
AFNOR Comments Accompanying Vote of Disapproval

on the Committee Draft ISO�IEC JTC��SC���WG�

�Enhancements to LOTOS� �������	���
�

June ����

AFNOR votes AGAINST promoting the Committee Draft on Enhancements to LOTOS
�Date� January ����� as a Final Committee Draft�

The reasons for this NO vote are twofold�

� First� the current Committee Draft is not complete nor mature� Several important
issues in the de	nition of E
LOTOS are left open� For instance� the de	nition of the
prede	ned library of types and processes is not provided� although having prede	ned
types was a design goal for E
LOTOS� Also� the dynamic semantics has not been proven
to be consistent�

� Second� some technical design decisions in the Committee Draft are not appropriate�
AFNOR expresses strong concerns about the proposed de	nition of E
LOTOS� which
results in a language that is�

� overly complex

� non
intuitive for the users

� unsafe �e�g�� type
checking at run
time�

� di�cult to implement

� not interoperable and not compatible with other languages standardized by
ISO�IEC �including IDL��

In that sense� the initial goals set for enhancing LOTOS have not been reached yet by the
current Committee Draft�

As it is now� the proposed Committee Draft can not replace the existing International Stan

dard IS ���

To progress the work� AFNOR makes a number of Technical Comments� which should be
taken into account for issuing a revised Committee Draft�

These Technical Comments primarily aim at reducing the complexity of E
LOTOS� in order
to have a smaller and simpler language�

In the sequel� the term �CD� will refer to the Committee Draft on Enhancements to LO

TOS ������������� dated January ����� the term �revised CD� will refer to a next� revised
Committee Draft� to be issued �probably after the Helsinki WG� meeting��

�

ITEM� AFNOR�� Abbreviating gate parameter lists

CLAUSE� General

QUALIFIER� Major Technical

RATIONALE�

A frequent complaint about standard LOTOS concerns the lists of gates used in process
instantiations� Such gate lists are tedious and error prone�

On several industrial� large
size speci	cations ������ lines and more�� one noticed that ���
of the LOTOS code was devoted exclusively to these gate parameter lists�

A proposal for having a ����� notation to abbreviate gate lists has been circulating since
����� The rationale for this proposal are in �Gar��b�� This proposal was present in the
output document of the E
LOTOS interim meeting in Li�ege �December ����� and a 	nalized
proposal is given the output document of the Kansas City meeting �May ������

However� it appears that the idea was lost� since the CD does not address this problem�

PROPOSED CHANGE�

The revised CD should take the problem into account and reuse the solution already available
in the output document of the Kansas City meeting� It is worth noticing that this proposal
is only a matter of static semantics and does not a�ect the dynamic semantics�

�

ITEM� AFNOR�� Mixing �in	 and �out	 parameters freely

CLAUSE� General

QUALIFIER� Major Technical

RATIONALE�

The CD does not allow �in� and �out� parameters �for functions and processes� to be
combined freely� all �in� parameters have to come 	rst� followed by all the �out� �clause
�i
body�� p� �� for processes and clause �i
body�� for functions��

This syntactic restriction is unsuitable� standard programming languages �C� C��� Pascal�
Ada� etc�� as well as IDL allow �in� and �out� parameters to be mixed in free order�

Such a restriction will prevent E
LOTOS to be used as a language for specifying formally
the behaviour of ODP objects whose interface is described in IDL�

It will also prevent E
LOTOS users from invoking external functions written in other lan

guages or available in libraries �for instance� the strcat and strtok functions of the POSIX
library��

PROPOSED CHANGE�

This restriction should be removed from the a revised CD� A solution is already available in
the Kansas City output document�

�

ITEM� AFNOR�
 Abbreviating value parameter lists

CLAUSE� General

QUALIFIER� Major Technical

RATIONALE�

To achieve symmetry with abbreviated gate parameter lists� it is also desirable to have
abbreviated value parameter lists for processes and functions�

A proposal for having a ����� notation to abbreviate value parameter lists has been circulating
since ����� The rationale for this proposal are in �Gar��b�� This proposal was present in the
output document of the E
LOTOS interim meeting in Li�ege �December ����� and a 	nalized
proposal is given the output document of the Kansas City meeting �May ������

For instance� under this proposal� if P is a process declared�

process P �G�H� �X�Y�Z � Nat� � exit �none� is ��� endproc

then an abbreviated instantiation of the form�

P ������Y �� Y � �� ����

is syntactically equivalent to�

P �G�H��X�Y � �� Z�

Besides the advantage of being more concise� the abbreviated form has also the merit of
emphasizing value modi	cations �here� it is clear that only Y is modi	ed��

PROPOSED CHANGE�

The revised CD should reuse the solution already available in the output document of the
Kansas City meeting� It is worth noticing that this proposal is only a matter of static
semantics� any abbreviated instantiation can be replaced statically by its extensive �LOTOS

like� form�

�

ITEM� AFNOR� �etc	 clause in function�process declarations

CLAUSE� General

QUALIFIER� Major Technical

RATIONALE�

It is not clear whether the CD allows the �etc� clause in function and process declarations�
i�e�� if the value parameter lists for processes and functions are extensible records or not�

The syntax de	nition �chapter �� p� �� clause �D�� sq�� does not allow the �etc� clause
�extensible record� in function and process value parameter lists�

However� the �etc� clause is allowed� in the same context� by the corresponding semantic
de	nitions �chapter �� p� �� clauses �D����D����

This contradiction should be clari	ed�

We consider that �etc� clauses in value parameter lists should be forbidden� as they have re

ally questionable and unsafe consequences� For instance� they enable to increase the number
of value parameters in recursive process calls�

process P �X�nat� etc� � exit �none� is

P �X �� �� Y �� �� Z �� 	�

endproc

It seems reasonable to forbid such process de	nitions�

PROPOSED CHANGE�

The revised CD should forbid �etc� clauses in process and function value parameter lists�

�

ITEM� AFNOR�� Overloading

CLAUSE� General

QUALIFIER� Major Technical

RATIONALE�

Although overloading already exist in LOTOS� the current CD for E
LOTOS does not sup

port overloading�

As a consequence� there cannot be at the same time an equality operator named ��� for
integers and and equality operator named ��� for booleans� The same situation applies to
all other operators �arithmetic� relational� etc��

This is probably the reason why the CD provides no base environment for E
LOTOS� Not
only� such a base environment does not exist at the time being� but it will never exist under
the assumptions upon which the current CD is built�

On page ��� in Section �������� it is claimed that �In the base language� all type� constructor�
function and process identi�ers must be unique � all treatment of overloading is left to the
module language��

Technically speaking� this assertion is a complete non
sense� because the treatment of over

loading cannot be separated from type
checking� the type informations computed during
type
checking are needed to solve overloading� and vice
versa�

Also� on page ��� Section ������� it is suggested to have built
in data types with a rich
term
syntax�

However� the proposal for rich
term syntax �Pec��� Pec��� relies on overloading�

PROPOSED CHANGE�

Preserve overloading in E
LOTOS as it already exists in LOTOS� This will provide upward
compatibly by simple translation and allow a base environment with a rich
term syntax to
be de	ned�

The static semantics for type
checking with overloading is provided in the Kansas City output
document� The proposal for rich
term syntax is in �Pec����

�

ITEM� AFNOR�� Restricting the �any	 type to gates only

CLAUSE� General

QUALIFIER� Major Technical

RATIONALE�

The original proposal for gate typing �Gar��a� Gar��� introduced the possibility of declaring
some gates of type �any�� such gates could accept any list of experiment o�ers�

Although the possibility of declaring gates of type �any� goes against the intent of E
LOTOS
designers to have strongly
typed gates� this feature can be useful for �programming in
the

small� and for backward compatibility with LOTOS� where all gates are entirely untyped�

In the original proposal� the �any� feature was only available for gate types �called �chan

nels��� Still in this proposal� the only di�erence between typed gate and �any� gates was
in static semantics� for typed gates� there were additional static semantics constraints that
did not apply to �any� gates�

This original proposal was altered in two successive steps�

�� Gate types and �standard� types have been merged into a single concept� Although
this �uni	cation� might be found elegant for de	ning the semantics� it is not clear that
it should be made visible to the user�

In the CD� we are in the situation where variables and gates have the same types�
but are syntactically di�erent �for instance� in process instantiations� they are put in
di�erent parameter lists��

�� The next step was to allow for variables the �any� type� originally intended for gate
types only as a backward compatibility feature�

This design choice makes of E
LOTOS a loosely typed language� where it is possible
to declare a variable of type �any�� which can be assigned any value� For instance�
the following fragments of code are valid according to the CD�

local var X�any in

X �� ��	 �

X �� string �

stop

endloc

and�

local var X�any in

if C then
X �� ��	

else
X �� string

�

endif

endloc

PROPOSED CHANGE�

As LOTOS� E
LOTOS should be strongly typed and type
checking should be done at
compile
time only�

In particular� the use of the �any� type should be restricted to gate types only� The �any�
type should not be available for ordinary variables�

ITEM� AFNOR�� Simplifying patterns

CLAUSE� General

QUALIFIER� Major Technical

RATIONALE�

The syntax of patterns proposed by the CD includes a so
called pattern expression feature
��E� �rule �P�� of Section ���� page ����

This de	nition of patterns is very �original� �not to say �non
standard�� compared to the
way patterns are de	ned in other programming languages� including standard ML�

The main justi	cation for this �original� de	nition of patterns is given page �� � �Th�e� use
of patterns in communications is the main reason for allowing
 and � in patterns��

Page �� an example of the use of ��� patterns is given �the palindrome example�� However�
this example is not convincing� because it could be written in shorter and simpler way�

if x � reverse �x� then palindrome

else nonpalindrome

endif

Although it attempts to unify classical patterns with experiment o�ers� this de	nition of
patterns has several unpleasant e�ects�

� Syntactically� the �
� symbol is needed almost everywhere� For instance� each assign

ment must be written �
x �� �� instead of �x �� ���

� It is unclear whether the existing pattern
matching compiling algorithms �most of
which assume that all variables in a pattern are free variables� can be adapted to
patterns containing ����

� The possibility of nesting patterns may lead to complex synchronization� in which �
�
and ��� are combined at an arbitrary depth�

G C� �
X�int� C� ��E�
Y�int� C	 ��E���

The e�cient implementation of such communication mechanism is an open problem�
We are not aware of existing research in this direction�

� Finally� the ��� operators in patterns are redundant with the boolean guards that can
be attached to the patterns in �case� expressions and actions� They are even less
general than boolean guards� which allow to express non
functional relations between
several variables�

PROPOSED CHANGE�

�

The attempt made by the CD at merging patterns and experiment o�ers is not the only way�

A much simpler solution exists� that is based on standard practice and that avoids the
syntactic heaviness of the approach proposed by the CD�

� Keep the de	nition of patterns standard and simple � only constructors and free vari

ables� Do not introduce ��� and �
� symbols�

� Keep experiment o�ers simple� an experiment o�er can be either an expression E or a
pattern preceded with a �
� symbol� e�g��

G ��� string�
X�int�
C�Y�int� Z�int��

��

ITEM� AFNOR�� Unifying gates and signals

CLAUSE� General

QUALIFIER� Major Technical

RATIONALE�

The language proposed in the CD introduces a new concept� the notion of signal� which does
not exist in standard LOTOS�

There are several problems with the proposed approach�

Signals are very similar to gates� However� the CD lays out a number of syntactic and
semantic di�erences between gates and signals�

� Gates and signals do not belong to the same identi	er class�

� Signals can be used in expressions� whereas gates cannot�

� Signals can be caught using the �trap� operator� whereas gates cannot� Technically�
this restriction is unnecessary� as the original proposal for the �trap� operator �GS���
was de	ned for gates�

� Gates can be synchronized by the parallel operator� whereas signals cannot�

� Gates are not urgent �they can let time pass��

� On the other hand� signals are always urgent� either if they are visible �i�e�� declared at
the top
level of the speci	cation� or if they are declared in a �trap� operator� Notice
that this feature goes against ET
LOTOS �philosophy� where a visible action can not
be urgent

� In the CD� �i� is a signal �not a gate� and therefore urgent�

� However� the ��� signal is urgent� except in parallel composition�

Technically� the distinction made between gates and signals is arti	cial� It are a major cause
for the excessive complexity of E
LOTOS� especially in the dynamic semantics� where its
is necessary to distinguish between many cases� depending if transitions are labelled with
visible gates� �i� gate� signals� or �i�� signal �see the semantics of the ���� operator p� �
for a striking example��

For the end
user� the existence of two concepts �gates and signals�� which are similar to a
large extent� but di�erent and incompatible will be a major source of confusion�

When specifying the behaviour a real system� the user will have to decide whether each event
should be represented as a gate or a signal� This is obvious from the Abracadabra example
�QA��� GS��� where some events should be modeled as gates and other as signals� There

��

are no clear guidelines for making these design choices� Yet� these choices will a�ect the
E
LOTOS description to be written� because of the restrictions laid on gates and signals�

Also� the existence of two concepts will go against the reusability of E
LOTOS process
de	nitions� For instance� if a process P has been written using gates� it might be impossible
to reuse P in the context of a �trap� operator� If it has been written using signals� it might
be impossible to reuse it in the context of a parallel operator�

This is due to the fact that the restrictions concerning gates and signal go against composi

tionality of behaviours �which is really the ground of process algebras��

In this respect� it is worth mentioning that the Esterel language has only the notion of signal�
Exception handling is done using a �trap� operator� which operates on signals� There is no
reason why E
LOTOS should have a more complex approach�

PROPOSED CHANGE�

The revised CD should reduce the complexity of E
LOTOS as follows�

� Gates and signals should be uni	ed in a a single concept �named signal in the sequel�
but the terms actions or events are also possible��

� Value expressions remain unchanged� the evaluation of a value expression remains
deterministic and can either yield a result value� or raise a signal�

� Behaviour expressions should be simpli	ed by unifying gates and signals and by re

moving the �signal� operator� which is replaced by the action�

� As regards time and urgency� the following rules are su�cient�

� Any visible signal is non
urgent

� Any signal declared in a �hide� or �trap� operator becomes urgent

This approach will simplify E
LOTOS and make it closer to the ET
LOTOS language� a
proposal whose time semantics has been proven to be consistent�

Notice that this proposal will allow parallel synchronization on the signals raised by expres

sions� For instance� if E� and E� are two expressions raising the signal A� the following
behaviour expression is legal�

V� �� E� ��A�� V � �� E�

This is not currently permitted by the CD� however� the same e�ect can be obtained by
writing�

trap A��G in V� �� E� endtrap ��A�� trap A��G in V � �� E� endtrap

Therefore� even under the restrictions de	ned by the CD� E
LOTOS implementors will be
faced to synchronizations resulting from signals raised by expressions�

��

ITEM� AFNOR�� Removing the �init	 clause in the �local	

construct

CLAUSE� �B��� p� �� and �E�� p� ��

QUALIFIER� Major Technical

RATIONALE�

The �local� constructs for behaviour expressions and expressions could be simpli	ed by
removing the �init� clause� We do not understand why this �init� was introduced in the
CD �

� It does not exist in standard LOTOS

� It does not exist in imperative languages �C� Ada� Pascal� etc�� either

� It brings no expressivity� because �

local var LV init E� in E� endloc �� local var LV in �E� � E�� endloc

and �

local var LV init B� in B� endloc �� local var LV in �B� � B�� endloc

PROPOSED CHANGE�

The �init� clause and the �var� keyword should be suppressed� The simpli	ed syntax should
be�

local LV in E endloc

and �

local LV in B endloc

In place of the �init� clause� the Committee may 	nd suitable to keep the �let� construct
that already exists in LOTOS� The �let� construct could be de	ned as a shorthand �

let X� � T� � E�� ����Xn � Tn � En in E endlet ��
local X� � T�� ����Xn � Tn in X� �� E�� ����Xn � En�E endloc

and

let X� � T� � E�� ����Xn � Tn � En in B endlet ��
local X� � T�� ����Xn � Tn in X� �� E�� ����Xn � En�B endloc

��

ITEM� AFNOR��� Simplifying the �loop forever	 construct

CLAUSE� �B��� p� �� and �E��� p� ��

QUALIFIER� Major Technical

RATIONALE�

The �loop� construct proposed by the CD can be improved in several ways�

� The �forever� keyword is useless from a syntactical point of view �it does not behave
as a separator between two non
terminals�� Moreover� this keyword is misleading if
there is a �break� instruction to escape from the loop� in such case� the loop is not a
�forever� loop�

� The �init� clause both non
standard �with respect to imperative languages� and use

less� since we have �

loop forever var LV init B� in B� endloop ��
B�� loop forever var LV in B� endloop

and�

loop forever var LV init E� in E� endloop ��
E�� loop forever var LV in E� endloop

� The �var LV � clause is confusing because the variables declared in LV are not the
variables local to the loop� but the variables modi	ed by the loop �i�e�� modi	ed in
E� or B��� This obligation of declaring the list of variables modi	ed by a loop is not
standard practice�

� It seems that static semantics of loops is unappropriate� For instance� the following
expression type
checks statically but will provoke a run
time error�

x �� � � loop forever var x�bool in x �� x � 	

The following expression type
checks� but the variable �x� used in �x � x� will change
its type at run
time� during the 	rst iteration� it is equal to �� during the second
iteration� it is equal to true�

x �� � � loop forever var x�bool in x �� �x � x�

PROPOSED CHANGE�

The �forever�� �var� and �init� clauses� which are useless or erroneous� should be removed�
As in Ada� the �loop� construct should be put to its minimal form�

loop B endloop

��

ITEM� AFNOR��� Improving breakable iterations

CLAUSE� �B��� and �B��� p� ��� �E��� and �E��� p� ��� de	nition p� ��

QUALIFIER� Minor Technical

RATIONALE�

The CD introduces syntactic shorthand notations for breakable iterations� named loops�
loops that return values� and a �break� instruction� These shorthand notations are de	ned
in terms of �loop forever���trap� and �raise��

It is unclear whether these shorthand notations are worth being included in E
LOTOS� the
shorthand notations have almost the same size as their expanded form �see p� ����

Moreover� it is not sure that breaking nested loops �non
local exits� is a practice that needs
to be encouraged by providing special constructs for doing so�

Finally� the proposed syntax is questionable� For instance� parentheses have to be doubled
when writing �break ���� �����

PROPOSED CHANGE�

Before introducing the proposed shorthands for breakable iterations� other forms of loops
should be considered�

In particular� the classical forms of loops found in Pascal� C� Ada ��whileX � � �� �for N ��
� to ��� etc�� are probably more useful than the proposed breakable iteration�

��

ITEM� AFNOR��� Removing the �exit	 instructions from the user

language

CLAUSE� General

QUALIFIER� Major Technical

RATIONALE�

A well
known defect of LOTOS relies in its double form of sequential composition� on one
hand the action pre	x operator ���� on the other hand the �exit� and ���� enable operators�
These two forms of sequential composition are confusing to many users�

To solve this problem� it was proposed to equip E
LOTOS with a single form of sequential
composition� the symmetrical operator ���� combined with features similar to those found in
imperative languages �e�g�� variable assignment and �local�constructs�� There are many
advantages in using the new E
LOTOS operators� which are both more powerful and closer
to standard programming practice� which will favour the acceptance of E
LOTOS among a
larger community�

However� it is clear that one should not keep simultaneously the old LOTOS operators while
introducing the new E
LOTOS ones� This was agreed by the Committee during the Kansas
City meeting� the minutes clearly express that� the �exit� operator should disappear from
E�Lotos�

Unfortunately� this is not the case in the CD� the new operators are introduced� but at the
same time the old �exit� operator is kept�

The situation is even worse� because there are now � forms of �exit� statements�

� exit��RN�� �B�� p� ��

� exit�any T � �B�� p� ��

� exit�RE� �B��� p���

It is interesting to notice that none of these three �exit� statements is as powerful as
the existing �exit� of LOTOS� which allows to mix expressions and �any� values� e�g��
�exit ��� any bool���

The reason for such a mixture is historical�

� In the user language de	ned in the Kansas City output document� only the new E

LOTOS operators were available to the user�

� In the core language� �exit� was retained �and extended� as an auxiliary operator for
de	ning the semantics of value
passing and continuations

��

� To prepare the CD� there has been a misguided attempt to merge the user language
and the core language into a single language� Unfortunately� the approach followed
was to make the union of the operators of the user and core languages�

PROPOSED CHANGE�

The simplest form of �exit� ��exit� without argument� should be kept in E
LOTOS� to
play the role of the neutral element for sequential composition� It may be suitable to give it
a better name� e�g�� �null� as in Ada�

As the more complex forms of �exit� are only useful to de	ne the semantics� they should
not be directly available to the user�

Similarly� the form of �process� declarations with a �exit� clause �rule �D�� p� �� can be
removed as it is redundant with �in�out� parameters�

��

ITEM� AFNOR��
 Using a bracketed syntax

CLAUSE� General

QUALIFIER� Minor Technical

RATIONALE�

The CD improves over standard LOTOS by adopting a bracketed syntax for several behaviour
operators� �local�� �trap�� �loop���� All these operators are terminated with an �endloc��
�endtrap�� �endloop���� statement�

However� there remain many operators which are not properly bracketed� This is especially
the case of in	x binary operators ���� ����� ����� etc�

This leads to ambiguity problems� For instance� how should the following expression be
parsed�

B� � B� �� B�

PROPOSED CHANGE�

There are two possible approaches to solve this problem�

� One could de	ne operator precedences in order to solve parsing ambiguities� Of course�
parentheses must be added in order to 	ght against 	xed precedence� This is the
solution used in standard LOTOS�

However� this approach is not very satisfactory �should ���� have precedence over ����
or the opposite�� and is a frequent cause of mistakes in LOTOS�

� Another approach is to follow the bracketed syntax proposed by Ed Brinksma in his
PhD thesis �Bri�� The proposal here is an improvement of Ed Brinksma�s proposal
�the present solution is more user
friendly� and avoids bracketing as much as possible��

We believe that it is possible to design a BNF syntax for E
LOTOS that would prevent
the users from mixing di�erent binary operators� In case of ambiguity� this syntax
would force the user to use bracketing� The following guidelines should be taken as a
goal�

� As suggested by Brinksma� we introduce a special syntax to �bracket� all binary
operators �except ��� which will be given the highest precedence��

dis
B�

��

B�

enddis

�

sel
B�

��

���

��

Bn

endsel

etc�

Note� if the introduction of Brinkma�s new keywords ��sel�� �dis����� is felt
undesirable� they can be replaced with parentheses or �begin���end��

� As a general rule� mixing di�erent binary operators is forbidden �it causes a syntax
error�� For instance� the following expression is illegal�

B� �� B� �� B�

Instead� bracketing should be used� One should write either�

sel B� �� B� endsel ��B�

or�

B� �� dis B� �� B� enddis

� However� there should be one exception to this principle� the ��� operator should
have the highest precedence and need not be bracketed when combined with other
operators� For instance� the following expression would be legal�

B� � B� �� B�

and parsed as�

�B� � B�� �� B�

� Of course� when combining the same operator several times� bracketing should
not be needed �assuming that the operator is left associative�� For instance� the
following expression is legal�

B� �� B� �� B�

and equivalent to

sel B� �� B� �� B� endsel

��

ITEM� AFNOR�� Improving the �write�once	 variable scheme

CLAUSE� General

QUALIFIER� Major Technical

RATIONALE�

The assignment operator proposed by the CD is a good step towards a user language that
would be simpler and easier to use�

However� in its current form� this assignment operator can be misleading for users� The
main reason for this is the following� the assignment operator combines a declaration of a
new variable with an initialization�

For instance� when writing�

x �� x� �� stop

the x on the left
hand side is a new variable� not the same as the x on the right
hand side
�this is the same situation as the �let� operator in LOTOS��

Similarly� it is possible to write expressions such as�

x �� �x � ��� stop

where the left x has the boolean type and where the right x has the integer type�

PROPOSED CHANGE�

To address this problem� the revised CD should�

� evolve towards a write
many semantics

� clearly separate variable declaration from variable assignment

� ensure that the variables on the left and right hand side of an assignment are the same
�thus� have the same type�

� ensure that the assigned variables have the same type as in their declaration

��

ITEM� AFNOR��� Improving the �par	 and �choice	 operators

CLAUSE� �B��� and �B���

QUALIFIER� Major Technical

RATIONALE�

The �choice� and �par� operators proposed in the CD are not symmetrical�

� The �choice� operator can iterate on the domain of a type�

choice X � T �� B

� The �par� operator can only iterate on a list of values��

par X in �� �� � ��� B

Moreover� only the full interleaving operator ����� can be used with the proposed �par�
operator� it may be useful to allow general parallel composition ��������� as well as �n
among m� synchronization�

PROPOSED CHANGE�

The revised CD should enforce a symmetry between �choice� and �par� operators�

�� The �par� operator should be able to iterate on 	nite types�

par X � T ��� B

Because types are de	ned constructively in E
LOTOS� it is very easy to determine
statically whether a type is 	nite of not �this was not possible in LOTOS�� a type is
	nite i� it is not recursive� This can be expressed with a simple 	xed
point�

Similarly� it is easy to compute inductively the list of values of a 	nite E
LOTOS
type� The dynamic semantics could be simply de	ned by attening the domain �as it
is already done in LOTOS for the �par� operator over lists of gates��

For the abstract data types� the de	nition of which is unknown� the problem is solved
by adding a ��nite� attribute to the de	nition of the abstract data type�

interface I is

type T is finite

���

endtype

�At the time being� no rich�term syntax is provided for lists� one must use cons operators

��

This will allow generic modules to be checked statically� This approach will also be
needed for generic processes� for which one has to indicate whether they are guarded
or not�

�� If a �par� operator on a list of constants is found desirable� then a similar �choice�
operator on a list of constants should be also introduced in E
LOTOS�

�� Obviously� the revised CD should not allow �any� in places such as �choice X �
any����� which seem currently allowed by the CD� The need to restrict �any� types to
gate types has already be explained in another AFNOR Major Technical comment�

��

ITEM� AFNOR��� Improving the subtyping mechanism

CLAUSE� General

QUALIFIER� Major Technical

RATIONALE�

The CD proposes a built
in subtyping mechanism for types� AFNOR makes the following
comments�

�� It is clear that the E
LOTOS subtyping mechanism has no relation with the ODP
subtyping mechanism�

Recent work in this area �BBSDS��� establishes that ODP subtyping requires compar

ison relations between behaviour expressions corresponding to the service primitives
provided by di�erent ODP objects�

In this respect� the notion of subtyping proposed by the CD �which is mainly the
possibility to add 	elds into records� is totally unrelevant�

�� Technically� it is well
known that subtyping is incompatible with overloading� How

ever� overloading is needed for the prede	ned type library and the rich
term syntax
�a problem which has been left out of the CD�� Therefore� when the Committee will
de	ne prede	ned types� subtyping will become a problem�

�� Anyway� the proposed subtyping mechanism is not very useful practically and raises
a number of issues� The CD gives only two justi	cations for using built
in subtyping�
subtyping between numeric types and subtyping for gate typing� Let us examine them
in turn�

� Subtyping between numeric types� the CD suggests that �int� could be a subtype
of �real�� It is probably better to avoid implicit conversions and let the user
decide explicitly when integers should be converted to oating
point numbers�

� Subtyping between gate typing� as far as gate typing is concerned� there are two
ways of using the proposed subtyping�

� Declaring a gate of type �any�� meaning that the gate can accept any exper

iment o�ers

� Declaring a gate of type extensible record ��X� � T�� ����Xn � Tn� etc���
meaning that the gate has at least n experiment o�ers of types T�� ���� Tn�
plus additional experiment o�ers of unspeci	ed types�

Let us observe that this mechanism is not as expressive as the original proposal
for gate typing �Gar��a�� which allows to specify a gate type with a 	xed set of
pro	les�

��

channel T is

�bool� int� int�

�bool� bool�

endchan

This is not possible with the subtyping scheme proposed in the CD� the only way
is to declare the gate of type �any�� which will allow any combination of o�ers�
e�g�� �int� bool��

�� The proposed subtyping is limited in the sense that it only supports extensible records�
Practically� it is also desirable to have extensible unions� For instance� the following
router accepts any kind of messages and sends them forward� except datagram packets�
which are 	ltered�

type T is

DATAGRAM �CODE�int�

� etc

endtype

process ROUTER �INPUT��T�� OUTPUT��T�� is

loop

INPUT
X�T �

case X in

DATAGRAM �CODE�int� �� exit

� any T �� OUTPUT �X

endcase

endloop

endproc

�Below� we give hints about the way of allowing such a form of generalized subtyping
in E
LOTOS��

�� Moreover� the proposed subtyping allows very questionable situations� e�g�� recursive
processes that extend their lists of parameters�

process P �G� �X �� int� etc� � exit �none� is

P �G� �X �� ��

��

P �G� �X �� �� Y �� true�

��

P �G� �X �� �� Y �� �� Z �� true�

��

P �G� �X �� �� Z �� ��

endproc

��

PROPOSED CHANGE�

The subtyping mechanism proposed by the CD is only arguable because major parts of E

LOTOS �prede	ned types and rich
term syntax� have been left out by the Committee� These
parts remain to be provided� Because they require overloading� and because overloading and
subtyping are incompatible� a con ict will occur�

� Instead of subtyping� gate typing and genericity should be used to achieve the desired
e�ect� with the advantage that type
checking can be done statically� Let us consider
the above example�

type T is

DATAGRAM �CODE�int�

� etc

endtype

process ROUTER �INPUT��T�� OUTPUT��T�� is

loop

INPUT
X�T �

case X in

DATAGRAM �CODE�int� �� exit

� any T �� OUTPUT �X

endcase

endloop

endproc

In this de	nition� T is a formal type �in the same way as �formalsorts� in standard
LOTOS� and ROUTER is a generic process parameterized with the formal type T�

We suggest to follow the same approach as in LOTOS�

� Generic de	nitions are checked statically� their syntax and static semantics are
veri	ed�

� However� they are not given a dynamic semantics� As in LOTOS� only fully
instantiated de	nitions are given a dynamic semantics� In the above example�
process ROUTER has no dynamic semantics because it is parameterized�

� Before being used� the ROUTER process must be instantiated� by substituting a
concrete type �e�g�� PACKET� to the formal type T� This is simply done using the
existing module instantiation scheme�

The instantiation of ROUTER will be a process in which T is replaced by PACKET�
This instantiated process will have a dynamic semantics�

During the instantiation� the static semantics must ensure that the PACKET

type is a subtype of T� i�e�� that PACKET has one constructor of the form
DATAGRAM �CODE�int��

��

� Also� in order to express ODP subtyping� AFNOR recommends to allow the expression
of behavioural relations in E
LOTOS� exactly in the same way as equational speci	ca

tions� Proposals already exist for this purpose�

��

References

�BBSDS��� H� Bowman� C� Briscoe
Smith� J� Derrick� and B� Strulo� On Behavioural Sub

typing in LOTOS� In Howard Bowman and John Derrick� editors� 	nd IFIP
International Conference on Formal Methods for Open Object
based Distributed
Systems FMOODS�� �Canterbury� UK�� July �����

�Bri� Ed Brinksma� On the Design of Extended LOTOS� a Speci�cation Language for
Open Distributed Systems� PhD thesis� University of Twente� November ���

�Gar��a� Hubert Garavel� On the Introduction of Gate Typing in E
LOTOS� Rapport
SPECTRE ��
�� VERIMAG� Grenoble� February ����� Annex D of ISO�IEC
JTC��SC���WG� N���� Revised Draft on Enhancements to LOTOS and An

nex B of ISO�IEC JTC��SC���WG� N���� Working Draft on Enhancements
to LOTOS�

�Gar��b� Hubert Garavel� Six improvements to the process part of LOTOS� Rapport
SPECTRE ��
�� VERIMAG� Grenoble� June ����� Annex K of ISO�IEC
JTC��SC���WG� N���� Working Draft on Enhancements to LOTOS�

�Gar��� Hubert Garavel� On the Introduction of Gate Typing in E
LOTOS� In Piotr
Dembinski and Marek Sredniawa� editors� Proceedings of the ��th IFIP Inter

national Workshop on Protocol Speci�cation� Testing and Veri�cation �Warsaw�
Poland�� IFIP� Chapman ! Hall� June �����

�GS��� Hubert Garavel and Mihaela Sighireanu� On the Introduction of Exceptions
in LOTOS� In Reinhard Gotzhein and Jan Bredereke� editors� Proceedings
of the Joint International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols� and Protocol Speci�cation�
Testing� and Veri�cation FORTE�PSTV��� �Kaiserslautern� Germany�� pages
������� IFIP� Chapman ! Hall� October �����

�Pec��� Charles Pecheur� A proposal for data types for E
LOTOS� Technical Report�
University of Li�ege� October ����� Annex H of ISO�IEC JTC��SC���WG�
N���� Working Draft on Enhancements to LOTOS�

�Pec��� Charles Pecheur� Improving the Speci�cation of Data Types in Lotos� Doctorate
thesis� University of Li�ege� November �����

�QA��� J� Quemada and A� Azcorra� Structuring Protocols with Exception in a LOTOS
Extension� In Proceedings of the �	th IFIP International Workshop on Protocol
Speci�cation� Testing and Veri�cation �Orlando� Florida� USA�� IFIP� North

Holland� June �����

��

