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AUSTRALIA
Lack of expertise

CANADA
Canada supports the E-LOTOS CD, which is high-quality and should be
taken expeditiously to completion.

However Canada requests that 'inheritance' be included in E-LOTOS at
the DIS stage, so that the language could be considered object-
oriented.

Methods to include inheritance in LOTOS were discussed by Steve Rudkin
in a well-known article appeared in FORTE IV (1992).

Canada believes that the inclusion of inheritance would considerably
improve the usefulness of the language and its chances to be used in
industrial applications.

FRANCE
(1) MAJOR COMMENT : It is regrettable that FCD 15437 does not support operator overloading,
a feature present in all modern computer languages. Due to this lack, it will be impossible to write,
e.g., simple arithmetic expressions in E-LOTOS using the usual syntax. AFNOR urges the E-
LOTOS Committee to consider this issue, which is crucial for the applicability and success of E-
LOTOS.

(2) MAJOR COMMENT : The existence of run-time type-checking (the \ etc " type and record
subtyping) will make implementation complex and inefficient, for a negligible practical benefit,
because similar can be introduced in a much simpler way. In this respect, it is unfortunate that the
E-LOTOS Committee has not retained the lessons from LOTOS, not to introduce features in the
language that are notoriously difficult to implement.

(3) TECHNICAL COMMENT : AFNOR suggests to simplify the definition of the generalized
parallel operator following the technical proposal enclosed as an appendix.

JAPAN
JPN-001E (B Document Structure
Rationale:
The structure of this FCD document is not consistent with that of ISO International Standard
documents.

Proposed Improvement:
The document should be re-written according to "ISO/IEC Directives,
Part3: Rules for the structure and drafting of International Standards".

JPN-002TL: Chapter 7 Predefined library
Rationale:
The predefined types are insufficient as compared with LOTOS, SDL, ML, and Z.

Proposed Improvement:
The predefined library should define the following types:
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1.Representation of values decimal, hexadecimal, octal representation)
2.Power set
3.Tuple
4.Time

JPN-003E: Technical terms (4.3.3, 5.2.5, 5.5.2, and so on)
Rationale:
The FCD includes several technical terms which are neither defined nor narratively explained.

Proposed Improvement:
The FCD should briefly explain "signatures", "functor" (4.3.3), "diamond rule "(5.2.5), and
"diamond importation" (5.5.2).

JPN-004TL (B Distinction between LOTOS and E-LOTOS
Rationale:
Some operators of E-LOTOS are written as the same symbols used in LOTOS, but their
semantics are slightly different, because the semantics of E-LOTOS does not fully surpass that of
LOTOS. Therefore, we are afraid that some readers may confuse the operators of E-LOTOS
with those of LOTOS.

Proposed Improvement:
The FCD should annotate such differences explicitly.  Also, we propose that it presents rewriting
rules from the constructors of LOTOS to E-LOTOS, in order to illustrate how existing
specifications written in LOTOS is translated into E-LOTOS. A short example of the rules is
shown below:

LOTOS Operators ELOTOS Operators

     Stop stop
     exit(V) -
     exit null

     a ; B a ; B
     B1 [] B2 B1 [] B2
     B1 || B2 B1 || B2
     B1 |[G]| B2 B1 |[G]| B2
     B1 ||| B2 B1 ||| B2
     B1 >> v1,v2,...,vn in B2 B1 ; B2
     B1 [> B2 B1 [> B2

     PID[G](V) PID[G](V)

     choice v1,v2,...,vn [] B choice v1,v2,...,vn [] B endch
     par... par ...

UNITED KINGDOM
Reason for abstention

The UK abstains on this ballot as it does not currently have resources available for this project
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Comments

Despite the vote of abstention, the UK considers that SC 7 should take into account the following
comments:

1. Title. The current title suggests that this standard consists of extensions in the form of an
amendment to ISO 8807. We suggest that a title such as ‘Information technology - Enhanced
Lotos (E-LOTOS)’ would be preferable.

2. Scope. The standard should have a Scope clause as required by the ISO Directives.
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Abstract. Process algebras are suitable for describing networks of com-
municating processes. In most process algebras, the description of such
networks is achieved using parallel composition operators. Noticing that
the parallel composition operators commonly found in usual process al-
gebras are often limited in expressiveness and/or non-intuitive for non-
expert users, we propose a new parallel operator that allows networks
of communicating processes to be described easily, in a simple and well-
structured manner. We illustrate on various examples (token-ring net-
work, client-server protocol, chessboard grid) the theoretical and practi-
cal merits of our operator.

1 Introduction

Process algebras have been designed as a theoretical framework for the study of
concurrency. Classical examples of process algebras are: ACP [1], CCS [24, 25],
CSP [15], MEIJE [7], etc. There also exist speci�cation languages, which combine
process algebraic concepts with features borrowed from (functional or impera-
tive) programming languages. For example, the Occam [4] language based on
CSP, the �Crl [12] language based on ACP, and the Lotos [16] language which
combines the best features of CSP and CCS.

Process algebras have undeniable advantages: expressiveness, compositional-
ity, formal semantics given in terms of Labelled Transition Systems (Lts) [26]
using structural operational semantics [27, 13], veri�cation algorithms based on
behavioural equivalences and preorders, re�nement methods, etc. Process alge-
bras have been used successfully many times to model the behaviour of real
systems. In addition, simulators, model-checkers, and theorem-provers are avail-
able for analyzing process algebraic descriptions, e.g., [6, 5, 8].

In spite of these advantages, the classical process algebras also su�er from
limitations in terms of usability (because of their steep learning curve, they often
require a substantial training e�ort), readability (process algebraic descriptions



are sometimes di�cult to understand), and coverage (important aspects of sys-
tem description, such as timing, probabilistic aspects, and priorities, are not
addressed, although such extensions have been proposed in the literature).

Fortunately, work is going on to extend and improve the existing process
algebras. In particular, the International Standardization Organization (Iso)
has been working since 1992 on the de�nition of a revised version of the Lotos
language. This revised version, named E-Lotos and currently at the stage of
Final Committee Draft [29], includes new features suitable for increasing both
the expressiveness and user-friendliness of the language. The work on E-Lotos
has generated numerous proposals for enhancing both the data type part and
the behaviour part of Lotos (see e.g., [11] for an overview and a discussion on
these issues).

In this paper, we focus our attention on the improvement of the parallel
composition operators of Lotos. Although we assume some basic knowledge of
Lotos, our proposals are generic enough for being applicable to other process
algebras than Lotos.

The paper is structured as follows. Section 2 introduces some basic de�ni-
tions and notations. Section 3 suggests to replace the binary parallel composition
operators found in most process algebras with a new n-ary operator, more suit-
able for an easy description of networks of communicating processes. Section 4
proposes further enhancements to this operator, by relaxing the maximal co-

operation paradigm used in process algebras such as CSP or Lotos. Section 5
illustrates the usefulness of this parallel operator on a concrete application, the
ODP1 trading function [17]. Finally, Section 6 gives some concluding remarks.

2 Basic de�nitions and notations

In the sequel, we use the following notations borrowed from the value-passing
process algebras (especially, Lotos) terminology.

We note B1; B2; ::: algebraic terms constructed using the classical behavioural
operators (inaction, action pre�x, choice, etc.); these terms are called behaviours

or processes. For our purpose, an exact syntactic de�nition of behaviours is not
required. We note \B1 = B2" the syntactic identity of terms B1 and B2.

We note G1; G2; ::: identi�ers corresponding to communication channels;
these identi�ers are called gates. We de�ne two particular gates: � , which de-
notes a non-observable event, and �, which is used to express the synchronized
termination of concurrent processes. We note cG1;cG2; ::: lists (or sets) of gates.

We note L1; L2; ::: tuples of the form hG; v1; :::; vni, where G is a gate and
v1; :::; vn a (possibly empty) list of typed values; these tuples are called actions

or labels. We note gate(L) the gate corresponding to the �rst element of the
tuple L.

Structural operational semantics de�nes how a behaviour is translated into a
(possibly in�nite) labelled transition system [26], which encodes all the possible

1 Open Distributed Architecture



execution sequences of the behaviour. The possible evolutions of a behaviour are

modelled by a transition relation noted \B1

L
�! B2", which expresses that B1

can perform an action L and become B2 afterwards.

3 From binary to n-ary parallel composition operators

In Lotos and most process algebras, parallel composition operators play a cru-
cial role in the description of concurrent systems. Basically, there are two main
uses of parallel composition:

{ In distributed systems and protocols, parallel composition is a natural mean
to describe a set of distributed components that execute concurrently and
communicate with each other by message passing: therefore, the operands of
a parallel composition operator correspond to physically-distributed entities.
In the taxonomy proposed by [32], this use of parallel composition is called
the resource-oriented speci�cation style.

{ Parallel composition can also be used for re�nement purpose. Typically, a
given (sequential) component can be divided into a set of sub-components,
each of which expresses temporal constraints on the occurrences of certain
events. These sub-components are combined together using parallel compo-
sition, which acts as the logical conjunction of the corresponding temporal
constraints, resulting in a constrained behaviour. In such case, parallel com-
position expresses neither physical distribution nor concurrency, but rather
a logical modularization of the initial component. In the taxonomy of [32],
this use of parallel composition is called the constraint-oriented speci�cation

style.

Because of this double use of parallel composition, we believe that a suit-
able parallel composition operator must support multiway synchronization, i.e.,
rendezvous synchronization involving more than two processes:

{ As far as resource-oriented style is concerned, multiway synchronization is
not really necessary: it is su�cient to describe the communication between
an emitter and a receiver. Most process algebras allow such handshaking

synchronization, with some di�erences with respect to the form of value
exchanges that take place during the synchronization.

{ But, as far as constraint-oriented style is concerned, multiway synchroniza-
tion is mandatory. For instance, a controller for a robot with n degrees of
freedom can be expressed as the parallel composition of n sub-processes,
each sub-process controlling the motion of the robot with respect to a given
degree of freedom; to perform a given mission (e.g., moving the robot from
one location to another one), all sub-processes have to synchronize.

With the notable exception of CCS, most process algebras (ACP, CSP,
MEIJE, LOTOS...) support multiway synchronization, which is clearly a de-
sirable feature. Yet, these process algebras rely on (associative) binary parallel



composition operators to express concurrency, despite the fact that multiway
synchronization between n processes is intrinsically an n-ary operation. The
main reason for this situation is probably historical, due to the mathematical
origins of process algebras.

For instance, Lotos has three parallel operators, noted \B1 |[ bG]| B2",
\B1 ||| B2", and \B1 || B2", respectively. The �rst operator is the most
general: it expresses that B1 and B2 execute concurrently and synchronize only
on the gates of bG [ f�g. The second and third operators are particular cases of

the former: \|||" corresponds to the case where bG is empty (fully asynchronous

execution) and \||" to the case where bG is the set of all visible gates (fully
synchronous execution). From our experience in describing complex, industrial
systems using Lotos, we believe that expressing parallel composition using bi-
nary operators has major drawbacks:

B1 B2

B3

B4 B5

G4G3

G1

G2

Fig. 1.

{ For a given network of concurrent processes, there are usually several dif-
ferent algebraic terms representing this network. For instance, the network
shown on Figure 1 can be described using two (equivalent) Lotos terms,
e.g.,

((B1 |[G1]| B2) |[G1; G3; G4]| B3) |[G2; G3; G4]| (B4 |[G2]| B5)

or

((B1 |[G1]| B2) ||| (B4 |[G2]| B5)) |[G1; G2; G3; G4]| B3

The absence of a canonical form is practically unfortunate, as an algebraic
description will strongly depend on the style adopted by its author, thus lead-
ing to a lack of uniformity. Moreover, the problem of determining whether



two terms are equivalent is decidable, but not immediate in the general case,
as it implies to solve a system of boolean equations [21, 20].

{ There are some process networks that can not be expressed as algebraic
terms. For instance, the network on Figure 2 can not be expressed using
Lotos parallel composition, because it involves two-by-two synchroniza-
tion on the same gate G, whereas Lotos would force all three processes
to synchronize on G using a three-way rendez-vous (this is called the maxi-

mal cooperation paradigm). Su�cient conditions for a process network to be
translated into a Lotos behaviour expression are studied in [2].

G

G G

B1

B3 B2

Fig. 2.

Besides these theoretical issues, there are also pragmatic considerations
against binary parallel composition operators. The main argument is that binary
operators create a discrepancy between the graphical representation of process
networks (always present in the designer's mind) and the textual representation
as an algebraic term. On the one hand, it is not easy for novice users to write
an algebraic term corresponding to a given network of concurrent processes. On
the other hand, given an algebraic term, it is not always immediate to infer the
corresponding network.

Some network topologies are particularly tricky to express using binary op-
erators. For instance, the simplest algebraic term for representing the token-ring
network shown on Figure 3 is:

(B1 |[G1]| B2 |[G2]| B3 |[G3]| B4) |[G4; G5]| B5

which is particularly non-intuitive because the circular symmetry of the network
cannot be preserved during the translation to an algebraic term. In this respect,
the di�culties inherent to the process algebraic approach have to be compared
with graphical formalisms such as SDL [19] or Statecharts [14], in which the user
simply has to draw the desired network.

For these reasons, we suggested to introduce in E-Lotos a new n-ary parallel
composition operator that would replace the binary operators of Lotos. Based
on an early suggestion by [3], we made several iterative proposals [10, 31], before
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our proposal was accepted for being included in E-Lotos. The basic syntax of
our parallel composition operator is:

par cG1 ! B1

|| cG2 ! B2

|| :::

|| cGn ! Bn

endpar

This operator describes a network of n � 1 concurrent processes B1; :::; Bn.
We de�ne I to be the set f1; :::; ng. To each behaviour Bi is associated an

interface consisting of a set of gates cGi on which Bi must synchronize. EachcGi can be empty; in such case the arrow before Bi can be omitted.
The operational semantics of this operator is de�ned by two rules. The �rst

rule expresses that any process Bi can execute asynchronously any action L

whose gate G does not belong to the interface cGi and is di�erent from � (this
encompasses the case where L = �), while the other processes Bj with j 6= i do
not evolve:

(9L) (9i 2 I) Bi
L
�! B0

i ^ gate(L) 62 cGi [ f�g ^ (8j 2 Infig) B0
j = Bj

par cG1 ! B1:::cGn ! Bn endpar
L
�! par cG1 ! B0

1
:::cGn ! B0

n endpar

The second rule expresses that a process Bi wanting to execute an action L

labelled by a gate G 2 cGi [ f�g must synchronize with all the other processes

Bj such that G 2 cGj [ f�g:

(9L) (8i 2 I) (if gate(L) 2 cGi [ f�g then Bi
L
�! B0

i else B0
i = Bi)

par cG1 ! B1:::cGn ! Bn endpar
L
�! par cG1 ! B0

1
:::cGn ! B0

n endpar



This operator solves the aforementioned problems of binary operators by
establishing a direct mapping between process networks and their textual rep-
resentation, thus paving the way for tools that automatically perform the trans-
lation from graphical networks to algebraic terms and vice versa. For instance,
the networks of Figures 1 and 3 can be expressed as follows:

par

G1; G3 ! B1

|| G1; G4 ! B2

|| G1; G2; G3; G4 ! B3

|| G2; G3 ! B4

|| G2; G4 ! B5

endpar

and:

par

G1; G5 ! B1

|| G1; G2 ! B2

|| G2; G3 ! B3

|| G3; G4 ! B4

|| G4; G5 ! B5

endpar

respectively.
As far as expressiveness is concerned, it is easy to see that the general parallel

operator can be obtained as a particular case of our new operator:

B1 |[ bG]| B2 = par bG! B1 || bG! B2 endpar

G1

G3

B1

B2B3

G2

G1

G3G2

Fig. 4.



Reciprocally, our new operator is strictly more expressive than the \|[ bG]|"
operator of Lotos. We prove this proposition using the process network shown
on Figure 4. This process can easily be described using our new operator:

par

G2; G3 ! B1

|| G1; G3! B2

|| G1; G2! B3

endpar

but cannot be expressed using the Lotos binary parallel operators: to describe
this network, one must �rst synchronize two processes together, then synchronize
the result with the third process; assuming that B1 and B2 are to be synchro-
nized �rst (which can be done without loss of generality because the network is
symmetric), it is mandatory to synchronize them on gate G3; then, the resulting
term \B1 |[G3]| B2" has to be synchronized with B3 on gates G1 and G2.
But the term obtained does not correspond to the network of Figure 4 where
process B1 can perform actions on gate G1 independently from process B3.

As a technical remark, it is worth noticing that the network of Figure 4 could
indeed be expressed in Lotos by de�ning an auxiliary process P with auxiliary
gates G0

1
; G0

2
; G0

3
, and by a clever instantiation of this process so as to rename

the auxiliary gates into G1; G2; G3 respectively:

P [G1; G2; G3; G1; G2; G3]
where

process P [G1; G2; G3; G
0

1; G
0

2; G
0

3] :=
(B1[G

0

1; G2; G3] |[G3]| B2[G1; G
0

2; G3]) |[G1; G2]| B3[G1; G2; G
0

3]
endproc

A similar e�ect could be achieved using the relabelling operator existing in
other process algebras, such as ACP or CSP (in Lotos, the process instantiation
performs relabelling implicitly). However, this solution is probably too tricky
for many users; in comparison, our new parallel operator is simpler and more
intuitive.

Finally, we slightly extend our operator by allowing to specify a set cG0 of
synchronization gates which are common to all processes Bi (assuming thatcG0 \ cGi = 6
 for each i 2 I). This extension is practically helpful for avoiding
redundant lists of gates; it is simply de�ned as a syntactic shorthand:

0
BBBBBB@

par cG0 incG1 ! B1

|| cG2 ! B2

|| :::

|| cGn ! Bn

endpar

1
CCCCCCA

=def

0
BBBBB@

par cG0 ]cG1 ! B1

|| cG0 ]cG2 ! B2

|| :::

|| cG0 ] cGn ! Bn

endpar

1
CCCCCA



4 From maximal to \m among n" cooperation

Although strictly more expressive than the Lotos parallel composition oper-
ator, our new operator does not allow to represent certain process networks,
such as the one of Figure 2. This limitation is unfortunate, because it precludes
several networks of practical interest from being modelled, especially the case
where a pool of n processes synchronize two by two on the same gate. Although
CCS permits such \2 among n" synchronization, other process algebras, such as
CSP or Lotos, do not allow it, because they rely on the maximal cooperation
paradigm.

Based on our practical experience, we suggest to extended the parallel com-
position operator presented in Section 3 in order to allow \m among n" synchro-
nization, i.e., when a set of n processes synchronize m by m on the same gate
(with m � n). Our extended operator is based on our previous proposals [10, 31]
submitted to the E-Lotos standardization committee. This operator has the
following syntax:

par g1#m1; g2#m2; :::; gp#mp incG1 ! B1

|| cG2 ! B2

|| :::

|| cGn ! Bn

endpar

where g1; :::; gp is a (possibly empty) list of gates and wherem1; :::;mp are natural
numbers in the range 1, ..., n associated to these gates. Each clause \#mj" is

optional: if ommitted, mj has the default value n. We de�ne cG0 to be the gate

list fg1; :::; gpg and we require that cG0 \cGi = 6
 for i 2 I . Notice that we do not
require the gates g1; :::; gp to be pairwise distinct.

Informally, the semantics of this operator is the following. As regards the
gates of cG1 [ ::: [ cGn [ f�g, this operator behaves exactly as the one described

in Section 3. As regards the gates of cG0, this operator speci�es that processes
B1; :::; Bn can performmj among n synchronization on each gate gj . Two special
cases are of interest: if mj = 1, each process Bi can execute asynchronously an
action on gate G; if mj = n, all processes Bi have to synchronize on gate G.

To provide a formal semantics, we introduce a predicate noted \G�J", where
J � I , that is true i� the processes in fBi j i 2 Jg can synchronize together on
gate G. Obviously, for a given gate G, there may be several subsets J such that
G� J . This predicate is de�ned as follows:

{ �� I , meaning that all concurrent processes must synchronize to terminate,
as in Lotos;

{ (8j 2 f1; :::; pg) (8J � I j card(J) = mj) gj � J , meaning that each gate
gj achieves mj among n synchronization;

{ (8G 2 cG1[ :::[cGn) G�fi 2 I j G 2 cGig, meaning that all processes having
G in their interfaces must synchronize on G;



{ (8i 2 I) (8G 62 cG0 [ cGi [ f�g) G � fig, meaning that each process Bi can

perform asynchronously any gate neither mentioned in cG0 nor in its interfacecGi (� excepted and � included).

Using this predicate, the operational semantics of our parallel operator can be
de�ned with a single inference rule:

(9L) (9J � I) (gate(L)� J) ^ ((8i 2 J) Bi
L
�! B0

i) ^ ((8i 2 InJ) B0
i = Bi)

par gj#mj ::: in cGi ! Bi::: endpar
L
�! par gj#mj ::: in cGi ! B0

i::: endpar

Using this operator, the process network of Figure 2 can be speci�ed using 2
among 3 synchronization:

par G#2 in

B1 || B2 || B3

endpar

G

G G

G

B1

B2 B3

Fig. 5.

More complex process networks, such as the one on Figure 5, in which the
same gate G has several degrees of synchronization, can also be described:

par G#2; G#3 in

B1 || B2 || B3

endpar

5 Application

In this Section, we illustrate the application of our parallel operator to the de-
scription of the ODP trading function. ODP [18] is a standard framework for
distributed applications. Within ISO, E-Lotos has been developed in the same
working group as ODP, and with the intent of being the formal description
technique for distributed applications. This explains that ODP-related problems
have been a constant source of inspiration for E-Lotos designers.



Our proposals for introducing \2 among n" synchronization in E-Lotos [10,
30] was motivated by the highly dynamic nature of ODP systems: processes
can be created and destroyed dynamically, and binary communications between
processes can be established dynamically. Although it has been argued that
such behaviours could only be described by means of mobile process calculi,
such as the �-calculus [22, 23], we believe that the most salient aspects of ODP
systems can be captured in the framework of a classical process algebra, such as
Lotos, extended with our new parallel operator. A comparative study of both
approaches can be found in [9].

The ODP trading function is a typical example of ODP systems: this function
is de�ned informally in an ISO standard [17]. A formal description in E-Lotos of
the most important features of the trading function can be found as an appendix
of the E-Lotos de�nition document [29, Annex A.3]. In this paper, we focus
on the architectural description of the trading function, so as to emphasize how
our parallel operator can be used to describe dynamic communication patterns.

The ODP trader is a computer process that establishes a relationship between
a pool of m clients and a pool of n service providers (or servers) within an open
and dynamically changing distributed system.

On the one hand, servers must inform the trader of the services they are
ready to o�er. Advertising a service o�er is called export. The trader keeps in a
database all the export requests sent by the servers.

On the other hand, clients may ask the trader about available services.
Requesting knowledge about a particular service is called import. The trader
matches the clients' service requests with its database of service o�ers and, if
possible, selects an adequate server. The identi�cation of this server is sent back
to the client, which can then contact directly the server without further interac-
tion with the trader.

The interesting issue in this architecture is that the client can eventually
communicate with a server the identity of which was unknown to him before
asking the trader. In mobile process calculi, this situation can be described us-
ing a dynamic creation of mobile gate(s) and/or agent(s). However, alternative
approaches are possible, which avoid the complexity of dynamic gate/agent cre-
ation. We can model the behaviour of the whole system by the following parallel
composition. Let E (export), I (import), and W (work) be three gates used for
server-trader, client-trader, and client-server communication respectively. Let
\C[I;W ](i)", \S[E;W ](j)", and \T [E; I ]" be three processes representing the

ith client, the jth server, and the trader, respectively. The whole architecture
can be described by the following term:

par E; I in

T [E; I]
|| par W#2 in

par C[I;W ](1) || ::: || C[I;W ](m) endpar
|| par S[E;W ](1) || ::: || S[E;W ](n) endpar

endpar

endpar



It is worth noticing that the two innermost \par" operators that de�ne the
pool of m clients and the pool of n servers could be expressed in a more concise
way using an extended parallel operator that iterates over a �nite set of values
(such an operator was proposed in [10] and introduced in E-Lotos). In a more
sophisticated modelling, these two \par" operators could even be replaced by
instantiations of processes creating dynamically a non-bounded number of clients
and/or servers (using recursion through parallel composition).

The behaviour of the trader can be described with the following Lotos pro-
cess, where request and reply are two enumerated values indicating the direction
of the messages exchanged on gates I and W :

process T [E; I](d : DataBase) : noexit :=

E ?j:Server ?s:Service;
T [E; I](add to database(d; j; s))

[]

I ?i:Client !request ?s:Service;
I !i !reply !search server in database(d; s)
T [E; I](d)

endproc

The behaviour of the ith client asking the trader for some service s provided

by the jth server, and then requesting this server directly, can be described
as follows (we assume that there is always a server available for the requested
service):

process C[I;W ](i : Client) : noexit :=

I !i !request !s;
I !i !reply ?j:Server;
W !j !i !request !s :::;
W !j !i !reply !s :::;
C[I;W ](i)

endproc

Similarly, the behaviour of the jth server advertising a given service s to the
trader and/or answering client requests can be described as follows:

process S[E;W ](j : Server ) : noexit :=

E !j !s;

S0[E;W ](j)
endproc

process S0[E;W ](j : Server ) : noexit :=

W !j ?i:Client !request !s:::;
W !j !i !reply !s:::;

S0[E;W ](j)
endproc



6 Conclusion

In this study, we have shown that the parallel composition operators found in
usual process algebras such as CCS, CSP, ACP, and LOTOS are not so well-
suited for an easy description of complex communication patterns. Taking the
Lotos parallel composition operator \|[ bG]|" as a basis, we suggest to extend
this operator in two directions:

{ First, we propose to replace the binary operator with an n-ary operator
that directly re
ects the graphical structure of process networks. From the
examples given, it is clear that the n-ary operator is simpler to use by novice
users, easier to read (because the structure of process networks is preserved),
strictly more expressive, and appropriate for an automatic translation from
graphical networks to algebraic terms and vice-versa.

{ Second, we increase the expressiveness of this new operator by relaxing the
maximal cooperation requirement of CSP and Lotos, in order to support \m
among n" synchronization. Taking the ODP trading function as an example,
we show that the new operator is both user-friendly, intuitive, and practically
useful.

Our research bene�ted from discussions in the framework of the E-Lotos
standardization committee. The parallel operator presented in this paper is a
re�ned version of a previous proposal, which we submitted to ISO [10, 31] and
which has been integrated in the current version of E-Lotos [28].
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