
RSI Comments on Working Draft on Enhancements to LOTOS

ISO�IEC JTC��SC���WG� WI �����������

����������

Romania votes AGAINST promoting the Working Draft on Enhancements to LOTOS as a Final Draft�
with the following � comments�
Romania will change its NO vote to YES with the satisfactory resolution of the Major Technical
comments below�

ITEM� RSI�� Anonymous records

CLAUSE� General

QUALIFIER� Major technical

RATIONALE� Although anonymous records are used to formalize the semantics of the language�
we believe that their introduction in E�LOTOS language is not a good design choice� The main reasons
are the following�

�� No added expressiveness� As the number of anonymous records in a given description is
necessarily �nite� it is always possible to translate any description with anonymous records into
an equivalent one in which all distinct record types are given unique type identi�er� Moreover�
the ODP Trader example given in Annex A of the document does not use this �capability	 of the
language�


� A questionable and limited convenience� From the practical point of view� we see two ad�
vantages to anonymous records�

� The possibility of using structured types without declaring them�

� The possibility to declare functions that returns several results�

However� in the same time� these two advantages could be considered as disadvantages� the �rst
one goes against a fundamental software methodology as discussed at point � below and leads
to lack of reusability� the second one is a limited version of having in��out� parameters for
functions and processes�

�� Lack of convenience� The ability to call functions declared with named parameters using po�
sitional arguments is lost by considering anonymous records as arguments for function� The
positional call is possible only when the function was declared with a tuple argument ����

�� Complexity of the semantics� Introducing anonymous records in E�LOTOS makes the static
and the dynamic semantics more complex�

� It introduce the notion of type expressions at the language level� In standard LOTOS� the
type of each expression is simply a sort identi�er� With anonymous records the type of each

�



expression is either a sort identi�er� or a record of type expressions� Nested records are thus
allowed�

Type expressions are used at the semantic level to express the semantics of imperative
features� However� this cannot justify their presence at the language level� Moreover� the
semantics given by means of type expressions presents some inconveniences as discussed in
ITEM 
�

� It introduce the notion of structure equivalence for type expressions� In standard LOTOS�
two expressions have the same type i� their sort identi�er are identical �this is name equiv�

alence�� In the current draft� the situation is more complicated� a mixture of name and
structure equivalence is used�

�� Subversion of software methodologies� The anonymous records go against the recommended
methodologies for software design and programming� It is to be feared that lazy programmers
and speci�ers may write poorly documented descriptions� in which complex data are structured
in �nested� records without naming the type of this data �as it is often the case in LISP��

This is a common concern for most programming languages designers� The name equivalence
was chosen for languages as Pascal� Ada� C� C��� etc�

Also� anonymous records and structure equivalence go against object�oriented methodologies for
design of complex systems� which recommend to give explicit names to every data structure
manipulated by the software under design�

�� Absence of compatibility with standard LOTOS� As mentioned above� all types in LO�
TOS are sort identi�ers and the equivalence of types is the name equivalence� As long as the
upward compatibility requirement is stated� it has also to be stated to reject anonymous records
and structural equivalence of types�

�� Absence of interoperability with other ISO languages� To be a successful and widely used
language� E�LOTOS should interoperate smoothly with other main computer languages� Select�
ing anonymous records approach put restrictions on the interoperability of E�LOTOS with other
languages�

� To be able to implement an external function in Ada� C� C��� one must either declare the
function with a tuple argument� or � in absence of subtyping� do static semantics conversions
from the labelled function call to the positional call� The reverse problem is also true� to
call from a C program an E�LOTOS function� one have to translate always the labelled call
into a positional one�

� The use of anonymous records in the pro�le of functions does not allow the mixture between
the in� and out� parameters of the functions or processes� This lack will prevent to invoke�
from an E�LOTOS description� routines de�ned in libraries of C� where the in� and out�
parameters are merged� Moreover� it will be not possible to use E�LOTOS to specify the
behaviour of systems which interfaces are speci�ed in IDL �where mixture of parameters is
also allowed�� thus limiting the usefulness of E�LOTOS for description of ODP systems�

�� Ine�cient implementation� As regards e�ciency of code generated by compliers� it is clear
giving a name to each typed used into the speci�cation is easier than generating new name for
each anonymous record used and testing structural equivalence of types�

PROPOSED CHANGE� The anonymous records must be eliminated from the language� The type
expressions allowed to the language level have to be sort identi�ers� none�� and any� types�
The record types have to be named using type synonym declarations� In this way� the syntax of
communication does not change�






More complex type expressions have to be used only in the semantics�

ITEM� RSI�� Built�in subtyping

CLAUSE� General

QUALIFIER� Major technical

RATIONALE� Built�in subtyping in records is a dangerous way to introduce polymorphism in
E�LOTOS� The main reasons which justify our reject of such design choice are the following�

�� Absence of compatibility with standard LOTOS� It implies the suppression of overloading
facilities that currently exist in LOTOS� This go against the goal of compatibility with LOTOS
de�ned in the scope of the New Work Item�


� A questionable compatibility problem� The presence of subtyping is justi�ed by upward
compatibility with the LOTOS untyped gates� This is not a real problem how long it can be
easily solved by translating LOTOS description with untyped gates in E�LOTOS descriptions
with gates having as type the union type of all types of data communicated over each gate�

�� Complexity of the type�checking algorithm� The type�checking algorithm for subtyping is
signi�cantly more complex �exponential time� than one for overloading �linear time�� This will
increase the complexity of E�LOTOS type�checkers� with the large risk that subtyping based
protocol descriptions not to be checked in a reasonable amount of time�

�� Complexity of the type system� In absence of subtyping� no prove that each expression has
a principal type have to be given� We mention that it is not proved in the current document�

�� No useful added expressiveness� The kind of subtyping needed in ODP systems is merely an
equivalence relation between behaviours combined with an inheritance relation between modules
�objects�� The built�in subtyping introduced in E�LOTOS does not respond to ODP needs�
although its name may induce confusion in the mind of ODP users�

Moreover� the built�in subtyping is less powerful than the combination of generic modules with
user de�ned subtyping on abstract data types� A such proposal was presented in a early version
of the module system� It has the advantage to solve subtyping statically� when modules are
�attened�

�� Dynamic type checking� The subtyping is heavily based on dynamic type�checking� From the
practical point of view� we see two advantages to dynamic type�checking�

� There are interesting programs that are more easily expressed in a dynamically type checked
language� However� there are many� many programs that can quite easily and conveniently
be expressed using a statically typed language�

� Statically type checked are by necessity more verbose than dynamically type checked ones�
Some of verbosity is useful for documentation purposes� but the rest is only of interest to
the compiler�

However� in the same time we mention three disadvantages of the dynamic type�checking which
advocate in favor of static type�checking�

� Errors detected at compile time do not have to be discovered at run time�

� With dynamically type checked code� it is possible to ship code with type errors to customers�
whereas with statically type checked code� it is not�

�



� Dynamically typed code incurs extra overhead� A language based on dynamic type�checking
is destinate mainly to be interpreted �so very slow�� and no to be compiled� The compilers
based on dynamic type�checking are very complex because they must store type informations
and manage memory w�r�t� to type informations�

�� Oddness of language constructs� The extensible records allowed by the subtyping introduce
some odd �facilities	 when combined with process and function declarations� For example� when�
ever the value parameter of a process is an extensible record �i�e�� a record ended by etc��� this
processes can be invoked by adding more parameters than those initially declared by its pro�le�
It is di�cult to claim the usefulness of a such capability� but it is clear that it goes against
elementary software methodologies�

Another example is possibility of declaring unomogenous lists �lists with elements of type any��
instead of overloaded constructors and rich term syntax which are simpler to implement and to
type�

�� Oddness in semantics� Although the subtyping was introduced also for semantics purposes�
it induces some nasty problems� For example� due to subtyping� the sequential composition
�B��B�� semantics does not allow associativity if the second behaviour �B�� is a non�terminating
one �exit �none�� type��

It is worth noticing that even for experts is di�cult to capture all the powerful of a such semantics�

PROPOSED CHANGE� The built�in subtyping must be replaced by genericity and user de�ned
subtyping on abstract data types�

ITEM� RSI�� Overloading

CLAUSE� General

QUALIFIER� Major technical

RATIONALE� Although it is mentioned in the tutorial part of the CD �page ��� that overloading
is treated by the module system� the proposed E�LOTOS language cannot support overloading �which
already exists in standard LOTOS�� We advocate here the main arguments in favor of overloading�

�� Overloading is primary intended for notation convenience� It is not obvious that removing over�
loading from E�LOTOS is the right way to obtain �a more user�friendly notation for datatype
description	 �goal de�ned in the scope of the New Work Item��


� In absence of overloading of operators� the prede�ned operators ��� ��� etc� must have dif�
ferent name for each type� The alternative solution of giving the type �any�any� � any� to
such operator in order to support overloading induce inconsistency in the typing of prede�ned
expressions�

�� User�de�ned� overloaded functions do not prevent type�checking from being done at compile time�
Overloading does not add much complexity to static and dynamic semantics� since overloading
treatment is usually treated by the static semantics� without impact on dynamic semantics�

�� Well know e�cient algorithm exists to perform type�checking and solve overloading�

�� Overloading �ts well with the genericity of the actual module system� it allows to instantiate
generic module several times without containing user to give new name for operators at each
instantiation�

�



�� Overloading is existing practice in LOTOS� Forbidding overloading in E�LOTOS would raise
di�cult compatibility issues with the current standard� In such case� an algorithm should be
provided to translate existing LOTOS descriptions into ones without overloading�

�� The rich term syntax proposed by Charles Pecheur relies on the existence of overloading�

�� The overloading is compatible with type theory because there exits theorem�provers based on
type theory �PVS� ISABELLE� which supports overloading�

PROPOSED CHANGE� The overloading should be introduced instead of subtyping�

ITEM� RSI�� Editorial inconsistencies	 lacks	 or errors

CLAUSE� General

QUALIFIER� Editorial

RATIONALE� We give below a list of inconsistencies� lacks� or errors of the present document�

�� Section 
�� � page �
� The �� function does not have the Div exception declared in its pro�le�
although the Div exception can be raised at the run time�


� Section 
�� � page ��� Mention that nil� and cons� names cannot be reused because the form of
subtyping supported does not includes overloading of functions�

�� Section 
�� � page ��� At this point the any� pattern is not presented�

�� Section 
�� � page ��� There should be precise if string� should be a user�de�ned type or a
prede�ned type� Moreover� there are no de�nition of the prede�ned types of the language�

�� Section 
�� � page ��� There should be precise the functionality of the Counter process or to be
given the by default� functionality of processes� After the by default� type of gates� add� �Also�
the by default functionality of a process is exit �none��	

�� Section 
�� � page ��� Here is claimed that any� type is used as type of gate which can commu�
nicate data of any type instead of �etc�� type�

�� Section 
�� � page ��� There should be give a formal de�nition for subtyping of built�in types as
integers� �oats�

�� Section 
�� � page ��� Substitute �communicationor� by �communication or��

�� Section 
�� � page ��� There should be precise the scope of the Match� exception raised by the
patterns matching�

��� Section 
�� � pages ��� 
�� There should be clari�ed the impact of having expressions which
are not normal forms into the patterns� The main problem is that the expression can raise an
exception� which is di�erent from Match� exception�

��� Section 
�� � page 
�� The non�deterministic assignment for expressions is not in the grammar�
So� the paragraph �Since the is an expression ���	 should be removed�

�
� Section 
�� � page 

� Into the imperative version of the partition� guards on pattern matching
are used� without being presented�

��� Section 
�� � page 
�� You should precise either the Inner� name is generated as a new name for
the loop or it is a reserved word�

�



��� Section 
�� � page 
�� Inconsistent notation� replace �de� dest� by �de�dest��

��� Section 
�� � page 
�� Typos error� replace �direcions� by �directions��

��� Section 
�� � page 
�� Typos error� replace �Gammai� by ��i��

��� Section 
�� � page 
�� Typos error� add a � � after �x��any time�

��� Section 
�� � page ��� Typos error� add a � � after mid gate�

��� Section 
�� � page ��� In the paragraph �The left is continuously ���� replace �resume� by �resumes��
To avoid confusion� add �left� before all �behaviour� words�


�� Section 
�� � pages ������ The use of the same name for any� type identi�er �in subtyping� and
any� pattern disposes to confusions�


�� Section ��
�� � page ��� There are some reserved words which do not appear on the list given�
and some other which are not used� For example�

in
x var � � � � 	 


� � � � � �

� � �� � � � �



The otherwise keyword is not used�

It hould be speci�ed that the reserved words cannot be used as identi�ers �except maybe � ��



� Section ��
�� � page ��� There is no de�nition for special constant non�terminal class SCon�
An additional annex should precise the initial basic of the language �its static semantics and its
dynamic semantics��


�� Section ��� � pages ������ There are a lot of ambiguities in the concrete grammar� due to the
lack of precedence between the operators� For example� the expression P��E�E can be parsed
in two ways �P��E��E or P���E�E��

The association rules between binary operators are not speci�ed�


�� Section ��� � pages ������ The �B� and �E� clauses do not appear in the grammar� they are
useful to give explicitly the precedence between operators�


�� Section ��� � pages ������ The actual syntax �P��E� introduce some problems due to the
exhaustiveness of the pattern P � To avoid such problems� the classical form of the assignment
V ��E seems to be appropiate�


�� Section ��� � page ��� The grammar given for rename� operator is not LALR�� There is no
possibility to make di�erence between a gate renaming or a signal renaming looking to the �rst
token� As suggested in the semantics chapter� gate� and signal� keywords may be added before
a gate and a signal identi�er� respectively�


�� Section ��� � pages ������ The grammar given for if�then�else� construct does not have an elsif�
clause� This will conduce at a cumbersome overlapping of if�then�else� constructs�


�� Section ��
�� and �����
�� pages �� and �
� The language syntax considered in this chapter does
not correspond with those given in Section ���� Examples� declaration of formal parameters for
functions and processes� hide construct�

�




�� Section ������ � page ��� Although in section ������ the dynamic semantics use labels of form �

�RN�� the notation used here is � �N��

��� Section ������� � page ��� In the �rst rule of static semantics� the RT and RT � have to be
disjoint� w�r�t� �write�one	 politics� add the guard �RT�RT � have disjoint �elds��

The rule of timed dynamic semantics have to be�

�N � ��E � N � any and E � �P �N�� �RN�� implies E � B�RN �
��d�d��
�� B��

E � choice P after�d� �� B
��d��
�� choice P after�d� d�� �� B�

�� � d��

��� Section ������� � pages ������ The second rule of the static semantics have to have exit� RT�
� in place of guarded� RT� � because how long the behaviour B is not guarded� and the exit
action is not trapped� the all behaviour can do an unguarded exit�

In the conclusion of the �rst rule of the untimed dynamic semantics� the last B have to be B��

�
� Section ������� � page ��� The N identi�er is also used for normal forms�

The static semantics of vectors of gates �Gi is

C � �Gi � gate� �RTi�

��� Section �����
� � page ��� The second premise of the second rule of the static semantics composes
�by mistake� RT with the context C�

In the untimed dynamic semantics the RN given by the pattern matching is not distinguished
from the RN given in ��RN��

��� Section �����
� � pages ������ The �argv pattern and value are not presented�

��� Section �����
� � page ��� The static semantics given for loop� type check the following example�

�x��	�loop forever x�bool in x��x � 
 endloop

However� at the run time a type error will be raised �for the second iteration�� For this� add a
fourth premises to the rule�

C�RT�� RT� � B�� exit�RT�� RT��

This version will reject cases of run�time type error� but will accept expressions as�

�x��	�loop forever x�bool in x���x � x� endloop

��� Section ������
 � page ��� The default clause of the if�then�else� construct is exit� This will
constraint the user to describe guarded behaviours of LOTOS

�E� � B

by explicitly specifying the else part�

if E then B else stop endif

��� Section ���
 � pages ��
����� The syntactic category of the record expressions is not entirely a
syntactic sugar �as mentioned�� for disjoint union record expressions you give a static semantics
translation�

�



��� Section ������ � page ���� In the the three rules given for the untimed dynamic semantics the
RE has been replaced by E�

��� Section ���� � pages �������� This syntactic category overlaps the NP and the LV categories�
Moreover� it does not appear in the list of non�terminals given at page ���

��� Section 
�
 � page ��� The note on the Router example does not explain the presence of the
pervasive modules as Natural�

��� Section 
�
���
 � page ��� There is a duplicate page �� and the page �
� is not in the document�

�
� Section 
�
���� � page ��� The A� module allows access only to S� x� and y�

��� Section 
�
���� � pages ������ Interface and module expressions are imported by the clauses
import��

Since Natural is a pervasive module do you have to import it in the NatMonoid example�

Add a note saying that importation is made using a union with matching of common names and
not a disjoint union� So the multiple importation is allowed�

��� Section 
�
���� � page �
� A formal semantics for equation typing and their validity �veri�cation
semantics� have to be given�

��� Section ����
�� � page ���� It is not speci�ed the matches� relation for the contexts of processes�

��� Section ��
�
 � page ���� The type of the behavioural part of a speci�cation is not speci�ed�

��� Sections ������ and ����� � pages ��� and ���� It is not clear how mutually recursive type�
function� and processes declarations can be supported�

��� Section ����� � page ���� The type of the value declaration could be only S� replace S by T �

��� Section ����
 � page ���� The element to be renamed has to be already into the context C� add
the premise C � S � T at the static semantics rule�

��� Section ����� � page ���� The context resulting from the static semantics evaluation of RME is
B�

�


