
The BCG PostScript Format

Louis-Pascal Tock
INRIA Rhône-Alpes / Verimag

October 1995 (updated May 2000)

Abstract

This document describes the format of the PostScript files generated by bcg draw and used
in bcg edit. Such files specify at once the structure of a BCG graph (states and transitions)
and its graphical representation printable on any postscript printer. Any graph coded using this
format can be modified interactively using the WYSIWYG (What You See Is What You Get)
BCG graph editor called bcg edit.

1 Features of a BCG graph

The BCG PostScript Format (BCG PSF) provides users with a powerful way for building any kind
of graph. This format replaces the PostScript format generated by the early version of the bcg draw

tool described in [Ruf94]. Transitions can be represented either as straight edges, symmetrical curved
edges, asymmetrical curved edges or loops (see Figure 1). Moreover, the arrow’s shape and the vertex
radius can easily be modified by the user.

2 Organization of the PostScript file

The BCG PSF is divided into five sections occurring in the following order:

1. Preamble section;

2. Constant section;

3. Header section;

4. Graph section;

5. Footer section.

Preamble section, header section and footer section are the same for all graphs. Only constant section
and graph section have to be updated when modifying an already existing graph.

3 The preamble section

The preamble section should follow the PostScript file conventions. It must contain the graph’s name,
the creator’s name, the coordinates of the bounding box, etc. For instance:

1

Figure 1: Items available for drawing your graph.

%!PS-Adobe-2.0

%%Title: <the name of your graph>

%%Creator: <you or the name of the tool you used>

%%CreationDate: <the current date>

%%Pages: 1

%%BoundingBox: <x1> <y1> <x2> <y2>

%%EndComments

4 The constant section

This section is delimited by two special lines, respectively:

% BCG_BEGIN_SECTION_1

...

% BCG_END_SECTION_1

which are recognized by the bcg edit tool. Its purpose is to define constants used for drawing the
graph as the vertex radius, the arrow’s shape and the font. This section must contain the following
constant declarations.

% BCG_BEGIN_SECTION_1

/vertex_radius { <a float number> } def

/arrow_shape_1 { <a float number> } def

/arrow_shape_2 { <a float number> } def

/arrow_shape_3 { <a float number> } def

/Times-Roman findfont 10.000000 scalefont setfont

/text_y_shift { -3 } def

2

% BCG_END_SECTION_1

vertex radius is the radius of the vertices (unit: the PostScript point). Figure 2 explains the
meaning of the constants arrow shape 1, arrow shape 2 and arrow shape 3 (unit: the PostScript
point) which define the shape of the arrows. text y shift is used for placing the edge’s labels

Arrow_shape_2

Arrow_shape_3

Arrow_shape_1

Figure 2: Shape of the arrows.

and should not be changed while you use the Times-Roman font given in the example. The current
versions of bcg draw and bcg edit only use this Times-Roman font. Other fonts are not recognized
by bcg edit.

5 The header section

This section should reproduce the contents of the file $CADP/incl/bcg draw header.ps distributed
with the CADP toolbox. It defines a collection of PostScript functions to be used in the next section.
Examples of these functions are vertex, edge, spline.

6 The graph section

This section is delimited by two lines, respectively:

% BCG_BEGIN_SECTION_2

...

% BCG_END_SECTION_2

It specifies the graph’s structure in using the Bcg Psf functions defined in the header section. These
functions occurred in any order and draw an element of the graph: a vertex, a straight edge, a
symmetrical curved edge, an asymmetrical curved edge or a loop. For instance, the following lines
will produce the graph shown in Figure 3.

% BCG_BEGIN_SECTION_2

(4) 244.71 265.15 vertex

(1) 129.552 308.334 vertex

(2) 316.683 236.361 vertex

(20) 388.657 308.334 vertex

(3) 475.025 308.334 vertex

(DIS REQ) 316.717 194.423 323.225 226.301 343.942 194.444 \

289.492 194.401 306.351 220.416 1.0 \

spline % 2 2 50.0 -1.57 1.0

3

(CON REQ) 170.461 232.039 130.877 296.408 143.947 178.782 \

201.526 293.94 228.901 275.69 1.0 spline % 1 4 0.96

(DIS IND) 191.773 368.303 133.901 319.519 158.541 382.898 \

446.036 382.898 468.14 326.043 1.0 \

spline % 1 3 80.0 1.2 0.52

(CON IND) 270.759 254.731 305.542 240.818 262.351 258.094 \

1.0 edge % 2 4 0.7

(DATE REQ) 266.296 306.529 379.545 316.143 350.691 340.871 \

258.496 313.212 249.949 283.414 1.0 \

spline % 20 4 50.0 1.0 1.52

(CON RESP) 439.038 250.756 465.655 300.838 403.052 250.756 \

475.025 250.756 404.466 297.795 1.0 \

spline % 3 20 1.0

(DATE IND) 336.169 255.846 325.169 244.846 375.222 294.899 \

1.0 edge % 2 20 0.2

% BCG_END_SECTION_2

Figure 3: An example of graph.

There should be one line per vertex or transition. In the previous example, we inserted backslash
characters at the end of the line which have to be wrapped to fit into the page width. Although the
data occurring after the % character are considered as comments by PostScript interpreters, they
should not be removed because they contain additional informations required by the bcg edit tool.

In order to quickly print the graph, Bcg Psf performs few calculations. In the sequel, we give the
syntax of the line used to define each item and algorithms allowing to compute values required for
the printing (your program will have to carry out these calculations). We use the following notations:

• <Label> is a text string corresponding to the label of an edge. According to PostScript

4

conventions, every occurrence of the characters “(”, “)”, or “\” in this string must be preceded
by a backslash character, i.e., ‘\(”, “\)”, or “\\”;

• <Number> is an integer;

• Lx, Ly are the abscissa and ordinate of a label’s center, given in PostScript point;

• Xn, Yn are the abscissa and ordinate of a control point, given in PostScript point;

• S is the arrow scale factor of an edge. It is contained between 0 and 1.0. When the distance
between two vertices is less than the ARROW SHAPE 1 constant, this factor allows to reduce the
arrow’s size. In that case, ARROW SHAPE 1, ARROW SHAPE 2 and ARROW SHAPE 3 are multiplied
by S before being used;

• orig, dest are the origin and destination state number of an edge. These numbers refer to
vertices whose labels were <orig> and <dest>;

• t is the position of a label on an edge;

• Xorig, Yorig are the center’s abscissa and ordinate of the origin vertex of an edge, given in
PostScript point;

• Xdest, Ydest are the center’s abscissa and ordinate of the destination vertex of an edge, given in
PostScript point.

6.1 Vertex description

A line of the form [(<Number>) X Y vertex] creates a vertex centered in X, Y and labeled by Number.
This label will be drawn in the center of the vertex. Number becomes the number of the vertex. See
figure 4.

<Number>

X

Y

Figure 4: Vertex.

6.2 Straight edge description

A line of the form [(<Label>) Lx Ly X1 Y1 X2 Y2 S edge % orig dest t] creates a straight edge starting
at X1, Y1 (the border of the vertex origin), ending at X2, Y2 (the border of the vertex destination) and
labeled by Label. The label’s position is given by the ratio t = d

D
where d is the distance between the

origin and the label’s center, and D is the distance between the two vertices’ borders. For example,
a 0.5 ratio means that the label is centered on the edge. An arrow scaled using S is added at the end
of the edge. See Figure 5.

5

X1

Y1
d

<Label>

D

X2

Y2

Figure 5: Straight edge.

The algorithm computing Lx, Ly, X1, Y1, X2, and Y2 from orig, dest, S and t is given below.

if Xdest = Xorig then

dx1 = 0; dx2 = 0
if Ydest > Yorig then

dy1 = VERTEX RADIUS
dy2 = VERTEX RADIUS + ARROW SHAPE 1 ∗ S

else

dy1 = −VERTEX RADIUS
dy2 = −(VERTEX RADIUS + ARROW SHAPE 1 ∗ S)

endif

else

α = arctan(
Ydest−Yorig

Xdest−Xorig
)

dx1 = cos (α) ∗ VERTEX RADIUS
dy1 = sin (α) ∗ VERTEX RADIUS
dx2 = cos (α) ∗ (VERTEX RADIUS + ARROW SHAPE 1 ∗ S)
dy2 = sin (α) ∗ (VERTEX RADIUS + ARROW SHAPE 1 ∗ S)

endif

if Xdest < Xorig then

dx1 = −dx1; dy1 = −dy1

dx2 = −dx2; dy2 = −dy2

endif

X1 = Xorig + dx1; Y1 = Yorig + dy1

X2 = Xdest − dx2; Y2 = Ydest − dy2

6

(* Label coordinate calculation *)

d =
√

(Xdest − Xorig)2 + (Ydest − Yorig)2 ∗ t

if Xdest = Xorig then

dx = 0
if Ydest > Yorig then dy = d

else dy = −d

else

α = arctan(
Ydest−Yorig

Xdest−Xorig
)

dx = d ∗ cos (α)
dy = d ∗ sin (α)

endif

if Xdest < Xorig then dx = −dx; dy = −dy

Lx = Xorig + dx

Ly = Yorig + dy

6.3 Symmetrical curved edge description

A line of the form [(<Label>) Lx Ly X1 Y1 X2 Y2 X3 Y3 X4 Y4 S spline % orig dest ρ θ t] creates
a symmetrical curved edge labeled by Label. This curved line is made of two Bézier curves defined
by the two control points C (X2, Y2) and C’ (X3, Y3). It is symmetrical to the median line of the
segment defined by the two vertices. Because C’ is the symmetrical point of C with respect to the
perpendicular line, it is sufficient to specify the curve’s shape by ρ and θ as described in Figure 6.
ρ and θ are the polar coordinates of C. An arrow scaled using S is added at the end of the curve.

Rho

C’

Theta

C

Y1

X1

Y2

X2 X3

Y3

X4

Y4

Figure 6: Symmetrical curved edge.

t, contained between 0 and 2, specifies the position of the label on either the first Bézier curve
(0 ≤ t ≤ 1) or the second Bézier curve (1 ≤ t ≤ 2). For example, a 1.0 ratio means that the label is
centered on the edge.

The algorithm computing Lx, Ly, X1, Y1, X2, Y2, X3, Y3, X4, and Y4 from orig, dest, ρ, θ, S and t

is given below.

7

if Xdest = Xorig then

if Ydest < Yorig then α = −π
2

else α = π
2

else

α = arctan (
Ydest−Yorig

Xdest−Xorig
)

if Xdest < Xorig then α = −α

endif

dx1 = cos (θ + α) ∗ VERTEX RADIUS
dy1 = sin (θ + α) ∗ VERTEX RADIUS
dx2 = cos (θ + α) ∗ ρ; dy2 = sin (θ + α) ∗ ρ

dx3 = cos (θ − α) ∗ ρ; dy3 = sin (θ − α) ∗ ρ

dx4 = cos (θ − α) ∗ (VERTEX RADIUS + ARROW SHAPE 1 ∗ S)
dy4 = sin (θ − α) ∗ (VERTEX RADIUS + ARROW SHAPE 1 ∗ S)
dx4L = cos (θ − α) ∗ VERTEX RADIUS
dy4L = sin (θ − α) ∗ VERTEX RADIUS
if Xdest < Xorig then

dx1 = −dx1; dx2 = −dx2

dx3 = −dx3; dx4 = −dx4

endif

X1 = Xorig + dx1; Y 1 = Yorig + dy1

X2 = Xorig + dx2; Y 2 = Yorig + dy2

X3 = Xdest − dx3; Y 3 = Ydest + dy3

X4 = Xdest − dx4; Y 4 = Ydest + dy4

X4L = Xdest − dx4L; Y4L = Ydest + dy4L

(* Label coordinate calculation *)
if t < 1 then

c0 = X1; c1 = Y1

c2 = 0.333 ∗ X1 + 0.667 ∗ X2; c3 = 0.333 ∗ Y1 + 0.667 ∗ Y2

c4 = 0.833 ∗ X2 + 0.167 ∗ X3; c5 = 0.833 ∗ Y2 + 0.167 ∗ Y3

c6 = 0.5 ∗ X2 + 0.5 ∗ X3; c7 = 0.5 ∗ Y2 + 0.5 ∗ Y3

else

c0 = 0.5 ∗ X2 + 0.5 ∗ X3; c1 = 0.5 ∗ Y2 + 0.5 ∗ Y3

c2 = 0.167 ∗ X2 + 0.833 ∗ X3; c3 = 0.167 ∗ Y2 + 0.833 ∗ Y3

c4 = 0.667 ∗ X3 + 0.333 ∗ X4L; c5 = 0.667 ∗ Y3 + 0.333 ∗ Y4L

c6 = X4L; c7 = Y4L

t = t − 1
endif

Lx = c0 ∗ (1 − t)3 + 3.0 ∗ (c2 ∗ t ∗ (1 − t)2 + c4 ∗ t2 ∗ (1 − t)) + c6 ∗ t3

Ly = c1 ∗ (1 − t)3 + 3.0 ∗ (c3 ∗ t ∗ (1 − t)2 + c5 ∗ t2 ∗ (1 − t)) + c7 ∗ t3

6.4 Asymmetrical curved edge description

A line of the form [(<Label>) Lx Ly X1 Y1 X2 Y2 X3 Y3 X4 Y4 S spline % orig dest t] creates an
asymmetrical curved edge labeled by Label. This curved line is made of two Bézier curves. Its shape
is defined by two control points C2 (X2, Y2) and C3 (X3, Y3) as described in Figure 7. An arrow
scaled using S is added at the end of the curve. t, contained between 0 and 2, specifies the position

8

X1

Y1

X2

Y2

X3

Y3

C2

C3

Y4

X4

Figure 7: Asymmetrical curved edge.

of the label on either the first Bézier curve (0 ≤ t ≤ 1) or the second Bézier curve (1 ≤ t ≤ 2). For
example, a 1.0 ratio means that the label is centered on the edge.

The algorithm computing Lx, Ly, X1, Y1, X4, and Y4 from orig, dest, X2, Y2, X3, Y3, S and t is given
below.

if Xorig = X2 then

if Y2 < Yorig then θ = −π
2

else θ = π
2

else

if Xdest ≥ Xorig then

if X2 < Xorig then θ = π + arctan (
Y2−Yorig

X2−Xorig
)

else θ = arctan (
Y2−Yorig

X2−Xorig
)

else

if X2 < Xorig then θ = − arctan (
Y2−Yorig

X2−Xorig
)

else θ = π − arctan (
Y2−Yorig

X2−Xorig
)

endif

endif

dx1 = cos (θ) ∗ VERTEX RADIUS
dy1 = sin (θ) ∗ VERTEX RADIUS
if Xdest = X3 then

if Ydest < Y3 then θ = −π
2

else θ = π
2

else

if Xdest ≥ Xorig then

if X3 < Xdest then θ = π + arctan (Y3−Ydest

X3−Xdest
)

else θ = arctan (Y3−Ydest

X3−Xdest
)

else

if X3 < Xorig then θ = − arctan (Y3−Ydest

X3−Xdest
)

else θ = π − arctan (Y3−Ydest

X3−Xdest
)

endif

endif

9

dx4 = cos (θ) ∗ (VERTEX RADIUS + ARROW SHAPE 1 ∗ S)
dy4 = sin (θ) ∗ (VERTEX RADIUS + ARROW SHAPE 1 ∗ S)
dx4L = cos (θ) ∗ VERTEX RADIUS
dy4L = sin (θ) ∗ VERTEX RADIUS
if Xdest < Xorig then dx1 = −dx1; dx4 = −dx4

X1 = Xorig + dx1; Y1 = Yorig + dy1

X4 = Xdest − dx4; Y4 = Ydest − dy4

X4L = Xdest − dx4L; Y4L = Ydest − dy4L

(* Label coordinate calculation *)
if t < 1 then

c0 = X1; c1 = Y1

c2 = 0.333 ∗ X1 + 0.667 ∗ X2; c3 = 0.333 ∗ Y1 + 0.667 ∗ Y2

c4 = 0.833 ∗ X2 + 0.167 ∗ X3; c5 = 0.833 ∗ Y2 + 0.167 ∗ Y3

c6 = 0.5 ∗ X2 + 0.5 ∗ X3; c7 = 0.5 ∗ Y2 + 0.5 ∗ Y3

else

c0 = 0.5 ∗ X2 + 0.5 ∗ X3; c1 = 0.5 ∗ Y2 + 0.5 ∗ Y3

c2 = 0.167 ∗ X2 + 0.833 ∗ X3; c3 = 0.167 ∗ Y2 + 0.833 ∗ Y3

c4 = 0.667 ∗ X3 + 0.333 ∗ X4L; c5 = 0.667 ∗ Y3 + 0.333 ∗ Y4L

c6 = X4L; c7 = Y4L

t = t − 1
endif

Lx = c0 ∗ (1 − t)3 + 3.0 ∗ (c2 ∗ t ∗ (1 − t)2 + c4 ∗ t2 ∗ (1 − t)) + c6 ∗ t3

Ly = c1 ∗ (1 − t)3 + 3.0 ∗ (c3 ∗ t ∗ (1 − t)2 + c5 ∗ t2 ∗ (1 − t)) + c7 ∗ t3

6.5 Loop description

A line of the form [(<Label>) Lx Ly X1 Y1 X2 Y2 X3 Y3 X4 Y4 S spline % orig dest ρ α t] creates a
loop labeled by Label. This curved line is made of two Bézier curves. Its shape is defined by ρ and
α as described in Figure 8. ρ specifies the length of the loop and α its angle around the vertex. θ is

Theta

Alpha

X1

Y1

X2

Y2

X3

Y3

Rho

Y4

X4

Figure 8: Loop.

given by ρ*θ=constant where constant usually equals 40 (value used in bcg draw and in bcg edit).

10

This constant binds θ and ρ in order to preserve the shape of the loop when ρ varies. An arrow scaled
using S is added at the end of the curve. For the loop, we have orig=dest. t, contained between
0 and 2, specifies the position of the label on either the first Bézier curve (0 ≤ t ≤ 1) or the second
Bézier curve (1 ≤ t ≤ 2). For example, a 1.0 ratio means that the label is centered on the edge.

The algorithm computing Lx, Ly, X1, Y1, X4, and Y4 from orig, dest, ρ, α, S and t is given below.

θ = LOOP CONST
ρ

(LOOP CONST=40 for bcg draw and bcg edit)

dx1 = cos (α + θ) ∗ VERTEX RADIUS
dy1 = sin (α + θ) ∗ VERTEX RADIUS
dx2 = cos (α + θ) ∗ ρ

dy2 = sin (α + θ) ∗ ρ

dx3 = cos (α − θ) ∗ ρ

dy3 = sin (α − θ) ∗ ρ

dx4 = cos (α − θ) ∗ (VERTEX RADIUS + ARROW SHAPE 1 ∗ S)
dy4 = sin (α − θ) ∗ (VERTEX RADIUS + ARROW SHAPE 1 ∗ S)
dx4L = cos (α − θ) ∗ VERTEX RADIUS
dy4L = sin (α − θ) ∗ VERTEX RADIUS
X1 = Xorig + dx1; Y1 = Yorig + dy1

X2 = Xorig + dx2; Y2 = Yorig + dy2

X3 = Xorig + dx3; Y3 = Yorig + dy3

X4 = Xorig + dx4; Y4 = Yorig + dy4

X4L = Xorig + dx4L; Y4L = Yorig + dy4L

(* Label coordinate calculation *)
if t < 1 then

c0 = X1; c1 = Y1

c2 = 0.333 ∗ X1 + 0.667 ∗ X2; c3 = 0.333 ∗ Y1 + 0.667 ∗ Y2

c4 = 0.833 ∗ X2 + 0.167 ∗ X3; c5 = 0.833 ∗ Y2 + 0.167 ∗ Y3

c6 = 0.5 ∗ X2 + 0.5 ∗ X3; c7 = 0.5 ∗ Y2 + 0.5 ∗ Y3

else

c0 = 0.5 ∗ X2 + 0.5 ∗ X3; c1 = 0.5 ∗ Y2 + 0.5 ∗ Y3

c2 = 0.167 ∗ X2 + 0.833 ∗ X3; c3 = 0.167 ∗ Y2 + 0.833 ∗ Y3

c4 = 0.667 ∗ X3 + 0.333 ∗ X4L; c5 = 0.667 ∗ Y3 + 0.333 ∗ Y4L

c6 = X4L; c7 = Y4L

t = t − 1
endif

Lx = c0 ∗ (1 − t)3 + 3.0 ∗ (c2 ∗ t ∗ (1 − t)2 + c4 ∗ t2 ∗ (1 − t)) + c6 ∗ t3

Ly = c1 ∗ (1 − t)3 + 3.0 ∗ (c3 ∗ t ∗ (1 − t)2 + c5 ∗ t2 ∗ (1 − t)) + c7 ∗ t3

7 The footer section

This section should reproduce the contents of the file $CADP/incl/bcg footer.ps distributed with
the CADP toolbox.

11

References

[Ruf94] Renaud Ruffiot. Définition et réalisation d’un atelier logiciel pour l’étude des systèmes de
transitions. Mémoire d’ingénieur CNAM, INRIA Rhône-Alpes, Grenoble, December 1994.

Contents

1 Features of a BCG graph 1

2 Organization of the PostScript file 1

3 The preamble section 1

4 The constant section 2

5 The header section 3

6 The graph section 3

6.1 Vertex description . 5
6.2 Straight edge description . 5
6.3 Symmetrical curved edge description . 7
6.4 Asymmetrical curved edge description . 8
6.5 Loop description . 10

7 The footer section 11

List of Figures

1 Items available for drawing your graph. 2
2 Shape of the arrows. 3
3 An example of graph. 4
4 Vertex. 5
5 Straight edge. 6
6 Symmetrical curved edge. 7
7 Asymmetrical curved edge. 9
8 Loop. 10

12

