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Abstract: This paper deals with the description in E-Lotos of the asynchronous Link layer proto-
col of the Ieee-1394 Standard and its verification using model-checking. The E-Lotos descriptions
are based on both the standard and the µCrl description written by Luttik. The verifications are
performed using the Cadp (Cæsar/Aldébaran) toolbox. We translate the E-Lotos descriptions
in Lotos using the Traian tool, and then we generate the underlying Lts models corresponding
to various scenarios using the Cæsar compiler. We formally express in the Actl temporal logic
the five correctness properties of the Link layer protocol stated in natural language by Luttik and
we verify them on the Lts models using the Xtl model-checker. We detect and correct a potential
deadlock caused by the ambiguous semantics of the state machines given in the standard, which can
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Key-words: E-Lotos, Formal methods, Formal description techniques, Ieee-1394, Labelled
Transition Systems, Lotos, Datagram protocol, Protocol engineering, Temporal logic, Validation,
Verification.

A short version of this report is also available as “Validation of the Link Layer Protocol of the IEEE-1394 Serial Bus

(“FireWire”): an Experiment with E-LOTOS”, in Ignac Lovrek, editor, Proceedings of COST 247 2nd International
Workshop on Applied Formal Methods in System Design (Zagreb, Croatia), Faculty of Electrical Engineering and
Computing of Zagreb, June 1997.

∗ E-mail: Mihaela.Sighireanu@inria.fr
† E-mail: Radu.Mateescu@inria.fr



Validation du protocole de la couche liaison
du bus série IEEE-1394 (“FireWire”) :

une expérience avec E-LOTOS
Résumé : Ce rapport présente la description en E-Lotos de la partie asynchrone du protocole
de la couche liaison du standard Ieee-1394 et sa vérification en utilisant l’approche basée sur les
modèles (model-checking). La description E-Lotos est basée sur le standard et sur la description
écrite en µCrl par Luttik. Les vérifications sont effectuées en utilisant la bôıte à outils Cadp

(Cæsar/Aldébaran). La description E-Lotos est traduite en Lotos à l’aide de l’outil Traian

et les modèles Ste sous-jacents sont générés à l’aide du compilateur Cæsar. Nous avons exprimé en
logique temporelle Actl les cinq propriétés de correction du protocole de la couche liaison formulées
en langage naturel par Luttik et nous les avons vérifiées sur les modèles Ste à l’aide de l’évaluateur
Xtl. Nous avons détecté et corrigé un blocage potentiel dû à la sémantique ambiguë des machines
d’états données dans le standard qui peut induire en erreur les implémenteurs du protocole Ieee-1394.

Mots-clés : E-Lotos, Ieee-1394, Ingénierie des protocoles, Logique temporelle, Lotos, Méthodes
formelles, Protocole de couche liaison, Systèmes de transitions étiquetées, Techniques de description
formelle, Validation, Vérification.
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1 Introduction

The design and development of complex, critical applications such as distributed systems and com-
munication protocols are difficult tasks requiring a careful methodology in order to avoid errors as
much as possible.

One approach that proved its usefulness is to use formal verification throughout the design process, by
means of specialized tools. For this purpose, the application must be described using an appropriate
high-level language like µCrl1 [GP90], Lotos2 [ISO88], E-Lotos3 [Que97], etc. Such descriptions
provide a formal, non-ambiguous basis upon which the verification of the desired correctness properties
can be attempted.

A verification method that has been extensively studied over the last years, and for which various
algorithms and tools have been developed, is model-checking . In this approach, the correctness
properties are verified on a model automatically generated from the high-level description of the
application under design. Although restricted to finite-state systems, model-checking provides a
simple, efficient way to detect errors from the early steps of the design process.

This paper deals with the formal description in E-Lotos and verification by model-checking of the
Link layer protocol for transmission of asynchronous packets, which is part of the “FireWire” high
performance serial bus defined in the Ieee-1394 Standard [IEE95].

The paper is organized as follows. Section 2 introduces briefly the Lotos and E-Lotos languages.
Section 3 gives an informal presentation and an E-Lotos description of the Ieee-1394 three-layered
architecture. Sections 4, 5, 6, and 7 contain informal presentations and E-Lotos descriptions of the
data types, the Bus layer, the Link layer, and the Trans layer, respectively. Section 8 introduces
the Cadp protocol engineering toolbox. Section 9 presents the generation of the Lts models cor-
responding to the E-Lotos descriptions. Section 10 describes the verifications performed on these
models by means of temporal logic. Section 11 gives some concluding remarks. Finally, Annex A
gives the complete E-Lotos description of data types used in the protocol.

2 The ISO language LOTOS and the E-LOTOS language

Lotos [ISO88] is a standardized Formal Description Technique intended for the specification
of communication protocols and distributed systems. Several tutorials for Lotos are available,
e.g. [BB88, Tur93].

The design of Lotos was motivated by the need for a language with a high abstraction level and a
strong mathematical basis, which could be used for the description and analysis of complex systems.
As a design choice, Lotos consists of two “orthogonal” sub-languages:

The data part of Lotos is dedicated to the description of data structures. It is based on the
well-known theory of algebraic abstract data types [Gut77], more specifically on the ActOne

specification language [dMRV92].

The control part of Lotos is based on the process algebra approach for concurrency, and appears
to combine the best features of Ccs [Mil89] and Csp [Hoa85].

1micro Common Representation Language
2Language Of Temporal Ordering Specification
3Extended Lotos
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4 M. Sighireanu, R. Mateescu

Lotos has been applied to describe complex systems formally, for example: Osi Tp4 [ISO92, An-
nex H], Ftam

5 basic file protocol [LL95], etc. It has been mostly used to describe software systems,
although there are recent attempts to use it for asynchronous hardware description [CGM+96].

A number of tools have been developed for Lotos, covering user needs in the areas of simulation,
compilation, test generation and formal verification.

Despite these positive features, a revision of the Lotos standard has been undertaken within Iso

since 1993, because feedback from users indicated that the usefulness of Lotos is limited by certain
characteristics related both to technical capabilities and user-friendliness of the language.

The Iso Committee Draft [Que97], appeared in February 1997, proposes a revised version of Lotos,
named E-Lotos. Compared to Lotos, the language defined in [Que97] introduces new features,
from which we mention only those used in this case-study:

� Modularity: an E-Lotos module is a collection of types, functions and/or process definitions,
the visibility of which can be controlled by interface declaration; modules may be combined
using importation and renaming.

� Data types: types are defined in a functional style; in addition, many useful types are predefined.

� Sequential composition operator: the action prefix, enabling, and ‘accept’ operators of Lotos

have been substituted with a new, simpler sequential composition operator.

� ‘If-then-else’ operator: to express conditional constructs, an explicit ‘if-then-else’ operator was
introduced instead of guarded commands combined with choice.

� Imperative features: to allow an imperative-like programming style, write-once variables as well
as functions and processes with in/out parameters have been introduced. These features try to
align E-Lotos notations with standard programming languages.

� Gate typing: gates must be explicitly typed [Gar95].

This case-study is based on a version of E-Lotos proposed in [SG96], which is slightly different from
the Committee Draft one. The main differences are: (a) instead of record subtyping and anonymous
records, we use named records and overloading of functions and constructors; (b) the shorthand
notation ‘...’ can be used in a process instantiation to elide the actual gate parameters when they
are identical to the formal ones defined in the corresponding process declaration; (c) although [Que97]
introduces quantitative time, the fragment of E-Lotos we consider here is untimed.

To our knowledge, at the present time, there exists only one realistic experiment with E-Lotos,
namely the description of the Odp trader computational viewpoint [ISO95] given in [Que97]. Thus,
the case-study presented here can be considered as a pioneering attempt at using E-Lotos for the
description and verification of a real application.

Since E-Lotos is currently under balloting within Iso, there are no tools for E-Lotos available
yet. A straightforward approach is to translate E-Lotos programs in Lotos, and then use the
existing tools dedicated to Lotos. For this case-study, we used the Traian tool [Viv97], a prototype
translator from E-Lotos to Lotos, and the Cadp (Cæsar/Aldébaran) toolbox [FGK+96], which
provides state-of-the-art verification features.

4Distributed Transaction Processing
5File Transfer, Access and Management
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3 The IEEE-1394 architecture

The Ieee’s Microcomputer Standards Committee started to work in 1986 on the unification of several
serial buses such as Vme, Multibus II, and Future Bus. This effort led to a new serial bus protocol
defined in the Ieee-1394 Standard [IEE95].

We summarize below some important features of this protocol. An extended presentation is given
in [Lut97]. The Ieee-1394 architecture involves n nodes (addressable entities that run their own part
of the protocol) connected by a serial line (referred to as the Cable in the sequel). On each node
the Ieee-1394 protocol consists of three stacked layers:

� The upper layer, or transaction layer (referred to as Trans), implements the request-response
protocol required to conform to the standard Control and Status Register Architecture for
Microcomputer Buses [ANS94]. It provides the applications running on the node with read,
write, and lock transaction services.

� The middle layer, or link layer (referred to as Link), provides an acknowledged datagram
service to the transaction layer. It handles all packet transmission and reception, as well as
cycle control for isochronous channels.

� The lower layer, or physical layer (referred to as Phy), provides the initialization and arbitration
services necessary to ensure that only one node at a time is sending data. It also converts the
serial bus data streams and electrical signals to those required by the Link layer.

In the sequel, we denote by Bus the Phy layer together with the Cable.

According to [IEE95], there is also a so-called ‘Node Controller’, which provides facilities for timeout
control and reset procedures for all the three layers above. As in [Lut97], we leave these facilities out
of our E-Lotos specification.

�� �� ��

� �� � �	 
 
� � � � ��

LDres

LDconLDreq

LDind

TRANS

LINK

LDconLDreq

LDind

TRANS

LINK

LDres

PDreq

PCind

Node 0 Node n-1

PDind

PAcon

PAreq

BUS (PHY + CABLE)

Figure 1: The Serial Bus architecture

The architecture of the Ieee-1394 serial bus is depicted on Figure 1 and described by the E-Lotos

specification module IEEE 1394 below. This module includes (using the import clause) the modules
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6 M. Sighireanu, R. Mateescu

defining the data types (DATA), the Bus layer (BUS), the Link layer (LINK), and the Trans layer
(TRANS). It declares the set of typed gates corresponding to the interfaces of the three layers, and
to the actions of the Bus layer (arbresgap and losesignal). The entities depicted on Figure 1
are represented by E-Lotos processes evolving in parallel. Each node consists of a Trans and Link

processes running in parallel and synchronizing by means of four gates: LDreq, LDcon, LDind, and
LDres. The set of n nodes (indexed from 0 to n-1) is synchronized with the Bus process by means of
five gates: PDind, PDreq, PAcon, PAreq, and PCind. Note the use of the shorthand notation ‘...’ in
place of the actual list of gates in the instantiations of the Bus, Link, and Trans processes.

specification IEEE_1394 import DATA, BUS, LINK, TRANS is

gates LDreq: LDreqType, LDcon: LDconType,

LDind: LDindType, LDres: LDresType,

PDind: PDindType, PDreq: PDreqType,

PAcon: PAconType, PAreq: PAreqType,

PCind: Nat, arbresgap, losesignal: none

behaviour

(

(

Trans [...] (n, 0)

|[LDreq, LDcon, LDind, LDres]|

Link [...] (n, 0)

)

|||

...

|||

(

Trans [...] (n, n-1)

|[LDreq, LDcon, LDind, LDres]|

Link [...] (n, n-1)

)

)

|[PDind, PDreq, PAcon, PAreq, PCind]|

Bus [...] (n)

endspec

The following sections refine this top-level architecture by describing the data types used in the
protocol and the Bus, Link, and Trans processes.

4 The data types

The E-Lotos data types used in the protocol are grouped into the DATA module whose detailed
description is given in Annex A. Here we give only an informal description of these data types:

� Nat and Bool are the E-Lotos predefined types for natural numbers and booleans.

� ACK, DATA, and HEADER are enumerated types, representing the acknowledgement, data, and
header part of the packets; BOC and PHY AREQ are enumerated types, representing the bus
occupancy control code (which may be hold, release, or no op) and the physical acknowledge
request code (which may be fair or immediate).

INRIA
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� SIGNAL is a union type modeling the data packet components6 and the control signals traveling
over the Bus.

� SIG TUPLE is the type of buffer used by the Link of each node; it denotes either a quadruple of
signals, or an empty buffer (value void).

� LIN DIND is a union type used to attach an indication attribute to the data packets received by
Trans.

� BoolTABLE is a list of n natural-boolean pairs, implementing a boolean array indexed by the
node identifiers.

� To each gate, we attach a tuple type whose fields correspond to the values exchanged during
the rendezvous.

In our E-Lotos specification of the protocol, the domain of Nat is limited to the interval 0..n, where
n is the number of nodes connected to the Bus. All other data types are finite.

We must underline here the conciseness of the E-Lotos data language: the data types of the protocol
are described in four pages of E-Lotos instead of seven pages of algebraic data types in the µCrl

description given in [Lut97].

5 The BUS layer behaviour

In order to model the interactions between the Link layers of several nodes, we translated in E-Lotos

the µCrl descriptions of the external behaviour of Bus given in [Lut97]. The Bus layer has two
primary functions: arbitration of Links accesses to the Cable (by means of PAreq actions) and
transmission/receipt of signals (by means of PDreq and PDind actions).

The arbitration protocol implemented by the Bus is based on the concept of fairness interval, illus-
trated on Figure 2.

owner node i owner node j

fairness fairness

subaction gaps

fairness interval N

N-1
interval
N+1

interval

subaction
arbitration
reset gap

arbitration
reset gap

ack arb data ackarb ackarb data ack arb

Figure 2: The structure of the fairness interval

During a fairness interval, each Link may send at most one asynchronous data packet over the
Bus, but it can send several acknowledgement packets. The time needed for the transmission of a
data packet followed by a (possibly empty) sequence of acknowledgement packets is called subaction.
A fairness interval may contain one or more subactions delimited by “subaction gap” (subactgap)

6According to the Ieee-1394 Standard, the packets are transmitted over the Bus serially, one bit at a time. However,
to obtain a more concise description, we model with signals the bit sequences corresponding to the same packet
component.
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8 M. Sighireanu, R. Mateescu

signals sent by the Bus. The fairness intervals are delimited by “arbitration request gap” (arbresgap)
signals sent by the Bus. An arbresgap signal is emitted when, after some subactions, the Bus has
been idle for a specific amount of time.

The transmission protocol we describe below considers an unreliable communication medium (i.e.,
the signals may be corrupted or lost).

The Bus behaviour is defined by the E-Lotos module BUS. According to [Lut97], we represent each
state of the Bus protocol by an E-Lotos process parameterized (at least) by the total number of
nodes n. To improve readability, we use the <<Bus gates>> shorthand notation for the following
list of typed gates: PDind: PDindType, PDreq: PDreqType, PAcon: PAconType, PAreq: PAreqType,
PCind: Nat, arbresgap: none, losesignal: none.

module BUS import DATA is

process Bus [<<Bus gates>>] (n: Nat) : noexit is

BusIdle [...] (n, init (n))

endproc

(* ... other Bus processes *)

endmod

Idle state Initially, Bus is idle (state BusIdle). The parameter n denotes the number of Links
connected to the Bus. The parameter t is a boolean table recording the accesses of Links during
a fairness interval. For each Link j, the corresponding entry t[j] is true if the Link j accessed
the Bus during the current fairness interval and false otherwise. At the beginning of each fairness
interval, all the entries of the table t are set to false using the function init.

Every time an arbitration request with parameter fair is received from some Link, Bus checks
whether the Link accessed it during the present fairness interval7; if not, Bus grants access to the
requesting Link by means of the PAcon action with parameter won and evolves into the BusBusy

state.

process BusIdle [<<Bus gates>>] (n: Nat, t: BoolTABLE) : noexit is

local id: Nat, astat: PHY_AREQ in

PAreq (?id, ?astat) [id lt n];

if (get (id, t) = false) then

PAcon (!id, !won);

BusBusy [...] (n, invert (id, t), init (n), init (n), id)

else

PAcon (!id, !lost);

BusIdle [...] (n, t)

endif

endloc

[]

if not (zero (t)) then

arbresgap;

BusIdle [...] (n, init (n))

endif

endproc

7Here, unlike the µCrl description, we merge BusIdle and DecideIdle into the same process BusIdle.

INRIA
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Busy state In the BusBusy state, Bus is accessed by a Link whose identifier is given by the busy

parameter. Beside the boolean table t, which records the Links accesses, there are two other boolean
table parameters: next and destfault, with all entries initialized to false. The next table records
the Links having issued an immediate arbitration request (PAreq action with parameter immediate).
The destfault table records the Links having received a corrupted destination signal; for these
Links, the checksum of the header signal (which follows the destination signal) has to be invalidated
by the Bus (see the Distribute state).

In the BusBusy state, the Bus may still accept fair arbitration requests from Links (PAreq actions
with parameter fair), but sends negative responses to requesters (PAcon action with parameter
lost).

If a Link asks for immediate arbitration, the Bus records its request in the next table and will send
the confirmation as soon as the busy node will release the Bus.

The busy Link transmits its data packet by splitting it into six signals (i.e., Start, destination
header, destination, header, data, and End signals) and sending them sequentially to the Bus upon
clock indications (PCind actions). Then, the Bus distributes these signals to all the other Links
(state Distribute).

As soon as the busy Link terminates the transmission of its data packet (modeled by setting the busy
parameter to n), the Bus checks the next table to send the confirmations to all the Links having
issued an immediate arbitration request (state Resolve). If the next table has all its entries set to
false, the Bus indicates the end of the current subaction to all the Links by sending a subaction gap
signal (state SubactionGap) and returns to state BusIdle afterwards.

process BusBusy [<<Bus gates>>] (n: Nat, t, next, destfault: BoolTABLE, busy: Nat)

: noexit

is

local j: Nat in

PAreq (?j, !fair) [j lt n];

PAcon !j !lost;

BusBusy [...] (n, t, next, destfault, busy)

endloc

[]

local j: Nat in

PAreq (?j, !immediate) [not (get (j,next)) and (j lt n)];

BusBusy [...] (n, t, invert (j, next), destfault, busy)

endloc

[]

if (busy lt n) then

local p: SIGNAL in

PCind !busy;

PDreq (!busy, ?p);

Distribute [...] (n, t, next, destfault, busy, p, 0)

endloc

elsif zero (next) then

SubactionGap [...] (n, t, 0)

else

Resolve [...] (n, t, next, 0)

endif

endproc
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10 M. Sighireanu, R. Mateescu

process SubactionGap [<<Bus gates>>] (n: Nat, t: BoolTABLE, j: Nat) : noexit is

if (j = n) then

BusIdle [...] (n, t)

else

PDind (!j, !subactgap);

SubactionGap [...] (n, t, succ (j))

endif

endproc

Distribute state In the Distribute state, Bus iterates over all Links except the busy one. To
each Link (identified by the parameter j), Bus delivers the signal (parameter p) previously sent by
the busy Link.

The signal p may be distributed correctly or, due to the unreliable communication medium, it may
be corrupted or lost. However, the signal p must be corrupted (or lost) if it is a header signal and the
current Link j is recorded in the destfault table (meaning that the Link has previously received
a corrupted destination signal). The unreliable communication medium is modeled in the following
way:

� The corruption of destination signals is modeled by changing their values; in this case, the
current Link j is recorded into the destfault table.

� The corruption of header, data, and acknowledgement signals is modeled by setting the crc

field of these signals to bottom.

� The loss of header, data, and acknowledgement signals is modeled by a losesignal action.

� The corruption of data signals by modification of their length is modeled by immediately sending
a Dummy signal after the data signal.

At any moment of the distribution, Bus may accept an immediate arbitration request of the current
Link j, which is recorded into the next table.

After the current signal p is distributed to all Links (j becomes equal to n), Bus evolves into the
BusBusy state, where it awaits another signal to be distributed. If the current signal p is End, which
indicates the termination of the asynchronous packet, the parameter busy is set to n.

process Distribute [<<Bus gates>>]

(n: Nat, t, next, destfault: BoolTABLE, busy: Nat, p: SIGNAL, j: Nat)

: noexit

is

if (j = busy) then

Distribute [...] (n, t, next, destfault, busy, p, succ (j))

elsif (j lt n) and (j ne busy) then

if not (is_header (p) and get (j, destfault)) then

PDind (!j, !p);

Distribute [...] (n, t, next, destfault, busy, p, succ (j))

endif

[]

if is_dest (p)

choice ?dest: Nat []

INRIA
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PDind (!j, !sig (destsig (dest)));

Distribute [...] (n, t, next, invert (j, destfault),

busy, p, succ (j))

endch

elsif is_header (p) or (is_data (p) or is_ack (p)) then

PDind (!j, !corrupt (p));

Distribute [...] (n, t, next, destfault, busy, p, succ (j))

[]

losesignal;

Distribute [...] (n, t, next, destfault, busy, p, succ (j))

endif

[]

if is_data (p) then

PDind (!j, !p);

PDind (!j, !Dummy);

Distribute [...] (n, t, next, destfault, busy, p, succ (j))

endif

[]

PAreq (!j, !immediate) [not (get (j, next))];

Distribute [...] (n, t, invert (j, next), destfault, busy, p, j)

else (* not (j lt n) *)

case p is

End -> BusBusy [...] (n, t, next, destfault, n)

| any -> BusBusy [...] (n, t, next, destfault, busy)

endcase

endif

endproc

Resolve states The Bus sends a winning arbitration confirmation (PAcon action with parameter
won) and a clock indication to all Links that issued an immediate arbitration request.

Then, it evolves into the Resolve2 state, which is intended to avoid conflicting situations in which
several Links would have control over the Bus: as long as there are more than one Links recorded
into the next table, Bus accepts only End signals from these Links, and eliminates them from the
next table. If the remaining Link sends an End signal, Bus evolves into the SubactionGap state;
otherwise Bus delivers the signal to the other Links by moving into the Distribute state.

process Resolve [<<Bus gates>>] (n: Nat, t, next: BoolTABLE, j: Nat) : noexit is

if (j lt n) then

if (get (j, next) = true) then

PAcon (!j, !won);

PCind !j;

Resolve [...] (n, t, next, succ (j))

else

Resolve [...] (n, t, next, succ (j))

endif

else

Resolve2 [...] (n, t, next)

endif

endproc
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12 M. Sighireanu, R. Mateescu

process Resolve2 [<<Bus gates>>] (n: Nat, t, next: BoolTABLE) : noexit is

if more (next) then

local j: Nat in

PDreq (?j, !End) [get (j, next) and (j lt n)];

Resolve2 [...] (n, t, invert (j, next))

endloc

else

local j: Nat, p: SIGNAL in

PDreq (?j, ?p) [j lt n];

case p is

End -> SubactionGap [...] (n, t, 0)

| any -> Distribute [...] (n, t, init (n), init (n), j, p, 0)

endcase

endloc

endif

endproc

6 The LINK layer behaviour

The Link layer protocol is designed to transmit data packets over an unreliable medium, by splitting
them in signals that are sent sequentially, asynchronously or isochronously. In this case-study we
consider only the asynchronous part of the Link protocol.

The asynchronous Link protocol provides transmission of a data packet to a precise node or to all
nodes (by broadcast). The protocol is similar to an “acknowledged datagram” protocol, since each
transmission is one-way and needs a confirmation.

According to [Lut97], we represent each state of the Link protocol by an E-Lotos process having
(at least) three value parameters: the total number of nodes connected to the Bus, the identification
number of its node, and a buffer that may contain one asynchronous packet.

The Link protocol has three main modes: a send mode, a receive mode, and a send acknowledge
mode. From its initial state, Link can evolve into send or receive modes. In the send mode, after
transmitting a packet, Link waits for an acknowledgement (if the packet is not a broadcast), then
returns to its initial state. In the receive mode, Link indicates to Trans the receipt of a packet.
If the packet is not a broadcast, Link waits for a confirmation from Trans containing the type
of the acknowledgement to be sent and a control code. After sending the acknowledgement, if the
control code indicates that Trans asks to send an immediate response (concatenated response mode
of Trans), Link evolves into the send mode; if Trans asks to defer the response (split response
mode of Trans), Link returns to its initial state.

The dependences between the Link modes together with the collection of processes implementing
the states of each mode are shown on Figure 3.

In the remainder of this Section, we give an E-Lotos description of the initial state and the three
modes of Link. This description is based on the µCrl description given in [Lut97], the state machine
depicted in [IEE95, Figure 6-19, Page 174], and the explanatory text of the Ieee-1394 standard.
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Link0

LinkWSA

Link4DRec, Link4BRec

Link4RD, Link4RE

Link4, Link4DH, Link4RH

Link5, Link6,

Link7

Link3, Link3RA, Link3RE

Link2req, Link2resp,

Send mode

Initial state

Send ack. mode

Receive mode

Figure 3: The Link behaviour

Initial State Initially, Link is in the state Link0 and has an empty buffer represented by the ‘void’
value; it can receive either a packet from Trans on the LDreq gate, or an indication of a packet arrival
from Bus on the PDind gate.

In the former case, Link constructs the packet from the parameters received and puts it in its buffer.
The buffer being no longer empty, Link tries to gain access to Bus by sending a fair arbitration
request (PAreq action with parameter fair) and waits for Bus arbitration response. If Bus responds
positively (PAcon action with parameter won), Link evolves into the send mode (state Link2req). If
a negative response is received (PAcon action with parameter lost), Link returns to its initial state
Link08.

In the latter case, if the signal received is Start, Link enters into the receive mode (state Link4);
otherwise Link ignores the signal and returns to its initial state.

The E-Lotos processes corresponding to the initial state of Link are given in the E-Lotos module
below. Compared to Lotos, the main differences are:

� The gates of Link are explicitly typed. To improve readability, in this Section we use the short-
hand notation <<Link gates>> for the following list of typed gates: LDreq: LDreqType, LDcon:
LDconType, LDind: LDindType, LDres: LDresType, PDreq: PDreqType, PDind: PDindType,
PAreq: PAreqType, PAcon: PAconType, PCind: Nat.

� The scope of variables is made explicit using ‘local’ statements.

� The equality function ‘=’ is built-in, rather than user-defined.

module LINK import DATA is

process Link [<<Link gates>>] (n, id: Nat) : noexit is

Link0 [...] (n, id, void)

endproc

process Link0 [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE) : noexit is

if is_void (buf) then

local var dest: Nat, h: HEADER, d: DATA in

8Here, unlike the µCrl description, we merge Link0 and Link1 into the same process Link0.
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14 M. Sighireanu, R. Mateescu

LDreq (!id, ?dest, ?h, ?d);

Link0 [...] (n, id, quadruple (dhead, sig (destsig (dest)),

sig (headersig (c, crc (c))),

sig (datasig (d, crc (d)))))

endloc

else

PAreq (!id, !fair);

(

PAcon (!id, !won);

Link2req [...] (n, id, buf)

[]

PAcon (!id, !lost);

Link0 [...] (n, id, buf)

)

endif

[]

local var p: SIGNAL in

PDind (!id, ?p);

if (p = Start) then

Link4 [...] (n, id, buf)

else

Link0 [...] (n, id, buf)

endif

endloc

endproc

(* ... other Link processes *)

endmod

Send Mode Being granted the access to Bus, Link responds to every clock indication received on
the PCind gate by sending a signal. The packet transmission begins with a Start signal, followed
by the data packet — split up into four signals: destination header signal, destination signal, header
signal, and data signal — and the termination signal End. Depending on whether the packet sent
was a broadcast packet or an asynchronous packet (this can be determined from the destination field
of the packet), Link either confirms to Trans (on the LDcon gate) that a broadcast packet was sent
properly and returns to its initial state, or goes to state Link3 and waits for an acknowledgement
packet.

process Link2req [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE) : noexit is

PCind !id; PDreq (!id, !Start);

PCind !id; PDreq (!id, !buf.dh);

PCind !id; PDreq (!id, !buf.dest);

PCind !id; PDreq (!id, !buf.header);

PCind !id; PDreq (!id, !buf.data);

PCind !id; PDreq (!id, !End);

if (getdest (buf.dest) = n) then

LDcon (!id, !broadsent);

Link0 [...] (n, id, void)

else

Link3 [...] (n, id, void)
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endif

endproc

Notice here the use of E-Lotos built-in field projection ‘.’ to access the packet fields (e.g., buf.dest
gives the destination field of the buffer), rather than using user-defined selection functions (as in
Lotos and µCrl).

The acknowledgement packet must arrive within some specific amount of time: if a “subaction gap”
signal occurs before an acknowledgement with a valid checksum has been entirely received, then Link

will act as if the acknowledgement was missing. The acknowledgement packet begins with a Start

signal, possibly preceded by any number of Prefix signals. When the Start signal arrives, Link

evolves into the Link3RA (“Receive Acknowledge”) state.

process Link3 [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE) : noexit is

local var p: SIGNAL in

PDind (!id, ?p);

if (p = Prefix) then

Link3 [...] (n, id, buf)

elsif (p = Start) then

Link3RA [...] (n, id, buf)

elsif (p = subactgap) then

LDcon (!id, !ackmiss);

Link0 [...] (n, id, buf)

else

LDcon (!id, !ackmiss);

LinkWSA [...] (n, id, buf, n)

endif

endloc

endproc

In the state Link3RA, upon receipt of a data signal (i.e., not a control one), Link goes into the
Link3RE (“Receive End”) state, where it awaits the terminating signal End, checks its validity and
sends an “acknowledgement received” confirmation (LDcon action with parameter ackrec) to Trans.
However, if anything goes wrong, Link sends an “acknowledgement missing” confirmation (LDcon
action with parameter ackmiss) to Trans. Either in case of failure or success, Link must wait for a
“subaction gap” indication from Bus, before returning to its initial state (see the LinkWSA state).

process Link3RA [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE) : noexit is

local var a: SIGNAL in

PDind (!id, ?a);

if (a = subactgap) then

LDcon (!id, !ackmiss);

Link0 [...] (n, id, buf)

elsif is_physig (a) then

LDcon (!id, !ackmiss);

LinkWSA [...] (n, id, buf, n)

else

Link3RE [...] (n, id, buf, a)

endif

endloc

endproc

RR n
�

3172



16 M. Sighireanu, R. Mateescu

process Link3RE [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE, a: SIGNAL) : noexit

is

local var e: SIGNAL in

PDind (!id, ?e);

if valid_ack (a) and ((e = End) or (e = Prefix)) then

LDcon (!id, !ackrec (getack (a)))

else

LDcon (!id, !ackmiss)

endif;

if (e = subactgap) then

Link0 [...] (n, id, buf)

else

LinkWSA [...] (n, id, buf, n)

endif

endloc

endproc

Note the use of the sequential composition operator ‘;’ of E-Lotos, which allows a more concise
description than the ‘>>’ and ‘accept’ operators of Lotos.

Receive Mode When receiving a Start signal, Link expects an asynchronous packet to be trans-
mitted by another node via Bus. As mentioned already for the send mode, the asynchronous packet
consists of exactly four signals, and Link must receive two signals (on the PDind gate) before deter-
mining whether the packet is addressed to itself or to another Link. If anything goes wrong, it waits
for the next “subaction gap” signal (see the LinkWSA state) and returns to its initial state afterwards.

process Link4 [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE) : noexit is

local var dh: SIGNAL in

PDind (!id, ?dh);

if (dh = subactgap) then

Link0 [...] (n, id, buf)

elsif is_physig (dh) then

LinkWSA [...] (n, id, buf, n)

else

Link4DH [...] (n, id, buf)

endif

endloc

endproc

If the second signal received on the PDind gate is a destination signal, then Link must check whether
the incoming packet is either (a) a packet addressed to itself, (b) a broadcast packet, or (c) a packet
destinated to another node. In the case (a), it must notify the Bus (by means of a PAreq action
with parameter immediate) that it wants access as soon as the packet has been entirely received, in
anticipation of sending the acknowledgement. Broadcast packets should not be acknowledged, so in
the case (b) no such request is needed. In both cases, Link evolves into the state Link4RH (“Receive
Header”), keeping as parameter the destination of the packet. In the case (c), the packet is not
addressed to this Link, so it is ignored: the Link will return to its initial state after waiting for a
“subaction gap” signal (see the LinkWSA state).
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process Link4DH [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE) : noexit is

local var dest: SIGNAL in

PDind (!id, ?dest);

if is_dest (dest) and (getdest (dest) = id) then

PAreq (!id, !immediate)

endif;

if is_dest(dest) and ((getdest(dest) = id) or (getdest(dest) = n)) then

Link4RH [...] (n, id, buf, getdest (dest))

elsif (dest = subactgap) then

Link0 [...] (n, id, buf)

else

LinkWSA [...] (n, id, buf, n)

endif

endloc

endproc

The third signal on the PDind gate is expected to be a header signal (see the Link4RH state), and the
fourth signal should be a data signal (see the Link4RD state).

process Link4RH [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE, dest: Nat)

: noexit

is

local var h: SIGNAL in

PDind (!id, ?h);

if valid_hpart (h) then

Link4RD [...] (n, id, buf, dest, h)

else

LinkWSA [...] (n, id, buf, dest)

endif

endloc

endproc

process Link4RD [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE,

dest: Nat, h: SIGNAL) : noexit

is

local var d: SIGNAL in

PDind (!id, ?d);

if is_data (d) then

Link4RE [...] (n, id, buf, dest, h, d)

else

LinkWSA [...] (n, id, buf, dest)

endif

endloc

endproc

If the packet is correctly terminated by an End or a Prefix signal, then it is indicated to Trans either
as a broadcast packet (state Link4BRec) or as a packet addressed to this node (state Link4DRec).
In both cases, the data checksum is verified. In the second case, the packet has to be acknowledged,
so when Bus becomes free (signaled by a PAcon action with parameter won), Link evolves into its
“send acknowledge mode” (state Link5).
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Any deviation of the above behaviour will cause Link to ignore the entire packet; it goes into the
LinkWSA state (see below) where it waits for a “subaction gap” signal.

process Link4RE [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE,

dest: Nat, h, d: SIGNAL) : noexit

is

local var e: SIGNAL in

PDind (!id, ?e);

if ((e = End) or (e = Prefix)) then

if (dest = id) then

Link4DRec [...] (n, id, buf, h, d)

else

Link4BRec [...] (n, id, buf, h, d)

endif

else

LinkWSA [...] (n, id, buf, dest)

endif

endloc

endproc

process Link4DRec [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE, h, d: SIGNAL)

: noexit

is

if (getdcrc (d) = check) then

LDind (!id, !good (gethead (h), getdata (d)))

else

LDind (!id, !dcrc_err (gethead (h)))

endif;

PAcon (!id, !won);

Link5 [...] (n, id, buf)

endproc

When a broadcast is received by Link, a link data indication (LDind action) is signaled to Trans,
and Link returns to its initial state. We will see later that this behaviour (which follows strictly the
state machine given in [IEE95, page 174] and the µCrl description of [Lut97]) is erroneous.

process Link4BRec [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE, h, d: SIGNAL)

: noexit

is

if (getdcrc (d) = check) then

LDind (!id, !broadrec (gethead (h), getdata (d)))

endif;

Link0 [...] (n, id, buf)

endproc

Send acknowledge mode While waiting for Trans to respond to a packet indication, Link keeps
Bus into the “busy” state by sending a Prefix signal on every clock indication. Upon receipt on
the LDres gate of a proper acknowledgement from Trans (together with an extra release or hold
parameter), Link evolves into the state Link6.
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process Link5 [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE) : noexit is

local var a: ACK, b: BOC in

LDres (!id, ?a, ?b);

Link6 [...] (n, id, buf, sig (acksig (a, crc (a))), b)

endloc

[]

PCind !id;

PDreq (!id, !Prefix);

Link5 [...] (n, id, buf)

endproc

In both release and hold cases, the acknowledgement is sent. If Trans indicates that no concate-
nated response is requested (release), Link releases the Bus and go to its initial state Link0. If a
concatenated response is requested, Link holds the Bus by responding to clock indications with a
Prefix signal (see state Link7).

process Link6 [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE,

p: SIGNAL, b: BOC) : noexit

is

PCind !id; PDreq (!id, !Start);

PCind !id; PDreq (!id, !p);

PCind !id;

if (b = release) then

PDreq (!id, !End);

Link0 [...] (n, id, buf)

else

PDreq (!id, !Prefix);

Link7 [...] (n, id, buf)

endif

endproc

Since Link already has control over Bus, upon receipt of a packet from the Trans via LDreq, it may
evolve into the send mode (state Link2resp) immediately.

process Link7 [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE) : noexit is

PCind !id;

PDreq (!id, !Prefix);

Link7 [...] (n, id, buf)

[]

local var dest: Nat, h: HEADER, d: DATA in

LDreq (!id, ?dest, ?h, ?d);

Link2resp [...] (n, id, buf, quadruple (dhead, sig (destsig (dest)),

sig (headersig (c, crc (c))),

sig (datasig (d, crc (d)))))

endloc

endproc

The state Link2resp differs from the state Link2req only by the presence of a non-void buffer, which
buffer has to be transmitted into the next fairness interval.

In the LinkWSA state, Link awaits either a “subaction gap” signal from Bus and then evolves into its
initial state, or a Bus indication of access granted. This access is due to the immediate arbitration
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request of Link. Therefore, if the destination signal indicates that the packet was meant for this Link,
the arbitration confirmation must be received and Bus control must be terminated immediately by
sending an End signal.

process LinkWSA [<<Link gates>>] (n, id: Nat, buf: SIG_TUPLE, dest: Nat) : noexit

is

loop in

local var p: SIGNAL in

PDind (!id, ?p);

if (p = subactgap) then

break

endif

endloc

[]

if (dest = id) then

PAcon (!id, !won);

PCind !id; PDreq (!id, !End);

break

endif

endloop;

Link0 [...] (n, id, buf)

endproc

Notice the use of the breakable ‘loop’ construct of E-Lotos instead of recursive processes as in
Lotos.

7 The TRANS layer behaviour

In order to verify the Link layer protocol, we had to specify the external behaviour of Trans w.r.t.
Link, although it was not formalized in [Lut97]. Our description of the Trans behaviour is based
on the state machine diagrams and informal explanation given in [IEE95].

For each node, the Trans layer provides read, write and lock transactions to the application running
on the node. Transactions use four service primitives of the Link layer, following to the Osi connection
establishment diagram (shown in Figure 4): (1) Request (performed on the LDreq gate) is used by a
Trans requester to start the transaction; (2) Indication (performed on the LDind gate) is used to
notify the Trans responder of an incoming request; (3) Response (performed on the LDres gate) is
used by the Trans responder to return status or data to the Trans requester; (4) Confirmation
(performed on the LDcon gate) is used to notify the Trans requester of the arrival of the corresponding
response.

At any time, the Trans entity of a node can process outgoing (request) and incoming (response) trans-
actions. The Trans behaviour is defined by the E-Lotos module below. The requester (TransReq)
and the responder (TransRes) processes, which handle the outgoing and incoming transactions, re-
spectively, evolve in parallel and synchronize on the LDreq gate. To improve readability, we use
the <<Trans gates>> shorthand notation for the following list of typed gates: LDreq: LDreqType,
LDcon: LDconType, LDind: LDindType, LDres: LDresType. Each process is parameterized by the
total number of nodes n and the identification number of its node id.
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Requester Responder

LDreq

LDind

Trans layer Trans layer

LDcon

LDres

Figure 4: The Link services offered to Trans

module TRANS import DATA is

process Trans [<<Trans gates>>] (n, id: Nat) : noexit is

TransReq [...] (n, id)

|[LDreq]|

TransRes [...] (n, id)

endproc

(* ... processes TransReq and TransRes *)

endmod

In the remainder of this Section, we present the TransReq and TransRes processes, considering only
the part of the Trans behaviour that is relevant w.r.t. the Link.

Request transaction When beginning an outgoing transaction, the Trans requester sends a data
request to the Link on the LDreq gate. The request consists of a destination node identifier (dest), a
header (h), and a data (d). Then, the requester waits for a confirmation on the LDcon gate, which can
indicate either a broadcast completion (broadsent), or an acknowledgement of the request (ackrec),
or a negative acknowledgement (ackmiss). In all cases, it returns to its initial state afterwards.

process TransReq [<<Trans gates>>] (n, id: Nat) : noexit is

loop forever var dest: Nat, h: HEADER, d: DATA in

LDreq (!id, ?dest, ?h, ?d) [dest le n];

(

if (dest = n) then

LDcon (!id, !broadsent)

else

LDcon (!id, ackrec (any: ACK))

endif

[]

LDcon (!id, !ackmiss)

)

endloop

endproc
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Notice the use of the ‘loop forever’ construct of E-Lotos, which allows to describe the cyclical
behaviour of the requester in a more concise way than using recursive process calls, as in Lotos.

Response transaction The responder awaits an indication of a transaction request on the LDind

gate. If a broadcast is indicated, the responder sends a response to the Link by means of
an LDres action with parameter no op. Otherwise, the Trans may either respond immediately
(concatenated transaction), or defer the response (split transaction). A concatenated transaction is
possible only if the requester is in its initial state (this is ensured by the synchronization on the
LDreq gate), and a link data response with parameter hold is sent. For a split transaction, a link
data response with parameter release is sent. After sending a link data response, the responder
returns to its initial state.

process TransRes [<<Trans gates>>] (n, id: Nat) : noexit is

loop forever var l: LIN_DIND in

LDind (!id, ?l);

if is_broadrec (l) then

LDres (!id, any: ACK, !no_op)

else

LDres (!id, any: ACK, !hold); (* concatenated transaction *)

LDreq (!id, any: Nat, any: HEADER, any: DATA)

[]

LDres (!id, any: ACK, !release) (* split transaction *)

endif

endloop

endproc

Notice again the use of the ‘loop forever’ construct of E-Lotos, and the use of ‘any’ patterns when
the values exchanged are not relevant.

In the remainder of the paper, we present the Cadp toolbox we used for this case-study and we
discuss the verification results obtained.

8 The CADP verification toolbox

The Cadp9 toolbox is dedicated to the design and verification of communication protocols and
distributed systems. Initiated in 1986, its development has been guided by several motivations:

� This toolbox aims to offer an integrated set of functionalities ranging from interactive simulation
to exhaustive, model-based verification methods. In particular, both logical and behavioural
specifications can be verified.

� A major objective of the toolbox is to deal with large case-studies. Therefore, in addition
to enumerative verification methods, it also includes more sophisticated approaches, such as
symbolic verification, on-the-fly verification, and compositional model generation.

� Finally, this toolbox can be viewed as an open software platform: in addition to Lotos, it also
supports lower-level formalisms such as finite state machines and networks of communicating
automata.

9Cæsar/Aldébaran Development Package
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In the sequel, we only present the tools used throughout this case-study:

�
Cæsar [GS90] and Cæsar.adt [Gar89] are compilers that translate a Lotos program into a
Labelled Transition System (Lts for short) describing its exhaustive behaviour. This Lts can
be represented either explicitly , as a set of states and transitions, or implicitly , as a library of
C functions allowing to execute the program behaviour in a controlled way.

�
Aldébaran [FKM93] is a verification tool for comparing or minimizing Ltss with respect to
(bi)simulation relations [Par81, Mil89]. Initially designed to deal with explicit Ltss produced by
Cæsar, it has been extended to also handle networks of communicating automata (for on-the-
fly and symbolic verification). Several simulation and bisimulation relations are implemented
within Aldébaran, which offers a wide spectrum for expressing such behavioural specifications.

We also used two new tools (not yet integrated in Cadp):

�
Xtl (eXecutable Temporal Language) [Mat94] is a functional language allowing a compact
description of various temporal logic operators to be evaluated over an Lts. The Xtl language
gives access to all the informations contained in the states and labels of an Lts and offers
primitives for exploring the transition relation. Temporal logic operators are implemented as
recursively defined functions operating on sets of states. A prototype compiler for Xtl has
been developed, and several temporal logics like Ctl [CES86] and Actl [NV90] have already
been implemented in Xtl.

�
Traian [Viv97] is a prototype translator from E-Lotos to Lotos, which is currently under
development. The current version supports a subset of E-Lotos [SG96] sufficient for this case-
study. It translates into Lotos all the constructs used in this paper, namely declarations (of
types, functions, and processes), simple behaviour expressions (parallel composition, choice,
‘if-then-else’, sequential composition, local declarations, loop constructs, action denotation,
process call), and simple data expressions (‘if-then-else’, local declarations, normal forms, and
operations calls).

9 Model generation

In order to perform verification by model-checking, we generated, using the Cadp tools, various Ltss
corresponding to the Ieee-1394 protocol.

First, we give the formal definition of the Lts model. Then, we present our experimental results
concerning the Ieee-1394 model generation.

9.1 The LTS model

According to the operational semantics of Lotos and untimed E-Lotos, both Lotos and E-Lotos

programs can be translated into (possibly infinite) Ltss, which encode all their possible execution
sequences. An Lts is formally defined as a quadruple M =

〈

Q, A, T, qinit
〉

where:

� Q is the set of states of the program;

� A is a set of actions performed by the program. An action a ∈ A is a tuple G V1, ..., Vn where
G is a gate and V1, ..., Vn (n ≥ 0) are the values exchanged (i.e., sent or received) during the
rendezvous at G. For the silent action τ , the value list must be empty (n = 0);
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� T ⊆ Q×A×Q is the transition relation. A transition 〈q1, a, q2〉 ∈ T (written also “q1
a

−→ q2”)
means that the program can move from state q1 to state q2 by performing action a;

� qinit ∈ Q is the initial state of the program.

For each state q ∈ Q, we note Path(q) the set of all paths q(= q0)
a0−→ q1

a1−→ q2... issued from q.

9.2 LTS generation for IEEE-1394

In order to generate the Ltss corresponding to the Ieee-1394 E-Lotos description, we used the
following methodology: (1) Selection of appropriate abstractions allowing to generate finite Ltss of
tractable size; (2) Translation of the E-Lotos descriptions in Lotos using the Traian tool; (3)
Translation of the resulting Lotos descriptions into Ltss using the Cæsar and Cæsar.adt compil-
ers; (4) Minimization of the resulting Ltss modulo strong bisimulation [Par81] using the Aldébaran

tool.

To generate finite Ltss, we restricted to finite sets the domains of all protocol parameters. Therefore,
in each experiment we gave a fixed value for the number of nodes n.

To keep the state space tractable, we made additional restrictions. Firstly, we restricted the domain
of the sorts HEADER, DATA, and ACK to a single value. Secondly, we required that each Trans process
performs a finite number of request transactions. This can be elegantly modeled by adding to each
node an Application process, which performs a finite number k of requests on the LDreq gate. The
behaviour of the Trans process presented in Section 7 becomes:

TransReq [...] (n, id)

|[LDreq]|

(

TransRes [...] (n, id)

|||

Application [LDreq]

)

Finally, we considered three particular scenarios for the applications connected to the Trans level:

S1. All the applications are passive (behaviour stop), except one (e.g., node 0) that performs a single
request (behaviour LDreq (!id, !dest, !h, !d); stop).

S2. All the applications perform a single request (behaviour LDreq (!id, !dest, !h, !d); stop).

S3. All the applications are passive (behaviour stop), except one (e.g., node 0) that performs only k

broadcast requests (behaviour LDreq (!id, !n, !h, !d) repeated k times).

The experiments on scenarios S1 and S2 were performed for a number of requests k fixed to 1, and
for a number of nodes n varying between 1 and 3. The experiments on scenario S3 were performed
for n fixed to 2, and for k ranging between 2 and 4. The results of Ltss generation are given in
Table 1. For each experiment, the table gives the size (in number of states and transitions) of the
Lts and the time (in hours, minutes, and seconds) required for its generation.

All the experiments but one were performed on a Sun Ultra Sparc-1 machine (143 MHz) with
256 Mbytes of memory. The experiment on scenario S2 with n = 3 and k = 1 has been per-
formed on a Sun Enterprise-4000 machine with 2 Gbytes of memory: the corresponding results are
partial, because the generation was interrupted due to memory limitations.
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sc. n k protocol LTS time
states trans.

1 1 42 42 0 : 00′53′′

S1 2 1 1,552 1,836 0 : 01′00′′

3 1 85,780 109,775 0 : 15′41′′

1 1 42 42 0 : 00′52′′

S2 2 1 658,468 822,453 0 : 55′45′′

3 1 >6,942,719 >17,226,055 9 : 34′31′′

2 2 4,894 6,716 0 : 01′07′′

S3 2 3 26,136 37,975 0 : 01′22′′

2 4 76,660 115,770 0 : 03′30′′

Table 1: Results of Ltss generation for Ieee-1394

The state explosion problem prevented us from studying more complex scenarios with a greater
number of nodes and/or requests. We could identify several reasons for this:

� A rough estimation of the state space for n = 2 (based on the sizes of state variable domains)
gives six million states approximately.

� The presence of an unreliable medium induces a high degree of non-determinism: a signal can
disappear, change its size or its destination, or be corrupted.

� This non-determinism is propagated to the Link layer, which uses a “line listening” protocol,
and therefore must take into account all possible incoming signals.

� The splitting of each data packet into four signals causes a “fine granularity” of the protocol
behaviour.

10 Verification using temporal logic

The Cadp toolbox offers two different verification approaches: bisimulations (using the Aldébaran

tool) and temporal logic properties (using the Xtl tool). In this case-study we chose the second
approach, because the desired correctness properties for the Ieee-1394 protocol expressed in natural
language (see Section 10.2) are easier to translate into temporal logic formulas rather than bisimula-
tions between Ltss and lead to shorter specifications.

As the dynamic semantics of Lotos and E-Lotos are action-based, it is natural to express the
properties of programs in a temporal logic interpreted over the actions of Ltss. We used here a
simplified fragment of the Actl (Action Ctl) temporal logic defined in [NV90], which is sufficiently
powerful to express safety and liveness properties.

First, we briefly present the syntax and semantics of the Actl fragment we used, then we express
in Actl the required properties of the Ieee-1394 protocol, and finally, we discuss the verification
results obtained.
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10.1 The ACTL temporal logic

In order to express predicates over the program actions (the so-called basic predicates), a small
auxiliary logic of actions is needed. The action formulas α of this logic have the following syntax:

α ::= true

| {G V1, ..., Vn}
| ¬α

| α ∧ α′

The construction {G V1, ..., Vn} denotes an action pattern, where G is a gate name and the values
Vi (1 ≤ i ≤ n, n ≥ 0) match the corresponding values exchanged (i.e., sent or received) when the
action is performed. For simplicity purposes, and unlike the original Actl logic, we also allow action
patterns (of the form {τ}) matching τ -actions.

Of course, the usual derived boolean operators are also allowed: we write false for ¬ true, α ∨ α′

for ¬(¬α ∧ ¬α′), and α =⇒ α′ for ¬α ∨ α′.

The action formulas α are interpreted over the actions a ∈ A of the model M =
〈

Q, A, T, qinit
〉

corresponding to a Lotos program. The satisfaction of an action formula α by an action a ∈ A,
written a |=M α (or simply a |= α if the model M is understood), is defined inductively by:

a |= true always;
a |= {G V1, ..., Vn} iff a = G V1, ..., Vn;
a |= ¬α iff a 6|= α;
a |= α ∧ α′ iff a |= α and a |= α′.

The formulas ϕ of the Actl fragment we used are defined by the following syntax:

ϕ ::= true

| ¬ϕ

| ϕ ∧ ϕ′

| init

| EXαϕ

| AXαϕ

| E [ϕαUϕ′]
| E [ϕαUα′ϕ′]
| A [ϕαUϕ′]
| A [ϕαUα′ϕ′]

The “init” formula (which is not part of the original Actl definition) characterizes the initial state
of an Lts. We added it in order to express more naturally certain properties.

The satisfaction of an Actl formula ϕ by a state q ∈ Q of an Lts M =
〈

Q, A, T, qinit
〉

, written
q |=M ϕ (or simply q |= ϕ if the model M is understood), is defined inductively by:

q |= true always;
q |= ¬ϕ iff q 6|= ϕ;
q |= ϕ ∧ ϕ′ iff q |= ϕ and q |= ϕ′;
q |= init iff q = qinit ;

q |= EXαϕ iff ∃q
a

−→ q′ ∈ T such that a |= α and q′ |= ϕ;

q |= AXαϕ iff ∀q
a

−→ q′ ∈ T , a |= α and q′ |= ϕ;

q |= E [ϕαUϕ′] iff ∃q(= q0)
a0−→ q1

a1−→ ... ∈ Path(q),
∃k ≥ 0 such that qk |= ϕ′ and ∀i ∈ [0; k − 1], qi |= ϕ and ai |= α;

q |= E [ϕαUα′ϕ′] iff ∃q(= q0)
a0−→ q1

a1−→ ... ∈ Path(q),
∃k > 0 such that qk |= ϕ′ and ∀i ∈ [0; k − 1], qi |= ϕ and
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∀j ∈ [0; k − 2], aj |= α and ak−1 |= α′;

q |= A [ϕαUϕ′] iff ∀q(= q0)
a0−→ q1

a1−→ ... ∈ Path(q),
∃k ≥ 0 such that qk |= ϕ′ and ∀i ∈ [0; k − 1], qi |= ϕ and ai |= α;

q |= A [ϕαUα′ϕ′] iff ∀q(= q0)
a0−→ q1

a1−→ ... ∈ Path(q),
∃k > 0 such that qk |= ϕ′ and ∀i ∈ [0; k − 1], qi |= ϕ and
∀j ∈ [0; k − 2], aj |= α and ak−1 |= α′.

A model M =
〈

Q, A, T, qinit
〉

satisfies a formula ϕ, noted M |= ϕ (or simply ϕ if the model M is
understood), if and only if q |= ϕ for all q ∈ Q.

Besides the usual derived boolean operators, we allow the following useful derived modalities:

〈α〉ϕ = EXαϕ

[α] ϕ = ¬ 〈α〉 ¬ϕ

EFαϕ = E [trueαUϕ]
AFαϕ = A [trueαUϕ]
EGαϕ = ¬AFα¬ϕ

AGαϕ = ¬EFα¬ϕ

The 〈α〉ϕ and [α] ϕ operators are the well-known Hennessy-Milner modalities [HM85]. A state q

satisfies 〈α〉ϕ (resp. [α] ϕ) iff some (resp. all) of its direct successors reached after an action satisfying
α satisfies (resp. satisfy) ϕ. A state q satisfies EFαϕ (resp. AFαϕ) iff some path (resp. all paths)
issued from q leads (resp. lead) via actions satisfying α to a state satisfying ϕ. A state q satisfies
EGαϕ (resp. AGαϕ) iff for some path (resp. all paths) issued from q, every prefix consisting of
actions that satisfy α leads to a state satisfying ϕ.

10.2 The correctness properties

The expected functioning of the Ieee-1394 Link layer protocol was informally characterized by
Luttik [Lut97] in the form of five correctness requirements stated in natural language. Here, we
formally express these properties as Actl temporal logic formulas.

For conciseness, when writing the Actl formulas, we will use suggestive names for the action patterns
rather than their precise syntax defined in Section 10.1. For example, instead of writing “{ PAreq

!id !immediate }” for the action pattern denoting the emission of a request by the node id on gate
PAreq with parameter immediate, we will simply write “PAREQ id immediate.”

Also, whenever possible, we will use the shorthand notation “INEV(α1, α2) = A [trueα1
Uα2

true]”,
meaning that the program eventually performs an action satisfying α2, possibly preceded only by
actions satisfying α1.

The five correctness properties can be formulated in Actl as follows.

Property 1. The protocol is deadlock free.

We must express this property in the context of the finite behaviours we considered for Trans:
when all Trans entities have reached their quota (in terms of transaction requests), the protocol will
eventually reach a “terminating state”, since no more request transaction can be done. The problem
is to make a distinction between these terminating states (artifacts of our machine limitations) and
real deadlocks. A careful examination of the Link and Trans behaviours allowed us to identify
these “correct” terminating states: they can occur only after an “arbitration reset gap” signal (action
pattern arbresgap) followed by 0 or more confirmations that are sent back to the Trans layer
(action pattern LDcon any). Thus, a deadlock occurring in a state different from the aforementioned
terminating states is a real one. The formula below expresses that no such deadlock can be reached
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from the initial state of the program.

init =⇒ ¬EFtrue 〈¬(arbresgap ∨ LDcon any)〉 EFLDcon any [true] false

Property 2. Between two subsequent “subaction gap” signals (action pattern PDind any sgap) at
most two asynchronous packets have traveled over the Bus.

We model the fact that a packet has traveled over the Bus by means of the LDcon any action pattern,
which stands for the reception of a confirmation on the LDcon gate by some Trans requester.

AGtrue [PDind any sgap]
AG

¬(PDind any sgap ∨ LDcon any) [LDcon any]

AG
¬(PDind any sgap ∨ LDcon any) [LDcon any]

AG
¬PDind any sgap [LDcon any] false

Property 3. If a node 0 ≤ id ≤ n−1 emitted a request on the LDreq gate (action pattern LDreq id)
and node id communicates a request on the PAreq gate (action pattern PAreq id) each time it receives
a “subaction gap” signal on the PDind gate (action pattern PDind id sgap) — and before an “arbitra-
tion reset gap” signal (action pattern arbresgap) occurs — it also eventually receives a confirmation
on the LDcon gate (action pattern LDcon id).

AGtrue [LDreq id]
AG

¬(PDind id sgap ∨ arbresgap ∨ LDcon id) [PDind id sgap]

AG
¬(PAreq id ∨ arbresgap) [PAreq id]

INEV(¬arbresgap, LDcon id)

Here we added the predicate “¬arbresgap” as first argument to the INEV operator (and also as
part of the action predicates guarding the last two AG operators) in order to ensure that we refer to
the same fairness interval (i.e., no arbresgap action occurred meanwhile).

Property 4. Every request emitted by node 0 ≤ id ≤ n−1 on gate PAreq with parameter immediate

(action pattern PAreq id immediate) is followed by a matching confirmation on gate PAcon with
parameter won (action pattern PAcon id won).

AGtrue [PAreq id immediate] INEV(¬PAreq id immediate, PAcon id won)

Property 5. Between two subsequent “arbitration reset gap” signals (action pattern arbresgap) no
node 0 ≤ id ≤ n − 1 receives a confirmation on gate PAcon with parameter won (action pattern
PAcon id won) upon a request on gate PAreq with parameter fair (action pattern PAreq id fair)
more than once.

AGtrue [arbresgap]
AG

¬arbresgap [PAreq id fair] [PAcon id won]

AG
¬arbresgap [PAreq id fair] [PAcon id won] false

Notice again the predicate “¬arbresgap” used in the last two AG operators in order to ensure that
no “arbitration reset gap” signal occurred since the one matched by the first box modality.

The properties 1, 3, and 4 are liveness properties; properties 2 and 5 are safety properties.
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10.3 The verification results

The five temporal logic formulas given in Section 10.2 were evaluated on the Ltss corresponding to
the scenarios S1, S2, and S3 using the Xtl [Mat94] prototype model-checker.

It is worth noticing that, since the Xtl language allows the definition of macro-notations (for action
predicates as well as for temporal operators), the Actl formulas given in Section 10.2 are almost
identical to those written in the Xtl source code.

The verifications were performed for all the Ltss produced by model generation (see Section 9). For
each Lts, the time needed for evaluating the five formulas was less than one minute.

Properties 2 through 5 are true on all scenarios.

Property 1 is false on all scenarios, meaning that an unexpected deadlock occurs in the protocol. We
obtained a counter-example by considering the following formula, disjoint from property 1:

init =⇒ EFtrue 〈¬(arbresgap ∨ LDcon any)〉 [true] false

meaning that there is a sequence starting from the initial state and leading to a “real deadlock”
(according to the definition given in Section 10.2):

qinit

a0

−→ q1
a1

−→ · · ·
al−1

−→ ql
al

−→ qdeadlock

where al |= ¬(arbresgap ∨ LDcon any). The minimal sequence of this kind we were able to find
using the exhibitor tool of Cadp was of length l = 50.

By examining this sequence, we were able to identify the cause of the deadlock, which is the absence
of the LDres action in the Link state Link4BRec after receiving a broadcast packet (see Section 6).
Although both the state machine of Link and the µCrl description [Lut97] do not specify the LDres

action, the Ieee-1394 Standard [IEE95] says that: “The transaction layer shall communicate this
response [link data response, LDres] after receiving a link data indication”. However, when the Link

layer receives a link data response in reaction to a link data indication of a broadcast, “the link layer
shall do nothing” (page 148). In this sense, the standard is ambiguous, because it does not specify
clearly the semantics of the interconnection between the state machines: in the state machine diagram
of Link, no link data response can be accepted after a link data indication of broadcast arrival.

A correct version of the Link4BRec body is given below. This behaviour corrects the state machine
given in [IEE95, page 174] and the µCrl description and is compatible with the explanatory text of
the Link services given at pages 147–148 of the Ieee-1394 Standard.

if (getdcrc (d) = check) then

LDind (!id, !broadrec (gethead (h), getdata (d)));

LDres (!id, any ACK, !no_op) (* added to avoid deadlock *)

endif;

Link0 [...] (n, id, buf)

Using this correct version of the Link, we generated again the models for all scenarios given in
Section 9. Since the sizes of the new Ltss are very close to the previous ones, we do not give them
here.

On the new Ltss, all the five correctness properties have been checked to be true.
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11 Conclusion

In this paper, we presented the formal description in E-Lotos of the Link layer protocol of the
“FireWire” high performance serial bus defined in the Ieee-1394 Standard [IEE95] and its verifica-
tion by model-checking using the Cadp (Cæsar/Aldébaran) protocol engineering toolbox. The
E-Lotos descriptions of the Link and Bus layers were derived from the corresponding ones written
in µCrl by Luttik [Lut97]. The description of the Trans layer is based on the state machines and
text explanations given in [IEE95].

The E-Lotos description we obtained has 7 pages instead of 13 pages of µCrl in [Lut97]. Especially
for the data types, the gain in conciseness is significant: 4 pages of E-Lotos instead of 8 pages of
µCrl. Also, it is worth noticing that E-Lotos allows a clearer and more readable description of the
behaviour expressions than Lotos and µCrl. In this sense, the fragment of E-Lotos language we
used seems to be adequate to protocol description, and eliminates some deficiencies of Lotos.

To perform model-checking verifications, we generated the Labelled Transition Systems (Ltss) of
the protocol by translating the E-Lotos descriptions in Lotos using the Traian compiler, and
then using the Cæsar and Cæsar.adt compilers. To obtain Ltss of tractable size, we limited the
domains of the protocol parameters (at most three nodes connected to the Bus) and we considered
only three finite scenarios for the Trans layer.

We performed verification by means of temporal logics using the Xtl prototype model-checker. We
expressed in the Actl temporal logic a set of five correctness properties given in natural language
by Luttik [Lut97] and we verified them on the Ieee-1394 Lts.

This verification approach allowed us to exhibit a missing transition in the state machine of Link

given in the Ieee-1394 Standard, which would induce a deadlock in the implementations that follow
strictly this state machine (as it is the case with the µCrl description). We corrected our E-Lotos

description by adding this missing transition; on the new version of the protocol, all the correctness
properties were successfully verified. We consider that, to avoid such ambiguities, the Ieee-1394
Standard should be improved by giving a precise definition of the state machine transitions and a
formal semantics of state machine parallel composition.

The effort used up to perform this case-study was one man-month. The most important part of this
effort was concentrated in finding the “good” abstractions of the Trans layer behaviour, in order to
avoid state explosion10. Although we were not able to generate the model for an infinite behaviour of
the Trans, the search for appropriate abstractions increased our confidence on the good functioning
of the protocol obtained after correction.

This experience enforced our opinion that formal methods are very useful to the design and devel-
opment of complex, critical applications. Using a formal approach, one can benefit not only of a
disciplined methodology avoiding the ambiguities that may occur in semi-formal descriptions, but
also of a basis for exhaustive verification.
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A Description of the data structures

This Annex presents the E-Lotos module DATA defining the data types used in the protocol. The
types Nat and Bool are predefined E-Lotos types for natural numbers and booleans. The auxiliary
module ENUM2 is used to define in a uniform manner the types CHECK, DATA, HEADER, ACK, PHY AREQ,
and PHY ACONF, which are all enumerated types with two values.

module ENUM2 is

type ENUM2 is v1 | v2 endtype

endmod

module DATA

import

ENUM2 renaming (CHECK for ENUM2, bottom for v1, check for v2),

ENUM2 renaming (DATA for ENUM2, d1 for v1, d2 for v2),

ENUM2 renaming (HEADER for ENUM2, h1 for v1, h2 for v2),

ENUM2 renaming (ACK for ENUM2, a1 for v1, a2 for v2),

ENUM2 renaming (PHY_AREQ for ENUM2, fair for v1, immediate for v2),

ENUM2 renaming (PHY_ACONF for ENUM2, won for v1, lost for v2)

is

function crc (d: DATA) : CHECK is check endfun

function crc (h: HEADER) : CHECK is check endfun

function crc (a: ACK) : CHECK is check endfun

type BOC is release | hold | no_op endtype

type ACKSIG is acksig (a: ACK, c: CHECK) endtype

type DESTSIG is destsig (dest: Nat) endtype

type HEADERSIG is headersig (h: HEADER, c: CHECK) endtype

type DATASIG is datasig (d: DATA, c: CHECK) endtype

type SIGNAL is ACK, ACKSIG,

sig (dest: DESTSIG) | sig (h: HEADERSIG)

| sig (d: DATASIG) | sig (a: ACKSIG)

| dhead

| Start | End | Prefix

| subactgap | Dummy

endtype

function is_dest (x: SIGNAL) : Bool is

case x is

sig (?xdest: DESTSIG) -> true

| otherwise -> false

endcase

endfun
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function is_header (x: SIGNAL) : Bool is

case x is

sig (?xsigh: HEADERSIG) -> true

| otherwise -> false

endcase

endfun

function is_data (x: SIGNAL) : Bool is

case x is

sig (?xsigd: DATASIG) -> true

| otherwise -> false

endcase

endfun

function is_ack (x: SIGNAL) : Bool is

case x is

sig (?xsiga: ACKSIG) -> true

| otherwise -> false

endcase

endfun

function is_physig (x: SIGNAL) : Bool is

case

x::Start or x::End or x::Prefix or x::subactgap -> true

| otherwise -> false

endcase

endfun

function valid_ack (x: SIGNAL) : Bool is

case x is

sig (acksig (?xa: ACK, ?xc: CHECK)) -> xc = check

| otherwise -> false

endcase

endfun

function valid_hpart (x: SIGNAL) : Bool is

case x is

sig (headsig (?xh: HEADER, ?xc: CHECK)) -> xc = check

| otherwise -> false

endcase

endfun

function getdest (x: SIGNAL) : Nat is

case x is

sig (destsig (?xn: Nat)) -> xn

endcase

endfun
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function gethead (x: SIGNAL) : HEADER is

case x is

sig (headersig (?xh: HEADER, ?xc: CHECK)) -> xh

endcase

endfun

function getdcrc (x: SIGNAL) : CHECK is

case x is

sig (datasig (?xd: DATA, ?xc: CHECK)) -> xc

endcase

endfun

function getdata (x: SIGNAL) : DATA is

case x is

sig (datasig (?xd: DATA, ?xc: CHECK)) -> xd

endcase

endfun

function getack (x: SIGNAL) : ACK is

case x is

sig (acksig (?xa: ACK, ?xc: CHECK)) -> xa

endcase

endfun

function corrupt (x: SIGNAL) : SIGNAL is

case x is

sig (headersig(?xh: HEADER, ?xc: CHECK)) -> sig (headersig(xh, bottom))

| sig (datasig (?xd: DATA, ?xc: CHECK)) -> sig (datasig (xd, bottom))

| sig (acksig (?xa: ACK, ?xc: CHECK)) -> sig (acksig (xa, bottom))

| otherwise -> x

endcase

endfun

type SIG_TUPLE is

quadruple (dh: SIGNAL, dest: SIGNAL, h: SIGNAL, d: SIGNAL)

| void

endtype

function is_void (x: SIG_TUPLE) : Bool is

case x is

void -> true

| otherwise -> false

endcase

endfun

type LIN_DCONF is

ackrec (a: ACK) | ackmiss | broadsent

endtype
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type LIN_DIND is

good (h: HEADER, d: DATA)

| broadrec (h: HEADER, d: DATA)

| dcrc_err (h: HEADER)

entype

function is_broadcast (x: LIN_DIND) : Bool is

case x is

broadrec (?xh: HEADER, ?xd: DATA) -> true

| otherwise -> false

endcase

endfun

type LDreqType is (id: Nat, dest: Nat, h: HEADER, d: DATA) endtype

type LDconType is (id: Nat, dc: LIN_DCONF) endtype

type LDindType is (id: Nat, di: LIN_DIND) endtype

type LDresType is (id: Nat, a: ACK, b: BOC) endtype

type PDreqType is (id: Nat, s: SIGNAL) endtype

type PDindType is (id: Nat, s: SIGNAL) endtype

type PAreqType is (id: Nat, ar: PHY_AREQ) endtype

type PAconType is (id: Nat, ac: PHY_ACONF) endtype

type BoolTABLE is

empty

| btable (x: Nat, b: Bool, t: BoolTABLE)

endtype

function init (x: Nat) : Booltable is

case x is

0 -> empty

| otherwise -> btable (x-1, false, init (x-1))

endcase

endfunc

function invert (x: Nat, t: BoolTABLE) : BoolTABLE is

case t is

empty -> empty

| btable (?xnat: Nat, ?xbool: Bool, ?xbt: BoolTABLE) ->

if (xnat = x) then

btable (xnat, not (xbool), xbt)

else

btable (xnat, xbool, invert (x, xbt)
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endif

endcase

endfunc

function get (x: Nat, t: BoolTABLE) : Bool is

case t is

empty -> true

| btable (?xnat: Nat, ?xbool: Bool, ?xbt: BoolTABLE) ->

if (xnat = x) then

xbool

else

get (x, xbt)

endif

endcase

endfunc

function zero (t: BoolTABLE) : Bool is

case t is

empty -> true

| otherwise -> false

endcase

endfunc

function one (t: BoolTABLE) : Bool is

case t is

empty -> false

| btable (any: Nat, any: Bool, ?xbt: BoolTABLE) -> zero (xbt)

endcase

endfunc

function more (t: BoolTABLE) : Bool is

not (zero (t)) and not (one (t))

endfunc

endmod
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