedings of the 21st International
Conference on Software Engineering ICSE’99 (Los Angeles, CA, USA), 1999.

[17] E. A. Emerson, C.-L. Lei, Efficient Model Checking in Fragments of the
Propositional Mu-Calculus, in: Proceedings of the 1st LICS, pp. 267–278, 1986.

[18] A. Fantechi, S. Gnesi, F. Mazzanti, R. Pugliese, E. Tronci, A Symbolic Model
Checker for ACTL, in: D. Hutter, W. Stephan, P. Traverso, M. Ullmann
(Eds.), Proceedings of the International Workshop on Current Trends in
Applied Formal Methods FM-Trends’98 (Boppard, Germany), Lecture Notes
in Computer Science Vol. 1641, Springer-Verlag, 1998.

29

[19] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier,
M. Sighireanu, CADP (CÆSAR/ALDEBARAN Development Package): A
Protocol Validation and Verification Toolbox, in: R. Alur, T. A. Henzinger
(Eds.), Proceedings of the 8th International Conference on Computer-Aided
Verification CAV’96 (New Brunswick, NJ, USA), Lecture Notes in Computer
Science Vol. 1102, pp. 437–440, Springer-Verlag, 1996.

[20] J.-C. Fernandez, C. Jard, T. Jéron, L. Nedelka, C. Viho, Using On-the-Fly
Verification Techniques for the Generation of Test Suites, in: R. Alur, T. A.
Henzinger (Eds.), Proceedings of the 8th International Conference on Computer-
Aided Verification CAV’96 (New Brunswick, NJ, USA), Lecture Notes in
Computer Science Vol. 1102, pp. 348–359, Springer-Verlag, 1996.

[21] J.-C. Fernandez, L. Mounier, A Local Checking Algorithm for Boolean Equation
Systems, Rapport SPECTRE 95-07, VERIMAG, Grenoble, 1995.

[22] M. J. Fischer, R. E. Ladner, Propositional Dynamic Logic of Regular Programs,
Journal of Computer and System Sciences 18:194–211, 1979.

[23] H. Garavel, OPEN/CÆSAR: An Open Software Architecture for Verification,
Simulation, and Testing, in: B. Steffen (Ed.), Proceedings of the 1st
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems TACAS’98 (Lisbon, Portugal), Lecture Notes in Computer
Science Vol. 1384, pp. 68–84, Springer-Verlag, 1998. Full version available as
INRIA Research Report RR-3352.

[24] H. Garavel, J. Sifakis, Compilation and Verification of LOTOS Specifications,
in: L. Logrippo, R. L. Probert, H. Ural (Eds.), Proceedings of the 10th IFIP
International Symposium on Protocol Specification, Testing and Verification
(Ottawa, Canada), 1990, pp. 379–394.

[25] J.-F. Groote, A. Ponse, The Syntax and Semantics of µCrl, Technical Report
CS-R9076, CWI, Amsterdam, 1990.

[26] J.-F. Groote, J. Pang, A. Wouters, A Balancing Act: Analyzing a Distributed
Lift System, in: S. Gnesi, U. Ultes-Nitsche (Eds.), Proceedings of the 6th
International Workshop on Formal Methods for Industrial Critical Systems
FMICS’2001 (Paris, France), Univ. Paris 7 – LIAFA and INRIA Rhône-Alpes,
pp. 1–12. Full version available as CWI Report SEN-R0111.

[27] K. Hamaguchi, H. Hiraishi, S. Yajima, Branching Time Regular Temporal
Logic for Model Checking with Linear Time Complexity, in: E. M. Clarke,
R. P. Kurshan (Eds.), Proceedings of the 2nd International Conference on
Computer-Aided Verification CAV’90 (New Brunswick, NJ, USA), Lecture
Notes in Computer Science Vol. 531, pp. 253–262, Springer-Verlag, 1990.

[28] R. H. Hardin, Z. Har’El, R. P. Kurshan, COSPAN, in: R. Alur, T. A. Henzinger
(Eds.), Proceedings of the 8th International Conference on Computer-Aided
Verification CAV’96 (New Brunswick, NJ, USA), Lecture Notes in Computer
Science Vol. 1102, pp. 423–427, Springer-Verlag, 1996.

30

[29] G. Holzmann, The Model Checker SPIN, IEEE Transactions on Software
Engineering 23 (5):279–295, 1997.

[30] A. Ingolfsdottir, B. Steffen, Characteristic Formulae for Processes with
Divergence, Information and Computation 110 (1):149–163, 1994.

[31] ISO/IEC, LOTOS — a Formal Description Technique Based on the
Temporal Ordering of Observational Behaviour, International Standard 8807,
International Organization for Standardization — Information Processing
Systems — Open Systems Interconnection, Genève, 1988.

[32] D. Kozen, Results on the Propositional µ-calculus, Theoretical Computer
Science 27:333–354, 1983.

[33] K. G. Larsen, Proof Systems for Hennessy-Milner Logic with Recursion, in:
Proceedings of the 13th Colloquium on Trees in Algebra and Programming
CAAP’88 (Nancy, France), Lecture Notes in Computer Science Vol. 299, pp.
215–230, Springer-Verlag, 1988.

[34] X. Liu, C. R. Ramakrishnan, S. A. Smolka, Fully Local and Efficient Evaluation
of Alternating Fixed Points, in: B. Steffen (Ed.), Proceedings of the 1st
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems TACAS’98 (Lisbon, Portugal), Lecture Notes in Computer
Science Vol. 1384, pp. 5–19, Springer-Verlag, 1998.

[35] L. Logrippo, L. Andriantsiferana, B. Ghribi, Prototyping and Formal
Requirement Validation of GPRS: A Mobile Data Packet Radio Service
for GSM, in: C.B. Weinstock, J. Rushby (Eds.), Proceedings of the 7th
IFIP International Working Conference on Dependable Computing for Critical
Applications DCCA-7 (San Jose, California, USA), 1999.

[36] A. Mader, Verification of Modal Properties Using Boolean Equation Systems,
VERSAL 8, Bertz Verlag, Berlin, 1997.

[37] Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems,
Vol. I (Specification), Springer-Verlag, 1992.

[38] R. Mateescu, Local Model-Checking of an Alternation-Free Value-Based Modal
Mu-Calculus, in: A. Bossi, A. Cortesi, F. Levi (Eds.), Proceedings of the
2nd International Workshop on Verification, Model Checking and Abstract
Interpretation VMCAI’98 (Pisa, Italy), University Ca’ Foscari of Venice, 1998.

[39] R. Mateescu, Efficient Diagnostic Generation for Boolean Equation Systems, in:
S. Graf, M. Schwartzbach (Eds.), Proceedings of 6th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
TACAS’2000 (Berlin, Germany), Lecture Notes in Computer Science Vol. 1785,
pp. 251–265, Springer-Verlag, 2000. Full version available as INRIA Research
Report RR-3861.

[40] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,
T. W. Swift, D. S. Warren, Efficient Model Checking Using Tabled Resolution,
in: Proceedings of the 9th International Conference on Computer-Aided

31

Verification CAV’97 (Haifa, Israel), Lecture Notes in Computer Science Vol.
1254, pp. 143–154, Springer-Verlag, 1997.

[41] M. Sage, C. Johnson, A Declarative Prototyping Environment for the
Development of Multi-User Safety-Critical Systems, in: Proceedings of the 17th
International System Safety Conference ISSC’99 (Orlando, Florida, USA),
System Safety Society, 1999.

[42] D. Simon, B. Espiau, K. Kapellos, R. Pissard-Gibollet, al., The Orccad
Architecture, International Journal of Robotics Research 17 (4):338–359, 1998.

[43] R. Streett, Propositional Dynamic Logic of Looping and Converse, Information
and Control 54:121–141, 1982.

[44] W. Thomas, Computation Tree Logic and Regular ω-languages, in:
G. Rozenberg, J. W. de Bakker, W.-P. de Roever (Eds.), Linear Time,
Branching Time and Partial Order in Logics and Models of Concurrency,
Lecture Notes in Computer Science Vol. 354, pp. 690–713, Springer-Verlag,
1989.

[45] E. Tronci, Hardware Verification, Boolean Logic Programming, Boolean
Functional Programming, in: Proceedings of the 10th Annual IEEE Symposium
on Logic in Computer Science LICS’95 (San Diego, California), pp. 408–418,
IEEE Computer Society Press, 1995.

[46] M. Y. Vardi, P. Wolper, Reasoning about Infinite Computations, Information
and Computation 115 (1):1–37, 1994.

[47] B. Vergauwen, J. Lewi, Efficient Local Correctness Checking for Single and
Alternating Boolean Equation Systems, in: S. Abiteboul, E. Shamir (Eds.),
Proceedings of the 21st ICALP (Vienna, Austria), Lecture Notes in Computer
Science Vol. 820, pp. 304–315, Springer-Verlag, 1994.

[48] P. Wolper, Temporal Logic can be More Expressive, Information and Control
56 (1/2):72–99, 1983.

[49] P. Wolper, M. Y. Vardi, A. P. Sistla, Reasoning about Infinite Computation
Paths, in: Proceedings of the 24th IEEE Symposium on Foundations of
Computer Science FOCS’83 (Tucson, Arizona, USA), pp. 185–194, 1983.

32

