RSI Comments on Working Draft on Enhancements to LOTOS
ISO/IEC JTC1/SC21/WGT7 WI 1.21.20.2.3

1997/06/15

Romania votes AGAINST promoting the Working Draft on Enhancements to LOTOS as a Final Draft,
with the following 4 comments.

Romania will change its NO vote to YES with the satisfactory resolution of the Major Technical
comments below.

ITEM: RSI-1 Anonymous records
CLAUSE: General
QUALIFIER: Major technical

RATIONALE: Although anonymous records are used to formalize the semantics of the language,
we believe that their introduction in E-LOTOS language is not a good design choice. The main reasons
are the following:

1. No added expressiveness. As the number of anonymous records in a given description is
necessarily finite, it is always possible to translate any description with anonymous records into
an equivalent one in which all distinct record types are given unique type identifier. Moreover,
the ODP Trader example given in Annex A of the document does not use this “capability” of the
language.

2. A questionable and limited convenience. From the practical point of view, we see two ad-
vantages to anonymous records:

e The possibility of using structured types without declaring them.

e The possibility to declare functions that returns several results.

However, in the same time, these two advantages could be considered as disadvantages: the first
one goes against a fundamental software methodology as discussed at point 5 below and leads
to lack of reusability; the second one is a limited version of having ‘in’/‘out’ parameters for
functions and processes.

3. Lack of convenience. The ability to call functions declared with named parameters using po-
sitional arguments is lost by considering anonymous records as arguments for function. The
positional call is possible only when the function was declared with a tuple argument (!).

4. Complexity of the semantics. Introducing anonymous records in E-LOTOS makes the static
and the dynamic semantics more complex:

e [t introduce the notion of type expressions at the language level. In standard LOTOS, the
type of each expression is simply a sort identifier. With anonymous records the type of each

expression is either a sort identifier, or a record of type expressions. Nested records are thus
allowed.
Type expressions are used at the semantic level to express the semantics of imperative
features. However, this cannot justify their presence at the language level. Moreover, the
semantics given by means of type expressions presents some inconveniences as discussed in
ITEM 2.

e [t introduce the notion of structure equivalence for type expressions. In standard LOTOS,
two expressions have the same type iff their sort identifier are identical (this is name equiv-
alence). In the current draft, the situation is more complicated, a mixture of name and
structure equivalence is used.

5. Subversion of software methodologies. The anonymous records go against the recommended
methodologies for software design and programming. It is to be feared that lazy programmers
and specifiers may write poorly documented descriptions, in which complex data are structured
in (nested) records without naming the type of this data (as it is often the case in LISP).

This is a common concern for most programming languages designers. The name equivalence
was chosen for languages as Pascal, Ada, C, C++, etc.

Also, anonymous records and structure equivalence go against object-oriented methodologies for
design of complex systems, which recommend to give explicit names to every data structure
manipulated by the software under design.

6. Absence of compatibility with standard LOTOS. As mentioned above, all types in LO-
TOS are sort identifiers and the equivalence of types is the name equivalence. As long as the
upward compatibility requirement is stated, it has also to be stated to reject anonymous records
and structural equivalence of types.

7. Absence of interoperability with other ISO languages. To be a successful and widely used
language, E-LOTOS should interoperate smoothly with other main computer languages. Select-
ing anonymous records approach put restrictions on the interoperability of E-LOTOS with other
languages:

e To be able to implement an external function in Ada, C, C++, one must either declare the
function with a tuple argument, or , in absence of subtyping, do static semantics conversions
from the labelled function call to the positional call. The reverse problem is also true: to
call from a C program an E-LOTOS function, one have to translate always the labelled call
into a positional one.

e The use of anonymous records in the profile of functions does not allow the mixture between
the ‘in’ and ‘out’ parameters of the functions or processes. This lack will prevent to invoke,
from an E-LOTOS description, routines defined in libraries of C, where the ‘in’ and ‘out’
parameters are merged. Moreover, it will be not possible to use E-LOTOS to specify the
behaviour of systems which interfaces are specified in IDL (where mixture of parameters is
also allowed), thus limiting the usefulness of E-LOTOS for description of ODP systems.

8. Inefficient implementation. As regards efficiency of code generated by compliers, it is clear
giving a name to each typed used into the specification is easier than generating new name for
each anonymous record used and testing structural equivalence of types.

PROPOSED CHANGE: The anonymous records must be eliminated from the language. The type
expressions allowed to the language level have to be sort identifiers, ‘none’, and ‘any’ types.

The record types have to be named using type synonym declarations. In this way, the syntax of
communication does not change.

More complex type expressions have to be used only in the semantics.

ITEM: RSI-2 Built-in subtyping
CLAUSE: General
QUALIFIER: Major technical

RATIONALE: Built-in subtyping in records is a dangerous way to introduce polymorphism in
E-LOTOS. The main reasons which justify our reject of such design choice are the following:

1.

Absence of compatibility with standard LOTOS. It implies the suppression of overloading
facilities that currently exist in LOTOS. This go against the goal of compatibility with LOTOS
defined in the scope of the New Work Item.

. A questionable compatibility problem. The presence of subtyping is justified by upward

compatibility with the LOTOS untyped gates. This is not a real problem how long it can be
easily solved by translating LOTOS description with untyped gates in E-LOTOS descriptions
with gates having as type the union type of all types of data communicated over each gate.

Complexity of the type-checking algorithm. The type-checking algorithm for subtyping is
significantly more complex (exponential time) than one for overloading (linear time). This will
increase the complexity of E-LOTOS type-checkers, with the large risk that subtyping based
protocol descriptions not to be checked in a reasonable amount of time.

. Complexity of the type system. In absence of subtyping, no prove that each expression has

a principal type have to be given. We mention that it is not proved in the current document.

. No useful added expressiveness. The kind of subtyping needed in ODP systems is merely an

equivalence relation between behaviours combined with an inheritance relation between modules
(objects). The built-in subtyping introduced in E-LOTOS does not respond to ODP needs,
although its name may induce confusion in the mind of ODP users.

Moreover, the built-in subtyping is less powerful than the combination of generic modules with
user defined subtyping on abstract data types. A such proposal was presented in a early version
of the module system. It has the advantage to solve subtyping statically, when modules are
flattened.

. Dynamic type checking. The subtyping is heavily based on dynamic type-checking. From the

practical point of view, we see two advantages to dynamic type-checking:

e There are interesting programs that are more easily expressed in a dynamically type checked
language. However, there are many, many programs that can quite easily and conveniently
be expressed using a statically typed language.

e Statically type checked are by necessity more verbose than dynamically type checked ones.
Some of verbosity is useful for documentation purposes, but the rest is only of interest to
the compiler.

However, in the same time we mention three disadvantages of the dynamic type-checking which
advocate in favor of static type-checking:
e Errors detected at compile time do not have to be discovered at run time.

o With dynamically type checked code, it is possible to ship code with type errors to customers,
whereas with statically type checked code, it is not.

e Dynamically typed code incurs extra overhead. A language based on dynamic type-checking
is destinate mainly to be interpreted (so very slow), and no to be compiled. The compilers
based on dynamic type-checking are very complex because they must store type informations
and manage memory w.r.t. to type informations.

7. Oddness of language constructs. The extensible records allowed by the subtyping introduce

some odd “facilities” when combined with process and function declarations. For example, when-
ever the value parameter of a process is an extensible record (i.e., a record ended by ‘etc’), this
processes can be invoked by adding more parameters than those initially declared by its profile.
It is difficult to claim the usefulness of a such capability, but it is clear that it goes against
elementary software methodologies.

Another example is possibility of declaring unomogenous lists (lists with elements of type ‘any’)
instead of overloaded constructors and rich term syntax which are simpler to implement and to

type.

Oddness in semantics. Although the subtyping was introduced also for semantics purposes,
it induces some nasty problems. For example, due to subtyping, the sequential composition
(B1; Bs) semantics does not allow associativity if the second behaviour (Bs) is a non-terminating
one (‘exit (none’) type).

It is worth noticing that even for experts is difficult to capture all the powerful of a such semantics.

PROPOSED CHANGE: The built-in subtyping must be replaced by genericity and user defined
subtyping on abstract data types.

ITEM: RSI-3 Overloading
CLAUSE: General
QUALIFIER: Major technical

RATIONALE: Although it is mentioned in the tutorial part of the CD (page 13) that overloading
is treated by the module system, the proposed E-LOTOS language cannot support overloading (which
already exists in standard LOTOS). We advocate here the main arguments in favor of overloading:

1.

Overloading is primary intended for notation convenience. It is not obvious that removing over-
loading from E-LOTOS is the right way to obtain “a more user-friendly notation for datatype
description” (goal defined in the scope of the New Work Item).

In absence of overloading of operators, the predefined operators ‘+’, -, etc. must have dif-
ferent name for each type. The alternative solution of giving the type ‘(any,any) — any’ to
such operator in order to support overloading induce inconsistency in the typing of predefined
expressions.

. User-defined, overloaded functions do not prevent type-checking from being done at compile time.

Overloading does not add much complexity to static and dynamic semantics, since overloading
treatment is usually treated by the static semantics, without impact on dynamic semantics.

. Well know efficient algorithm exists to perform type-checking and solve overloading.

Overloading fits well with the genericity of the actual module system: it allows to instantiate
generic module several times without containing user to give new name for operators at each
instantiation.

6.

7.
8.

Overloading is existing practice in LOTOS. Forbidding overloading in E-LOTOS would raise
difficult compatibility issues with the current standard. In such case, an algorithm should be
provided to translate existing LOTOS descriptions into ones without overloading.

The rich term syntax proposed by Charles Pecheur relies on the existence of overloading.

The overloading is compatible with type theory because there exits theorem-provers based on
type theory (PVS, ISABELLE) which supports overloading.

PROPOSED CHANGE: The overloading should be introduced instead of subtyping.

ITEM: RSI-4 Editorial inconsistencies, lacks, or errors
CLAUSE: General
QUALIFIER: Editorial

RATIONALE: We give below a list of inconsistencies, lacks, or errors of the present document:

1.

10.

11.

12.

13.

Section 2.1 / page 12: The ¢/’ function does not have the Div exception declared in its profile,
although the Div exception can be raised at the run time.

. Section 2.1 / page 14: Mention that ‘nil’ and ‘cons’ names cannot be reused because the form of

subtyping supported does not includes overloading of functions.

. Section 2.1 / page 15: At this point the ‘any’ pattern is not presented.

Section 2.1 / page 16: There should be precise if ‘string’ should be a user-defined type or a
predefined type. Moreover, there are no definition of the predefined types of the language.

. Section 2.1 / page 16: There should be precise the functionality of the Counter process or to be

given the ‘by default’ functionality of processes. After the ‘by default’ type of gates, add: “Also,
the by default functionality of a process is exit (none).”

. Section 2.1 / page 16: Here is claimed that ‘any’ type is used as type of gate which can commu-

nicate data of any type instead of ‘(etc)’ type.

Section 2.1 / page 17: There should be give a formal definition for subtyping of built-in types as
integers, floats.

. Section 2.1 / page 17: Substitute ’communicationor’ by 'communication or’.

. Section 2.1 / page 17: There should be precise the scope of the ‘Match’ exception raised by the

patterns matching.

Section 2.1 / pages 18, 29: There should be clarified the impact of having expressions which
are not normal forms into the patterns. The main problem is that the expression can raise an
exception, which is different from ‘Match’ exception.

Section 2.1 / page 21: The non-deterministic assignment for expressions is not in the grammar.
So, the paragraph “Since the is an expression ...” should be removed.

Section 2.1 / page 22: Into the imperative version of the partition, guards on pattern matching
are used, without being presented.

Section 2.1 / page 23: You should precise either the ‘Inner’ name is generated as a new name for
the loop or it is a reserved word.

14.
15.
16.
17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Section 2.1 / page 27: Inconsistent notation; replace ’de = dest’ by 'de:dest’.
Section 2.1 / page 27: Typos error; replace 'direcions’ by ’directions’.

Section 2.1 / page 28: Typos error; replace 'Gamma;’ by 'T';’.

Section 2.1 / page 28: Typos error; add a ‘; ” after ?x:=any time.

Section 2.1 / page 30: Typos error; add a ‘: ’ after mid gate.

7

Section 2.1 / page 31: In the paragraph 'The left is continuously ...
To avoid confusion, add ’left’ before all ’behaviour’ words.

replace resume’ by resumes’.

Section 2.1 / pages 15-16: The use of the same name for ‘any’ type identifier (in subtyping) and
‘any’ pattern disposes to confusions.

Section 3.2.1 / page 46: There are some reserved words which do not appear on the list given,
and some other which are not used. For example:

infix var () {3} ,

The otherwise keyword is not used.

It hould be specified that the reserved words cannot be used as identifiers (except maybe =).

Section 3.2.3 / page 47: There is no definition for special constant non-terminal class SCon.
An additional annex should precise the initial basic of the language (its static semantics and its
dynamic semantics).

Section 3.3 / pages 48-55: There are a lot of ambiguities in the concrete grammar, due to the
lack of precedence between the operators. For example, the expression P:=F;E can be parsed
in two ways (P:=FE);F or P:=(E;FE).

The association rules between binary operators are not specified.

Section 3.3 / pages 48-55: The (B) and (F) clauses do not appear in the grammar; they are
useful to give explicitly the precedence between operators.

Section 3.3 / pages 50-51: The actual syntax (P:=FE) introduce some problems due to the
exhaustiveness of the pattern P. To avoid such problems, the classical form of the assignment
V :=F seems to be appropiate.

Section 3.3 / page 50: The grammar given for ‘rename’ operator is not LALR1. There is no
possibility to make difference between a gate renaming or a signal renaming looking to the first
token. As suggested in the semantics chapter, ‘gate’ and ‘signal’ keywords may be added before
a gate and a signal identifier, respectively.

Section 3.3 / pages 50-51: The grammar given for ‘if-then-else’ construct does not have an ‘elsif’
clause. This will conduce at a cumbersome overlapping of ‘if-then-else’ constructs.

Section 4.2.1 and 4.10.23/ pages 58 and 92: The language syntax considered in this chapter does
not correspond with those given in Section 3.3. Examples: declaration of formal parameters for
functions and processes, hide construct.

29.

30.

31.

32.

33.

34.
35.

36.

37.

Section 4.10.9 / page 79: Although in section 4.10.1 the dynamic semantics use labels of form px
(RN), the notation used here is u (N).

Section 4.10.17 / page 85: In the first rule of static semantics, the RT and RT' have to be
disjoint, w.r.t. “write-one” politics; add the guard [RT, RT' have disjoint fields].

The rule of timed dynamic semantics have to be:

VN.((E+ N=any and £ F (P= N)= (RN)) implies £ - B[RN] e(d+d’) B

£ I choice P after(d) [1 B e(d) choice P after(d+d') [1 B’

0 < d|

Section 4.10.18 / pages 87-88: The second rule of the static semantics have to have ‘exit(RT")
" in place of ‘guarded(RT') ’ because how long the behaviour B is not guarded, and the exit
action is not trapped, the all behaviour can do an unguarded exit.

In the conclusion of the first rule of the untimed dynamic semantics, the last B have to be B'.

Section 4.10.19 / page 89: The N identifier is also used for normal forms.

The static semantics of vectors of gates Gi is

Ct+ G; = gate (RT})

Section 4.10.20 / page 90: The second premise of the second rule of the static semantics composes
(by mistake) RT with the context C.

In the untimed dynamic semantics the RN given by the pattern matching is not distinguished
from the RN given in p(RN).

Section 4.10.24 / pages 93-94: The $argv pattern and value are not presented.
Section 4.10.26 / page 96: The static semantics given for ‘loop’ type check the following example:
?z:=3;loop forever x:bool in z:=x < 4 endloop

However, at the run time a type error will be raised (for the second iteration). For this, add a
fourth premises to the rule:

C; RTl, RT2 F BQ = exit (RTl, RTQ)
This version will reject cases of run-time type error, but will accept expressions as:

?x:=3;loop forever z:bool in z:=(z = z) endloop

Section 4.10.32 / page 98: The default clause of the ‘if-then-else’ construct is exit. This will
constraint the user to describe guarded behaviours of LOTOS

[F] — B
by explicitly specifying the else part:
if £ then B else stop endif
Section 4.12 / pages 102-104: The syntactic category of the record expressions is not entirely a

syntactic sugar (as mentioned): for disjoint union record expressions you give a static semantics
translation.

38.

39.

40.

41.
42.
43.

44.

45.
46.
47.

48.
49.

20.

Section 4.13.5 / page 105: In the the three rules given for the untimed dynamic semantics the
RE has been replaced by E.

Section 4.15 / pages 106-107: This syntactic category overlaps the NP and the LV categories.
Moreover, it does not appear in the list of non-terminals given at page 45.

Section 2.2 / page 36: The note on the Router example does not explain the presence of the
pervasive modules as Natural.

Section 2.2.1.2 / page 38: There is a duplicate page 39 and the page 121 is not in the document.
Section 2.2.1.3 / page 40: The A1l module allows access only to S, x, and y.

Section 2.2.1.4 / pages 40-41: Interface and module expressions are imported by the clauses
‘import’.
Since Natural is a pervasive module do you have to import it in the NatMonoid example?

Add a note saying that importation is made using a union with matching of common names and
not a disjoint union. So the multiple importation is allowed.

Section 2.2.1.5 / page 42: A formal semantics for equation typing and their validity (verification
semantics) have to be given.

Section 5.1.2.3 / page 110: It is not specified the ‘matches’ relation for the contexts of processes.
Section 5.2.2 / page 110: The type of the behavioural part of a specification is not specified.

Sections 5.3.8. and 5.4.4 / pages 113 and 114: It is not clear how mutually recursive type,
function, and processes declarations can be supported.

Section 5.4.3 / page 114: The type of the value declaration could be only S; replace S by T.

Section 5.7.2 / page 117: The element to be renamed has to be already into the context C; add
the premise C = S = T at the static semantics rule.

Section 5.8.1 / page 118: The context resulting from the static semantics evaluation of RME is

B.

