ISO/IEC JTC1/SC21/\WG7
Project: WI1.21.20.2.3
Date: May 1998

ISO/IEC JTC1/SC21
WG7
ENHANCEMENTS TO LOTOS

TITLE: Final Commite Draft on Enhancements to LOTOS
SOURCE: ISO/IEC JTC1/SC21/WG7
Editor: “Enhancement to LOTOS” (1.21.20.2.3)

Contents

1 Introduction 8
2 E-LOTOS grammar 11

2.1 Syntactic conventionsand Notation. e e e e 11

2.2 Lexical StruCture e 11
221 Characterset e e 11
2.2.2 Commentsand Separators it e e e e e e e 12
223 ddentifiers e e 12
2.2.4 Reservedwords e 12
2.25 ldentifiersclasses e 13
2.2.6 Non-terminalsclasses e 13

2.3 Syntaxofthelanguage 14
2.3.1 Specification e 14
2.3.2 Top-leveldeclaration e 14
2.3.3 Modulebody 15
2.3.4 Module expression 15
2.3.5 Moduleformal parameters. e 15
2.3.6 Interface expressions e e e e e 15
2.3.7 Recordmodule expressian. e e e e e 15
2.3.8 Interfacebody e 16
2.3.9 Formalparameterlist 16
2.3.10 Renaming/Instantiation 16
2.3.11 Equationdeclaration e e e 16
2.3.12 Declarations e 17
2.3.13 EXPresSSiONS . . . o v o i i e e e e e e e e 17
2.3.14 Behaviour eXpressions e e e 18
2.3.15 Disabling behaviour expression e 18
2.3.16 Synchronization behaviour expression 19
2.3.17 Concurrency behaviour eXpression o i e e e e 19
2.3.18 Selection behaviour expression. e e 19
2.3.19 Suspend/Resume behaviour expression 19
2.3.20 Interleaving behaviour expression 19
2.3.21 Behaviourterm e e e 19
2.3.22 TYPEEXPrESSIONS . . o« o v i e e e e e e e e e e 21
2.3.23 Recordtype expressions i i e e e e e e e e e 21
2.3.24 Value eXpressionS v v i i e e e e e e e e 21
2.3.25 Recordvalue expressionso e e e 21
2.3.26 Patterns e e 22

2.3.27 Gateparameterlist e e 22
2.3.28 Actual parameterlist e 22
2.3.29 Exception parameterlist 22
2.3.30 Recordpatterns 22
2.3.31 ReCord eXpreSSioNnS v v v v v e e e 23
2.3.32 Behaviour patternmatching 23
2.3.33 Expressionpatternmatching e 23
2.3.34 Inparameters e e e e e e e e e 23
3 E-LOTOS abstract syntax 24

3.1 OVEIVIEW . . o ot e 24
3.1.1 SyntacticSUGar v i e e e e e e e e 24
3.1.2 ADBStraCt Syntax e e 25

3.2 Concreteto abstract syntactictranslation L 25
3.2.1 Interfacebody 25
3.2.2 Formalparameterlist e e 28
3.2.3 Declarations e e 28
3.2.4 EXPressions 30
3.25 Behaviour expressions 33
3.2.6 Interleaving behaviour expression 34
3.2.7 Behaviourterms L e 34
3.2.8 TYPEEXPIESSIONS . . . v v o i e e e e e e e e e 40
3.2.9 Recordtype eXpresSsSiOnS i e e e e 41
3.2.10 Recordvalue expressionso e e e 41
3.2.11 Gateparameterlist 42
3.2.12 Actual parameterlist L e e 42
3.2.13 Exception parameterlist 42
3.2.14 Recordpatterns e 43
3.2.15 ReCOord eXpreSSionS v v v v e e e 43
3.2.16 Recordofvariables 44
3.2.17 Inparameters e e e 44

4 E-LOTOS semantics 46

4.1 OVEIVIEW . . o ot e e e e e e e e e 46

4.2 StaticSemantiCsS 46
4.2.1 StaticsemanticobjectsforBase e 46
4.2.2 Judgementson static semanticsforBase o 0oL 47
4.2.3 Extendedidentifiers 49
4.2.4 Static semantic objectsforModules L 49
4.2.5 Judgements on static semanticsforModules o L oL 49
426 Cyclefreedom e e 50
4.2.7 Contextmorphism e e e e 51
4.2.8 Realization e 51
4.2.9 Interface Instantiation 51
4.2.10 Interface Matching e 51
4.2.11 Renaming/Instantiation e e e 51

4.3 Untimed dynamicsemantiCs e e e 55
4.3.1 Untimed dynamic semantic objectsforBase..... 55
4.3.2 Judgements on untimed dynamic semanticsforBase 56
4.3.3 Dynamic semantic objectsforModules. L oL 57

4.3.4 Judgements on untimed dynamic semantics forModules 58

4.3.5 Environmentmorphism. 59
4.3.6 Signature Instantiation e e e 59
4.3.7 Renaming/Instantiation L 59
4.4 TimeddynamicsSemantiCsS 60
4.4.1 Judgementsontimed dynamicsemantiCsS 60
4.5 Write-many variables: the value substitutionoperator... 60
The E-LOTOS modules 64
5.1 Specification e e 64
5.1.1 Specification e e e 64
5.2 Top-leveldeclaration e 65
5.2.1 Module not constrained by aninterface. o Lo 65
5.2.2 Module constrainedby aninterface o 66
5.2.3 Generic module not constrained by aninterface. oL 66
5.2.4 Generic module constrained by aninterface..... 67
5.2.5 Interfacedeclaration 68
5.2.6 Sequentialtop declaration 68
5.3 Modulebody e 69
5.3.1 Blockdeclaration 69
5.3.2 Module EXpression e e 69
5.4 Module eXpression. e e e 69
5.4.1 Module aliasing not constrained by aninterface. 69
5.4.2 Module aliasing constrained by aninterface..... o o oL 70
5.4.3 Generic module actualization not constrained by aninterface... 70
5.4.4 Generic module actualization constrained by aninterface 71
5.4.5 Generic module renaming/instantiation. 0 L. 72
5.5 Module formal parameters e e e e 72
551 Single 72
5.5.2 Disjointunion e e 73
5.6 Interface eXpressions 73
5.6.1 |Interfaceidentifier e 73
5.6.2 Simplerenaming e e e e 74
5.6.3 Explicitbody 74
5.7 Interfacebody e 74
5.7.1 Typehidingthe implementation 74
5.7.2 TYPesSYynNONYM o i e e e e e e e e e 75
5.7.3 Constructedtype e e e e 75
5.7.4 Namedrecordtype e e e 75
5.7.5 Processdeclaration e 76
5.7.6 EQUALiONS 76
5.7.7 Sequentialdeclaration e 77
5.8 Recordmodule expression. e e e e 77
581 Single e 77
5.8.2 Disjointunion e e 77
5.8.3 Renamingtuple L 78
5.9 Equationdeclaration 78
5.10 Declarations o o 78
5.10.1 TypesynonymM o o o e e e e e e e e 78
5.10.2 Typedeclaration 79

5.10.3 Namedrecordtype i e e 79

5.10.4 Processdeclaration 79
5.10.5 Sequentialdeclarations e e 80
6 The E-LOTOS base language 82
6.1 INtroduction e 82
6.2 Behaviours e 82
6.2.1 Disabling behaviourexpression 82
6.2.2 Synchronization behaviourexpression L 83
6.2.3 Concurrency behaviourexpression e e 84
6.2.4 Selection behaviour expression e e 86
6.2.5 Suspend/Resume behaviour expression e e e 87
6.2.6 ACHON 88
6.2.7 Internalaction e 88
6.2.8 Succesfultermination withoutvalues. 88
6.2.9 Succesfultermination. e e 89
6.2.10 INACLiON e 89
6.2.11 Timeblock e e 90
6.2.12 Delay 90
6.2.13 ASSINMENL e 90
6.2.14 Nondeterministic Assignment 91
6.2.15 Sequential composition L e e 91
6.2.16 Choiceovervalues i e e e 92
6.2.17 Trap o e 93
6.2.18 Generalparallel e 95
6.2.19 Parallelovervalues e e 98
6.2.20 Variabledeclaration 98
6.2.21 Gatehiding e e e 100
6.2.22 RENAMING 100
6.2.23 Processinstantiation e 102
6.2.24 loopiteration L 103
B.2.25 CaASE . . . v 104
6.2.26 Casewithtuples e 104
6.2.27 Signalling 105
6.3 TYPe exXpresSSiONS i e e 106
6.3.1 Typeidentifier 106
6.3.2 EMPtytype e e 106
6.3.3 Universaltype e 106
6.3.4 Recordtype e 107
6.4 Recordtype expressions e e e 107
6.4.1 Singletonrecord 107
6.4.2 Universalrecord e 107
6.4.3 Recorddisjointunion e e e 108
6.4.4 EMPLyrecord e e e 108
6.5 Value expressions 108
6.5.1 Primitiveconstants e 108
6.5.2 Variables e 108
6.5.3 Recordvalues e 109
6.5.4 Constructorapplication e 109
6.6 Recordvalue expressions e e e 109

A

6.6.1 Singletonrecord e 109

6.6.2 Recorddisjointunion e e e 109
6.6.3 EmMptyrecord e e 110
6.7 Patterns e e 110
6.7.1 Recordpattern e e 110
6.7.2 Wildcard 110
6.7.3 Variablebinding 111
6.7.4 Expressionpattern e e e 111
6.7.5 Constructorapplication 112
6.7.6 Explicittyping e 112
6.8 Recordpatterns e e 113
6.8.1 Singletonrecordpattern e e e 113
6.8.2 Recordwildcard 113
6.8.3 Recorddisjointunion 114
6.8.4 Emptyrecordpattern 114
6.9 Recordofvariables e 115
6.9.1 Singletonrecordvariable 115
6.9.2 Recorddisjointunion e e e 115
6.10 Behaviour pattern-matching e e 115
6.10.1 Singlematch 115
6.10.2 Multiplematch 116
Predefined library 118
7.1 Booleans e e e 118
7.2 NaturalNumbers e 120
7.3 Integral Numbers e 124
7.4 RationalNumbers 127
7.5 Floating Point Numbers e 130
7.6 CharaCters e e e 131
T.7 SHINGS . . o o o e 132
7.8 Enumerated Type Scheme e 133
7.9 Record Type Scheme e 134
7.10 SetType Scheme e 135
7.11 ListType Scheme 138
Tutorial 141
A.l Thebaselanguage... e e 141
A1l BasSiCCONCEPLS o v o e e e e 143
A2 Themodulelanguage 165
A.2.1 BasSiCCONCEPLS o o e e e e 168
A.3 AnE-LOTOS specificationofthe ODPtrader it 176
A3 1 INtroducCtion. 176
A.3.2 Anoverviewofthe ODP Trader e 177
A.3.3 E-LOTOS Specificationofthetrader 178
A.3.4 Thecomplete specification 182

B Guidelines for LOTOS to E-LOTOS translation 201

B.1 Introduction 201
B.1.1 Specification and process definition 201
B.1.2 BasicLOTOS e 202
B.1.3 DataTypes o e 203
B.1.4 FullLOTOS e 206

Chapter 1

Introduction

This document contains the definition of the revised version of the LOTOS standard (ISO8807 [4]). The name of the
WI (Work Item) which has revised the LOTOS standard in ISO/IEC is "Enhancements to LOTOS” and the revised
version of LOTOS has been referenced usually as E-LOTOS. We will use therefore E-LOTOS to name the revised
version of the LOTOS standard which is proposed in this document.

E-LOTOS was conceived with the goal of being a formal specification language able to describe systems at var-
ious levels of abstraction following many of the main goals and design principles which guided the definition of the
preceding LOTOS standard. This includes a well defined mathematical semantic definition, as well as the inclusion
of a number of capabilities which should formally support a system design cycle, i.e. abstraction, information hiding,
implementation independence, stepwise refinement, testing and conformance testing,

The initial LOTOS goals were enriched in the definition of the Work Item with feedback coming from the appli-
cation of LOTOS to system design in industrial environments. The purpose and scope of the definition of the new
Work Item on "Enhancement to LOTOS” summarizes the main conclusions obtained from the practical application of
LOTOS. These include executability, user friendly data types, predefined types, partial functions, subtypes, modules,
dynamic reconfiguration, gate typing, partial synchronization, time, priorities,

In addition, the inclusion of the E-LOTOS WI in the framework of ODP (Open Distributed Processing) in 1994
has widened the domain of applicability of the revised standard to a larger number of systems and has introduced new
requirements. Although many of the requirements imposed by ODP were already in the definition of the E-LOTOS
Work Item, a much closer alignment was pursued from then with existing ODP standards such as IDL, the ODP
viewpoints and models,

The semantics of the language is formed of a behavioural process algebra part which generalizes various LOTOS
operators, and of a functional data definition part which is executable and more user friendly. The number of enhance-
ments is high and all of them are very intertwined. A list is given now which tries to highlight from the user point
of view the new features from which an E-LOTOS user should benefit when using the language. The most notable
differences are:

e Modularity: E-LOTOS has modularization facilities which include: module and interface definitions; export,
import and visibility control; and generic modules. The modules can contain definitions of types, functions
and/or processes.

e Data typing. E-LOTOS includes the following facilities for data definitions: predefined types, union types,
recursive types, records, extensible records and record subtyping. The predefined data types and schemes are
pervasivei.e. they do not have to be declared before use in a module. As a consequence, they are directly part
of the semantics model. will be defined within a module. At the semantic level, functions have been defined as a
particular kind of processes which are deterministic and do not perform any visible event except termination and
exception signaling.

A two level approach has been devised for backward compatibility with LOTOS. The first level is declarative.
The second level provides executable definitions of the data types which should satisfy the declarative definition
of level one. With this scheme, backwards compatibility with LOTOS is achieved by having declarative spec-
ifications at level one, either in ACT ONE or in an enhanced version of ACT ONE. Functional level two data
definitions should satisfy level one specifications.

e Time: The introduction of some notion of quantitative time is needed for the precise description of real-time
systems. The semantics of E-LOTOS allows timed specifications for which a precise meaning is given to the
execution of actions in time.

In the E-LOTOS model events are atomic and instantaneous. The specifier can define the time at which actions
or behaviours may occur. For example, time restrictions can be added to action denotations restricting the oc-
currence to a given set of time instants or wait statements can be used to delay the occurrence of a behaviour in
time.

¢ Introduction of a sequential composition operator which substitutes the operators existing in LOTOS for sequen-
tial composition, action prefix and exit/enabling() pair. In E-LOTOS the same operator is used for both cases,
for examplea; B or B1;B2. In LOTOS the>> operator always generates an internal action when the enabling
is performed. In E-LOTOS, internal actions are generated only when necessary. This produces some minor
differences with the semantics in LOTOS of some operators.

e Unification of processes and functions at the semantic level. A function is a process which performs only a
termination action upon termination.

¢ Introduction of write-many variables. Write many variables are included in E-LOTOS, with a safe use assured
by static semantic means. For example: assignment (write) must be performed made before usage (read); no
dangerous use of shared variables is made by parallel behaviours;

¢ Introduction in E-LOTOS of output variables in processes and functions as the means to pass values in sequential
composition. This substitutes exit statements with value passing coupled with accept statements. The existence
of input and output variables in processes and functions provides a unified approach for value communication
among sequentially composed behaviours which is much more readable and concise. Itis in line with notations
used in ODP, like IDL (Interface Definition Language). To illustrate the new approach to how sequential compo-
sition and value passing are performed let us see an example which includes variable assignment, processes and
functions.

?X=2;

phasell...] (x, 7resuld ; (* a process *)
compute(result, 7resl, 7res? ; (* a function *)
(Iphase2[...] (x, resD ||| rphaseZ...] (x, res?)

e A more general parallel operator has been introduced in E-LOTOS which has the actual LOTOS parallel operator
as a particular case. This operator is n-ary and supports the synchronization of J processes among K composed
processes whetk< K. Therefore synchronization patterns of 2 among N can be modeled in E-LOTOS. The new
operator is also more readable because it clearly identifies the synchronizing gates for each behaviour composed.

e The Suspend/Resume operator which generalizes disabling. The new operator generalizes the LOTOS disabling
operator by allowing a disabled behaviour to be resumed by a specific action of the disabling behaviour.

¢ Introduction of exceptions and exception handling in the behavioural and data parts with a uniform approach.
Exception mechanisms permit new ways of structuring and are demanded by ODP.

e Explicit renaming operator for observable actions or exceptions. The renaming operator allows not only to
change the name of the events occurring but to add and remove fields from the structure of events, or to merge
and to split gates.

e Typed gates and partial synchronization. Gates must be explicitly typed. The use of the record subtyping rela-
tion permits partial synchronization of gates as well as provides backward compatibility with standard LOTOS
untyped gates.

The introduction of partial synchronization is of relevance for using a constraint oriented approach which can
be performed in E-LOTOS in a much more concise way as each constraint must know only the part of the event
structure which relates to him.

The introduction of enhancements has been performed trying to minimize the growth in the complexity of the
language. Rather than introducing new operators, the enhancements have been introduced by generalizing existing
operators. Only new statements and/or operators have been introduced when absolutely necessary.

E-LOTOS is, as LOTOS, a language which permits a rich variety of specification styles which may be used to
model different aspects of the design process. The styles existing in LOTOS, constraint oriented, resource oriented,
state oriented, EFSM oriented, monolithic, ... can be also used in E-LOTOS. In addition the existence of exceptions,
partial synchronization, event renaming, and other new constructs open new ways of specifying.

For LOTOS users, Apendix B gives guidelines from LOTOS to E-LOTOS language.

10

Chapter 2

E-LOTOS grammar

2.1 Syntactic conventions and Notation

This chapter describes the concrete syntax for E-LOTOS. Here we use a notation similar to Extended Backus-Naur
format wich is summarized in the following table:

| Symbol | meaning |
| aternative definition
D,K,V,SRT... || terminal and non-terminal symbols
text E-LOTOS keywords
= definition
* repetition of the preceding syntactic unit (zero or more times)
0 grouping syntactic units
I optional (may or may not occur)

It is worth to note that the metalinguisti¢)’ and ‘[]' must not be confused with the E-LOTOS symbols ', 71, ‘(,),
and {'. Anyway, in the syntax, these E-LOTOS symbols appear between singles quotes. Other symbolsétc.)
will appear without quotes to keep the document readable.

2.2 Lexical Structure
This section describes the lexical units (tokens) of E-LOTOS.

2.2.1 Character set

Characters are divided into several classes denoted by the nonterminals below:

<character> ::= <letter> | <digit> | <special-character> | <blank-character>
<letter> ::= '"a" | npr | nen | ngn | ngt | nfen | ngn | " | nin

| lljll | llkll | lllll | llmll | llnll | lloll | llpll | llqll | llrll

| "S" | "t" | llull | IIVII | "W" | "X" | llyll | llzll
<digit> co= QoM | nqn | non | ngn | ngn | ngn | ngn | nn | ngn | ngn
<normal-character> ::= <letter> | <digit>

11

<special-character> ::=

g | n%n | ngn | My | nyn | n_n | "on | u/u | ngn | n=n
| ll>l| | ll@ll | ll\ll | n-sn | n~n | ll{ll | ll}ll
<blank-character> ::= SP | HT | VT | FF | LF | NL | CR
<character> ::= <letter> | <digit> | <special-character> | <blank-character>

Formally, no distinction is made between different versions of the same character, such as capitalized, bold, italic,
etc.

2.2.2 Comments and separators

Let <any-string-of-text> represent any string of characters not containing the substriig Then, comments
are defined as:

<comment> ::= "(*" <any-string-of-text> "x¥)"

Comments are no part of E-LOTOS description. Comments may be inserted anywhere between two other lexical
units or left out, except when their play the role of separators. Basically, a comment may be substitused by a
A separator is defined as:

<separator> ::= <blank-character> | <comment>

Zero or more separators may occur between any two consecutive tokens, before the first token, or after the last
token of the E-LOTOS text.

There shall be at least one token separator between any pair of consecutive tokens if the concatenation of their texts
change their meaning.

2.2.3 Identifiers

All E-LOTOS obijects are designated lentifiers An identifier begin with a letter, possibly followed by any number
of digits, letters and underscore™symbol, and finished by a digit or a letter.
<identifier> ::= <letter> { ["_"] <normal-character> }

All characters in an identifier are significant, and there is no limit to their length.
Special identifierare defined in order to allow an intuitive notation for mathematical operators, as “+”, “/”, etc.
They are built from special characters, characteres and digits.

<special-identifier> ::=

<special-character> { <special-character> }
| <digit> { ["_"] <normal-character> }

2.2.4 Reserved words

The reserved words for the language are:

12

2.2.5

and andalso any as behavior
behaviour block break case choice
dis do else elsif endcase
endch enddis endeqgns endexit endexn
endfor endfunc endfullsync endgen endhide
endint endinter endloop endmod endpar
endren endsel endspec endsuspend endtype
endvar endwhile eqns etc exception
exceptions exit for forall fullsync
function gate gates generic hide
i if in inter interface
is loop module none null
ofsort opns orelse out par
process procs raise raises rename
renames renaming sel signal specification
stop suspend then trap type
types value var wait while
The reserved lexical tokens for the language are:
¢ { 1
;e I 70 =
= <> :=] ->
#t >
Identifiers classes
The terminals of the language syntax are:
| identifier domain]] meaning | abbreviation|
Con constructor identifier C
Const constant identifier K
Exc exception identifier X
Fun function identifier F
Gat gate identifier G
Genld generics identifiers gen-id
Intld interface identifiers int-id
Modld module identifiers mod-id
Proc process identifier n
Spec specification identifier >
Typ type identifier S
Var variable identifier \Y,

2.2.6 Non-terminals classes

The non-terminals for the language are:

13

| symbol domain| meaning | abbreviation|

APL actual parameter list APL
Behav behaviour expression B
BehavTerm behaviour term BT
BMatch behaviour match BM
Decl declaration D
EMatch expression match EM
EqgnDec equations declaration egn-dec
Exp expression E
FPL formal parameter list FPL
GPL gate parameter list GPL
InPar in parameters IP
IntBody interface body i-body
INtExp interface expressions int-exp
LocVar local variables LV
ModBody module body m-body
ModEXxp module expressions mod-exp
ModPar module formal parameters MP
Pat pattern P
RecModExp record module expressions RME
Reninst module renaming/instantiation reninst
REXxp record expression RE
RPat record pattern RP
RTYEXp record type expression RT
Rval record value expression RN
Rvar record of variables RV
SCon special constant K
Spec specification spec
TopDec top-level declarations top-dec
TyExp type expression T
Val value expression N
XPL exception parameter list XPL

2.3 Syntax of the language

2.3.1 Specification

spec := [top-de¢ specification (specl)
specificationZ [import mod-exg, mod-exp‘] is
[gatesG:T(,G:T)*] [exceptionsX:T(,X:T)"]
(behaviourB) | (valueE)
endspec
2.3.2 Top-level declaration
top-dec ::= module mod-id[: int-exg module (top-decl)

[import mod-exp, mod-exp*] is m-bodyendmod

14

| module mod-id: int-expis external endmod external module (top-dec?2)
| genericgen-id’ (> MP)’ [: int-exd generic module (top-dec3)
[import mod-exg, mod-exp’] is m-bodyendgen
| interfaceint-id interface (top-dec4)
[import int-exy(, int-exp*] is int-expendint
| top-dec top-dec sequential top declaration (top-dech)
2.3.3 Module body
m-body ;= D block declaration (m-body1)
| mod-exp module expression (m-body?2)
2.3.4 Module expression
mod-exp ::= mod-id[: int-exg [renaming ’> (’ reninst’)’ | module aliasing (mod-expl)
| gen-id’>(’ [RME])’ [: int-exd actualization (mod-exp2)
[renaming ’ (’ reninst’)’ |
| gen-id’ (reninst?)’ renaming/instantiation (mod-exp3)
2.3.5 Module formal parameters
MP ::= mod-id: int-exp single (MP1)
| MP, MP disjoint union (MP2)
2.3.6 Interface expressions
int-exp = int-id interface id (int-expl)
| [int-id renaming’ (’ reninst?)’ >]° simple renaming (int-exp2)
| ’[’i-body[renaming’ (’ reninst’)’] 1’ explicit body (int-exp3)
2.3.7 Record module expression
RME := mod-id=> mod-exp single (RMEL1L)
| RME, RME disjoint union (RME2)

15

2.3.8 Interface body

i-body ::

type S abstract data type
type SrenamesT endtype type synonym
type SisC[> (? RT?)?] (’|’ C[>(RT ’)’])* endtype constructed type
type Sis ’ (* RT ?)’ endtype named record type declaration
processll [’>[’ G T](,G[: T])* ’1’] process

[PCFPL?)

[raises’ [’ X[: T](LX[: T])* ’17]
functionF [’ (> FPL’)’] function

[:T]

[raises’ [’ X[: T](LX[: T])* ’17]
function F infix > [(inJout)]V:T, [(injout)][V:T *)°’ infix function

: T
{raise]s’ 0 XETIGXET) 1]

valueV : S constant value
egnseqn-deendegns equations
i-body i-body sequential

2.3.9 Formal parameter list

FPL =
|
|
|

2.3.10 Renaming/Instantiation

reninst ::

= typesS:=5,S:=9" types
| opns(C:=C|F :=F)(,C:=C|F :=F)* constructors and functions
| procsm :=T(,N :=M)* processes
| valuesV :=V(,V :=V)* value
| reninstreninst renaming/instantiation tuple
2.3.11 Equation declaration
eqn-dec ;= [forall RT] equations declaration
(ofsort T [forall RT] E (;E)*)*
egn-dec egn-dec sequential

16

(i-body1)
(i-body2)
(i-body3)
(i-body4)
(i-body5)

(i-body6)

(i-body7)

(i-body8)
(i-body9)
(i-body10)

singleton (fpll)

V:T

inV:T input singleton (fpl2)
outVv:T output singleton (fpl3)
FPL,FPL

disjoint union (fpl4)

(reninstl)
(reninst2)
(reninst3)
(reninst4)
(reninstb)

(eqn-decl)

(eqn-dec2)

2.3.12 Declarations

D

type SrenamesT endtype type synonym
type SisC’ (" RT?)’] (|’ C[? (RT ’)’])*" endtype type declaration
type Sis ’ (* RT ?)’ endtype named records type declaration

processi1 [*[’ G[: T|(,G[: T])* *1"] process with in/out parameters
[»C FPL?)" |
[raises’ [’ X[: T](,X[: T])* *17]
isB
endproc
function F [* (> FPL)] [:T]
[raises’ [’ X[: T](,X[: T])* *17]
isE
endfunc
function F infix > (> [(infout)[V: T, [(inJout)]V:T *)’ infix function
[:T]
[raises’ [’ X[: T](,X[: T])* 17]

function with in/out parameters

isE
endfunc
valueV : Sis E endval constant value declaration

DD sequential declaration

2.3.13 Expressions

E

P:=E assignment
E;E sequential composition
trap trap

(exceptionX [> (* IP *)] is E endexn)*
[exit [P] is E endexit]

in E

endtrap

varV:T[:=E](,V:T[:=E])* in variable declaration
E

endvar

rename renaming
(signal X[* (’ IP ?)’]is X [E])*

in E

endren

loop E endloop iteration

loop X [: T]in breakable iteration
E
endloop

17

(D1)
(D2)
(D3)
(D4)

(D5)

(D6)

(D7)
(D8)

(E1)

(E2)

(E3)

(E4)

(ES)

(E6)
(E7)

| while E do while iteration (E8)

E
endwhile
| for E while E by E do for iteration (E9)
E
endfor
| caseE[:T]is EM endcase case (E10)
| case’(’ E[:T](,E[:T])*)’ isEM endcase case with tuples (E11)
| if EthenE if-then-else (E12)
(elsif E then E)*
[elseE]
endif
| F[>CAPL>)’][’[’ XPL’]"] function instantiation (E13)
| (EIP)F (E|P)[’[*> XPL*]"] infix function instantiation (E14)
| raiseX[?C E)] raising exception (E15)
| break[X][?(’ E)] breaking iteration (E16)
| N value (E17)
| E andalsoE conjunction (E18)
| E orelseE disjunction (E19)
| E=E equality (E20)
| E<>E inequality (E21)
| E.V select field (E22)
| E:T explicit typing (E23)
| "CE?) parenthesized expression (E24)

2.3.14 Behaviour expressions

B = BT behaviour term (B1)
| DisB disabling (B2)
| SyncB synchronization (B3)
| ConcB concurrency (B4)
| SelB choice (B5)
| SuspendB suspend/resume (B6)
| InterB interleaving (B7)

2.3.15 Disabling behaviour expression

DisB = BT [>BT singleton (DisB1)
| BT [>DisB disjoint union (DisB2)

18

2.3.16 Synchronization behaviour expression

SyncB = BT || BT synchronization (SyncB1)
| BT Il SyncB synchronization (SyncB2)

2.3.17 Concurrency behaviour expression

ConcB := BT |[[G(,G)*]]1| BT concurrency (ConcB1)
| BT | [[G(,G)*]1] ConcB concurrency (ConcB2)

2.3.18 Selection behaviour expression

SelB = BT I[1BT choice (SelB1)
| BT [1SelB choice (SelB2)

2.3.19 Suspend/Resume behaviour expression

SuspendB ::= BT [X>BT suspend/resume (SuspendB1)
| BT [X> SuspendB suspend/resume (SuspendB2)

2.3.20 Interleaving behaviour expression

InterB = BT ||| BT interleaving (InterB1)
| BT IIIInterB interleaving (InterB2)

2.3.21 Behaviour term

BT == G[P][eP][’'[’E]’] action (BT1)
| i internal action (BT2)
| null successful termination (BT3)
| stop inaction (BT4)
| block time block (BT5)
| wait>(CCE?)’ delay (BT6)
| P:=E assignment (BT7)

19

P:=anyT[’[’ E]’] nondeterministic assignment (BT8)
B;B sequential composition (BT9)

dis DisB enddis bracketed disabled expression (BT10)
fullsync SyncBendfullsync bracketed synchornization expression (BT11)
concConcBendconc bracketed concurrency expression (BT12)

selSelBendsel
suspendSuspendBndsuspend
inter InterBendinter

bracketed choice expression (BT13)
bracketed suspend/resume expression (BT14)
bracketed interleaving expression (BT15)

choiceP [] B endch choice over values (BT16)

trap trap (BT17)
(exceptionX[’ (* IP ?)] is B endexn)*
[exit [P] is B endexif

in B

endtrap

par [G#n(,G#n)*] in general parallel (BT18)
'[2 [G(,6)*] 17 ->B(11 * [[G(,6)] *1* ->B)*

endpar

par Pin N | | | Bendpar parallel over values (BT19)

varV:T[:=E](,V:T[:=E])" in variable declaration ~ (BT20)
B

endvar

hide G[: T](,G[: T])* in gate hiding (BT21)
B

endhide

rename renaming (BT22)
((gateG[UIP)]isG[P]) | (signalX[(IP)]is X [E]))*

in B

endren

n - [GprPy-1 process instantiation (BT23)

) (7 [APL] 7))
[) [: XPL :])]

loop B endloop iteration (BT24)

loop X [: T]in breakable iteration (BT25)
B

endloop

while E do while iteration (BT26)
B

endwhile

for E while E by E do for iteration (BT27)
B

endfor

caseE[:T]is case (BT28)
BM

endcase

20

| case’ C’ E[: T](,E[:T])* *)is
BM
endcase

| if EthenB
(elsif E then B)*
[elseB]
endif

| signalX [’ (’ E?)’]
| raiseX[*(’E?)’]

| break [X][* (" E *)’]
| 2 B)

2.3.23 Record type expressions

RT

<
Il

= >T (,V =>T)*[,etd
| etc
|

2.3.24 Value expressions

N

(" RN?)’
C[N]

= K
| V
|)
|

2.3.25 Record value expressions

RN = V=>N(V=>N)*
| NGN)*

case with tuples

if-then-else

signalling
raising exception
breaking iteration
parenthesized behaviour

type identifier

empty type
universal type

named
universal record
positional

primitive constant
variables

record values
constructor application

named
positional

21

(BT29)

(BT30)

(BT31)
(BT32)
(BT33)
(BT34)

(T1)
(T2)
(T3)

(RT1)
(RT2)
(RT3)

(N1)
(N2)
(N3)
(N4)

(RN1)
(RN2)

2.3.26 Patterns

P = "CRP?)’ records
| any:T wildcard
| 7V variable
| E expression
| CI[P] constructor application
| P:T explicit typing

2.3.27 Gate parameter list

GPL = G=>G(,G=>0G)"[, ...] explicit instantiation
| ... explicit instantiation
| G(,G)" positional instantiation

Note that these rules obly that :'.” occurs at most once in a terminal position.

2.3.28 Actual parameter list

APL = V= (EIP)(,V=>(EIP)"[, ...] explicit instantiation
| ... explicit instantiation
| (EIP)(,(EIP))* positional instantiation

Note that these rules obly that :'.” occurs at most once in a terminal position.

2.3.29 Exception parameter list

XPL = X=X LX=>X)"[, ...] explicit instantiation
| ... explicit instantiation
| X(,X)* positional instantiation

Note that these rules obly that :*.” occurs at most once in a terminal position.

2.3.30 Record patterns

RP = V=>P(,V=>P)",etd named
| etc wildcard
| P(,P)* positional

22

(P1)
(P2)
(P3)
(P4)
(P5)
(P6)

(GPL1)
(GPL2)
(GPL3)

(APL1)
(APL2)
(APL3)

(XPL1)
(XPL2)
(XPL3)

(RP1)
(RP2)
(RP3)

2.3.31 Record expressions

RE = V
E

>E(,V=>E)"
| JE)"

—~ 1

2.3.32 Behaviour pattern matching

BM == PPP[’E’]’]->B
| BM’|’BM

2.3.33 Expression pattern matching

EM = PPDE’]’]->E
| EM’|’EM

2.3.34 In parameters

IP V=>[P:]T
etc
PaslIP
[P:]T
IP,IP

with the restriction thagtc can occur at most once.

23

named
tuple

single match
multiple match

single match
multiple match

singleton
wildcard

record match
tuple

disjoint union

(RE1)
(RE2)

(BM1)
(BM2)

(EM1)
(EM2)

(IP1)
(IP2)
(IP3)
(IP4)
(IP5)

Chapter 3

E-LOTOS abstract syntax

3.1 Overview

In this chapter, the translation from concrete syntax into abstract syntax is defined. This includes the syntactic sugar
rules definition. Note that although abstract syntax is represented by text, the semantics will deal with an abstract
syntax tree. In particular, brackets are used to represent such tree textually.

3.1.1 Syntactic sugar

In the grammars, non-primitive constructs (which are defined in terms of syntactic sugar for primitives) are marked
with a ‘x’. The terms added to the syntax are marked with-a& These grammars omit argnd-keywords from the
concrete grammar. For clarity, the whole rules are included.

Many of the constructs in the base language are defined as syntactic sugar, for éxatapenents are defined as
syntactic sugar focasestatement.

In addition, we define the following non-terminals as syntactic sugar:

| symbol domain| meaning | abbreviation| sugarfor |
APL parameter list APL E1|P1,...,En|Pn
Exp expression E B
EMatch expression match EM BM
FPL formal parameter list FPL Vi:T1,...,Vh: Ty
GPL gate parameter list GPL Gi,...,Gn
REXxp record expression RE B
RV record of variables RV Vi,...,Vh
XPL exception parameter list ~ XPL X1,...,%n

Syntax sugar context Syntax sugar for process instantiation needs information from the proper process declaration.
This information is used for:

¢ transforming explicit instantiation of gates, exceptions and values into positional instantiation

¢ solving the abbreviated parameters lists (“..." as -partial- instantiation list).

¢ changeout parameters in local var. definition with value capture (végp).

In other words, process instantiation in abstract syntax has only positional input parameters.

24

The context keeps position information of out parameter taken from process declarations and is used in process
instantiations, and the formal gate, formal parameter, and exception lists. It is composed by judgei®ents as
Pos

S = MN=Pos positional information (S1)
| M= gateg[GCy,...,Gnl) formal gate list (S2)
| M= params([V,...,Vp]) formal parameter list (S3)
| M= exceptiong[X1,...,Xml) formal exception list (S4)
| S,S disjoint union (S5)

Intuitively, Posis a set of indexes, and it stores the positionsuifparameters.

3.1.2 Abstract syntax

The following constructions are defined:

o after (N): whereN is a number.
o start (N): whereN is a number.

e exit(RN): successful behaviour end with returning value.

Abstract syntax is a superset of the syntax defined by the grammar in Chapter 2. However, to keep definitions
shorter, it usually omits the closing reserved waddproc, endvar, ...).

Some syntactic categories are extended in abstract syntax. So, we allow recof@Typesord value expressions
RN, and record patterridPto be empty. See Sections 3.2.9, 3.2.10, and 3.2.14 respectively.

RT is considered & in abstract syntax, see Section 3.2.8, although it is not allowed to express anonymous record
types in E-LOTOS text, this rule ease the semantics definition.

3.2 Concrete to abstract syntactic translation

In this section, we revisit only those categories that need translation. Each subsection is divided in an “Overview”
section that includes the syntactic category, with marks for clauses that changes from concrete to abstract’syntax (*
for changed clauses, ‘+' for added clauses). Then, the translation for each clause is given. Besides, we include those
category that modifies the syntax sugar context, need for transtatiqgarameters.

Some categories are translated in several steps, as they may be defined as a translation into concrete syntax which
will need further translation.

3.2.1 Interface body
3.2.1.1 Overview

Concrete syntax

i-body = typeS abstract data type (i-body1)
| type SrenamesT endtype type synonym (i-body2)
| typeSisC[’(’ RT’?)’](’|’C[’(RT’)’])* endtype constructed type (i-body3)
| typeSis’(’ RT)’ endtype named records type declaration (i-body4)

25

| process1 [’[’ [G[: T](G:T]]°17] process (i-bodyb5)

[C FPL?)]
[raises’ [’ X[: T](LX[: T])* ’17]
*| functionF [’ FPL?)’] function (i-body6)
[:T]
[raises’ [> X[: T](LX[: T])* *17]
* | function Finfix > [(inJout)]V:T, [(injout)[V:T *)’ infix function (i-body7)
[:T]
[raises’ [> X[: T](LX[: T])* *17]

*| valueV : S constant value (i-body8)
| eqnseqn-de@ndeqgns equations (i-body9)
| i-body i-body sequential (i-body10)

+] processl [’[’ [G[:T](,G[:T])*] 1] process with return value (i-body11)

[PCOVITGV T)]
: T
[raises’ [> X[: T](LX[: T])* *1°]

function declarations are synonymous with the equivafgatessdeclarationvalue declarations are synonymous
with the equivalenfunction declarations.

The last category is added to join functions and processes in the abstract syntax in just one category, a process with
areturn value and just in parameters.

3.2.1.2 Process declaration

Concrete syntax

processi [’[’ Gi[: Ta],...,Gn[: Tn] 217]
[) (7 FPL 7))]
[raises [Xi[: T{"], ..., Xm[: T#]1]
isB
endproc

The default gate list i§], the default gate type i&etc) , the default in pararameter{$, the default result type isone,
the default exception list i§] and the default exception type(s.

Context

SEM={j|outV,:T; € FPL}

S M= gateg[Gy,...,Gnl)

S F M= params([V,...,Vpl)

S N = exceptiong [Xy,...,Xm])

with FPL = [infout] V1 : Ty,..., [in|out] Vp : T

26

Syntax sugar

def [>(>|>)>]

["CFPL")"]
[raises [X1[: T{'], ..., Xm[: Tm]]]

:0T

(processl [’[’ G1[: Ty],...,Gn[: Tn] 1"]
[raises[Xa[: T{'], ..., Xm[: Tm])]]

) processi1 [’[’ Gi[: Ta],...,Gn[: Tn] 217]

where (ordered with ascendant indexes):

I ={Vi:Ti|[in]Vi:Ti € FPL} and

OT =" (’{T; |outV; : Ti € FPL}’) . If there is noout parametersjoneis the return type.
3.2.1.3 Function declaration

Concrete syntax

function F [(> FPL?)]
[:T]
[raises’ [> X[: T](, X[T])* *17]

The default parameter list {3, the default exception list iE] and the default exception type (3.

Syntax sugar
function F [> (C FPL)] [: T] def (processk [>(’ FPL?)? |[:T]
raises’ [’ Xi[: Ta], ..., %a[: Tn] ?17) raises’ [’ Xi[: Ta], ..., Xa[: Ty] ?1?
3.2.1.4 Infix function declaration
Concrete syntax
function F infix > (’ [(injout)[V: T, [(in|out)[V:T *)?
[:T]
[raises’ [’ X[: T](LX[: T])* ’17]

The default exception list i] and the default exception type (3.

Syntax sugar

function F infix [> (" FP,FP> ?)?] [:T] \ ar [processk [’ (> FPy, FP)7 | [:T]
raises’ [? Xi[: Ta], ..., Xa[: Tn] 71 raises’ [? Xi[: Ta], ..., Xa[: Tn] 71

whereFP, = [in|out]V; : T;.

3.2.1.5 Constant value
Concrete syntax

valueV : S

Syntax sugar

valueV:S % function V():S

27

3.2.2 Formal parameter list
3.2.2.1 Overview

Concrete syntax

FPL = V:T singleton (FPL1)
x| inV:T input singleton (FPL2)
x| outV:T output singleton (FPL3)

| FPL,FPL disjoint union (FPL4)

This category has disappeared, see Section 3.2.1.2, an it is rewritten as mliyipafd parameteraut parameters
are dealt as local variable declaration with value capturingraia.
3.2.3 Declarations
3.2.3.1 Overview

Concrete syntax

D := typeSrenamesT endtype type synonym (D1)
| typeSisCP’(’ RT?)’](’ |’ C[’(C RT ’)’])" endtype type declaration (D2)
| typeSis’(’ RT)’ endtype named records type declaration (D3)

| processlT [0’ [G:T](,G[:T])] ’17] process with infout parameters (D4)
[) (7 FPL 7))]
[raises [X[: T](,X[: T])*1]
isB
endproc
*| function F [>(C FPL?)’][:T] function with in/out parameters ~ (D5)
[raises’ [’ X[: T](LX[: T])* ?17]
isE
endfunc
% | function Finfix > [(injout)]V: T, [(injout)]V:T *)’ infix function (D6)
[:T]
[raises’ [> X[: T](LX[: T])* *1°]
isE
endfunc
*| valueV : SisE endval constant value declaration (D7)
| DD sequential declaration (D8)
+| processil [’[’ [G[:TI(,G[:T])*] 1] process with return value (D9)
[7(7V:T(’ T)* :):]
: T

[raises’ [’ X[: T, X[: T])* *17]

Syntax sugar Thefunction declarations are synonymous with the equivajgntessdeclaration. Also, value con-
stants are syntax sugar of functions with arguménts

28

3.2.3.2 Process declaration

Concrete syntax
processi1 [’[’> Gi[: T1],...,Gn[: Tn] 17]
[) (7 FPL 7))]
[raises [X1[: T{'], ..., Xm[: Tm]1]
isB
endproc
The default gate list i§], the default gate type i&etc) , the default in pararameter{$, the default result type isone,
the default exception list i§] and the default exception type (3.

Context

SFM={j|outV;:T; € FPL}

S M= gateg[Gy,...,Gnl)

S F M= params([V,...,Vpl)

S N = exceptiong [Xy,...,Xm])

whereFPL = [infout] V1 : Ty,...,[injout] Vp : Ty

Syntax sugar
processl1 [’[’ Ga[: T, ...,Gn[: Tn] 1"]

[) (: | :))]
processi1 [’[’> Gi[: T1],...,Gn[: Tn] 17] : OT
[PCFPL?) [raises [X1[: T{], ..., Xm[: Tm]1]
[raises [X1[: T{'], ..., Xm[: Tm]1] o is
isB var Oin
endproc B ; exit((RV))
endvar
endproc

where (every tuple is ordered with ascendant indexes):

I =My T, Vit i) with {Vi c T, Vi T b = {Vis T | [in] V2 T € FPLY,
O={Vi:Ti|outV;i: T, € FPL},

OT = (C{Ti|outV;: T € FPL}) (if there is noout parametersioneis the return type), and
RV={Vi|outV,:T € FPL}.

3.2.3.3 Function declaration

Concrete syntax
function F [>(C FPL) | [:T]
[raises’ [* X[: T](LX[:T)*
isE
endfunc
The default parameter list {3, the default exception list iE] and the default exception type (3.

1]

29

Syntax sugar

function F [> (FPL)’] [:T] processF [’ (’ FPL)’][:T]
raises’ [Xi[: Ta],..., X%n[: Tn] 21 def raises’ [? Xi[: Ta,..., Xa[: Tn] ?1°
isE o isE

endfunc endproc

3.2.3.4 Infix function declaration
Concrete syntax

function F infix > (’ [injout]Vy : Ty, [injout]Vo: T, ?)?
[:T]
[raises’ [* X[: T](,X[: T])* *17]
isE
endfunc

The default exception list i§] and the default exception type (3.

Syntax sugar

function F infix > CFP,FP, ?)? [:T] processF * CFPy,FP, 7))’ [:T]
raises’ [’ Xq[: T1],..., Xn[: Tn] ?1° def raises’ [? Xi[: T1],...,Xn[: Tn] ?1°
isE - isE

endfunc endproc

whereFP = [in|out]V;: T;.

3.2.3.5 Constant value declarations
Concrete syntax

valueV : Sis E endval

Syntax sugar

valueV:Sis E endval & function V():Sis E endfunc

3.2.4 Expressions
3.2.4.1 Overview

Concrete syntax

E P:=E
E; E
trap
(exceptionX [’ (* IP ?)’] is E endexn)*
[exit [P] is E endexif
in E
endtrap

30

assignment
sequential composition
trap

(E1)
(E2)
(E3)

varV:T[:=E](,V:T[:=E])*in

variable declaration

(E4)

E
endvar
| rename renaming (E5)
(signalX[> (° IP ?)] is X [E])*
in E
endren
*| loop E endloop iteration (E6)
*| loopX[: T]in breakable iteration (E7)
E
endloop
*| while E do while iteration (E8)
E
endwhile
% | for E while E by E do for iteration (E9)
E
endfor
*| caseE[:T]is EM endcase case (E10)
| case’(’ E[:T](,E[:T]) »)’ isEM endcase case with tuples (E11)
*| if EthenE if-then-else (E12)
(elsif E then E)*
[elseE]
endif
x| F[>C[APL]*>)][’ XPL’]1] function instantiation (E13)
=| (EIP)F (E|P)[’[> XPL*]"] infix function instantiation (E14)
*| raiseX[?(’ E?)’] raising exception (E15)
*| break [X][? (" E ?)’] breaking iteration (E16)
*| N value (E17)
*| E andalsoE conjunction (E18)
*| E orelseE disjunction (E19)
x| E=E equality (E20)
x| E<>E inequality (E21)
x| E.V select field (E22)
x| E:T explicit typing (E23)
| "CE’) parenthesized expression (E24)

Syntax sugar Some of these clauses are syntax sugar, some of them with an explicit translation as described in
following sections and some with the same translation that applies for behaviours. The rest are particular cases of
behaviours only capable of performing terminatidh ¢r exception X) transitions, and not internai)(gate) or
delay €) transitions.

We translate each expression of typ@to a behaviour of typexit(T). Expressions are deterministic.

Most of the translations are straightforward, since they are the same as the behaviour parts. We only give the non-
trivial translations here. Note that infix function instantiations are firstly translated into prefix function instantiations,

31

then consider as behaviour.

3.2.4.2 Infix function instantiation
Concrete syntax
(EIP)F (EIP) [’ [’ XPL’1"]

The default exception list is [].

Syntax sugar

def

(ARLF AR '[’ XPL’1’)=(F*(C AP, AR 7))’ 7[> XPL’1?)
whereAR = Ej|P.
3.2.4.3 Value

Concrete syntax

N

Syntax sugar

def

N = exit($1=>N)

3.2.4.4 Conjunction
Concrete syntax

E andalsoE

Syntax sugar
E; andalsoE, e it E; then E> elsefalse
3.2.4.5 Disjunction

Concrete syntax

E orelseE

Syntax sugar

E; orelseE, e it E; thentrueelseE,

3.2.4.6 Equality
Concrete syntax

E=E

32

Syntax sugar

Ei=E, ¥ casdEp, Ep) is(7x,?7y) — casexis !y — true | any — false

3.2.4.7 Inequality
Concrete syntax

E<E

Syntax sugar

E; <> B> ¥ if E; = E, then falseelsetrue

3.2.4.8 Field select
Concrete syntax

E.V

Syntax sugar

E.V¥caseEis (V= 7x,etc) — X

3.2.4.9 Explicit typing
Concrete syntax

E:T

Syntax sugar

f .
E:T % caseE: T is 7x — x

3.2.5 Behaviour expressions

Syntax
B = BT behaviour term (B1)
| DisB disabling (B2)
| SyncB synchronization (B3)
| ConcB concurrency (B4)
| SelB choice (B5)
| SuspendB suspend/resume (B6)
| InterB interleaving (B7)

Syntax sugar Note that this category is introduced to priorize operators, and it is just the union of other categories.
Those categories that need syntactic translation are included in the next setions. The rest will be revisited in the
semantic Chapter 6.

33

3.2.6 Interleaving behaviour expression
Concrete syntax
InterB %,::= BT ||| BT interleaving (InterB1)
*| BT ||| InterB interleaving (InterB2)

Syntax sugar

def

Bil11B2 =Bl [11B>

3.2.7 Behaviour terms

3.2.7.1 Overview

Concrete syntax

BT

G[P|[eP][’[’E 1] action (BT1)
[internal action (BT2)
null successful termination (BT3)
stop inaction (BT4)
block time block (BT5)
wait > (" E ?)? delay (BT6)
P:=E assignment (BT7)
P:=anyT[’[’ E*]’] nondeterministic assignment (BT8)
B;B sequential composition (BT9)
dis DisB enddis bracketed disabled expression (BT10)
fullsync SyncBendfullsync bracketed synchornization expression (BT11)
concConcBendconc bracketed concurrency expression (BT12)
selSelBendsel bracketed choice expression (BT13)
suspendSuspendBndsuspend bracketed suspend/resume expression (BT14)
inter InterB endinter bracketed interleaving expression (BT15)
choiceP [] B endch choice overvalues (BT16)
trap trap (BT17)

(exceptionX[’ (’ IP ?)’] is B endexn*
[exit [P] is B endexif

in B

endtrap

par [G#n(,G#n)*] in general parallel (BT18)
'[2 [G(,6)"] 17 ->B(11 * [[6(,6)] *1* -> B)*

endpar

par Pin N | || Bendpar parallel over values (BT19)

varV:T[:=E|(,V:T[:=E])* in variable declaration (BT20)
B

endvar

34

| hide G[: T](,G[: T])"in gate hiding ~ (BT21)
B
endhide
| rename renaming (BT22)
((gateG[(IP)]isG[P]) | (signalX[(IP)]is X [E]))*
in B
endren
= [[GPY] process instantiation (BT23)
) (: [APL] :))
[) [7 XPL 7])]
*| loop B endloop iteration (BT24)
*| loopX[: T]in breakable iteration ~ (BT25)
B
endloop
*| while E do while iteration (BT26)
B
endwhile
*| for E while E by E do for iteration (BT27)
B
endfor
| caseE[:T]is case (BT28)
BM
endcase
| case’(C’ E[:T](,E[:T])*)’ is case with tuples (BT29)
BM
endcase
*| if EthenB if-then-else (BT30)
(elsif E then B)*
[elseB]
endif
| signalX [’ (" E?)’] signalling (BT31)
*| raiseX[?(’E’)’] raising exception (BT32)
*| break [X][? (" E ?)’] breaking iteration ~ (BT33)
x| 2CB?)” parenthesized behaviour (BT34)
+| exit(RN) Succesful termination with return value (BT35)

Note that some clause are just syntax sugar, with straightforward translation.

3.2.7.2 Action
Concrete syntax
G[P][eP ["["E"]"]

Default values aré), eany, and [true] respectively.

35

Abstract syntax

def

(G[P][eP][’[* E*]1’]) = (G PeP Estart(0))

3.2.7.3 Bracketed disabled expression
Concrete syntax

dis DisB enddis

Abstract syntax

def

(dis DisB enddis) = (’ (* DisB))

3.2.7.4 Choice over values
Concrete syntax

choiceP [] B endch

Abstract syntax

(choiceP [1 B endch) & (choiceP after (0) [1 B)

3.2.7.5 Process instantiation with abbreviated parameter lists
Concrete syntax

rl;[; [GPL];]; 7(7[APL] 7)7[>[>XPL>]>]

Syntax sugar

SFN=gateg[Gy,...,Gnl)
S F M= params([V1,...,Vpl)
S N = exceptiong [Xg,...,Xm])
def

(N>’ GPL]’ C APL?)’ [XPL) & (M [g1,...,0n1 O epi,....e0)’ [Xa,...,Xm])

where

GPL: [le=>G{(l""7ka=>G[(p""] Gk| € {G]_,,Gn}
(G iffG=>G e GPL
9= G, otherwise
APL= [Vj1=>(E|P)jy,...,Vjs=>(E|P)is,...1 Vji € {V1,...,Vp}
Ei, |ﬁ \/| => Ei, S APL
ep=< P iff Vi=>P € APL
Vi otherwise
XPL=[X1=>X/;, -, Xiq=>X, -1 Xi € {X1,...,Xp}
(X ff X =>X e XPL
%= Xi otherwise

This syntactic sugar is applied only when there is explicit instantiation @xd and/or “...”). Explicit instantiation
may exists only for gates, parameters or exception or any combination of them: the appropiate will be apply.

36

3.2.7.6 Process instantiation with in/out parameters
Concrete syntax
N’ [G(L,G)" 1> [APL])’ [’ [’ X(,X)" *1"]

The default gate and exception lists are the emptyflisBefore solving infout parameters, dot notation for abbreviated
parameters lists should have been solved (see Section 3.2.7.5).
Syntax sugar

S +M=Pos

(M>2 G717 C AR, ... ,AR, ?)? [X])ﬂ(

trap exit (7x) is &RP) 1= X)
in M [G] (RE) [X]
where

RP= (ARl,...,ARk) with i1 <i2 < ... <ixand{is,...,ik} = Pos

RE= (APj,...,AP}) with j1 < jo < ... < jand{js,...,ji} = {1,...,n} — Pos

and pattern® should be irrefutable.
Note that this translation is only defined whenef®#® is indeed a Record Pattern aRE is indeed a Record
Expression. Otherwise, the original behaviour is declared to be syntactically incorrect.

3.2.7.7 lteration
Concrete syntax
loop B endloop

There is a default exception, namieder.

Syntax sugar The final (semanticlpopis written in italic to avoid confusion.

trap
exceptioninneris exit

loop in
B o loop
endloop B

endloop
endtrap

3.2.7.8 Breakable iteration
Concrete syntax

loop X [: T]in B endloop

37

Syntax sugar The final (semanticlpopis written in italic to avoid confusion.

trap
exceptionX is exit

loop X in in
B &f loop
endloop B

endloop
endtrap

trap
exceptionX (?7x:T) is exit (x)

loop X :Tin in
B & loop
endloop B

endloop
endtrap
3.2.7.9 while iteration
Concrete syntax
while E do B endwhile
Syntax sugar
loop
if E then
while E do B
B & else
endwhile break
endif
endloop

3.2.7.10 for iteration
Concrete syntax

for E while E by E do B endfor

Syntax sugar

=
loop
if E» then
for E1 while E, by Ez do B;
B &f Es
endfor else
break
endif
endloop

38

3.2.7.11 Case

Concrete syntax

caseE[:T]is case’ (C E[: T](,E[:T])* ?)is
BM BM
endcase endcase

To ensure that the match is exhaustive, a fargl -> raise Match clause is added.

Syntax sugar The final (semanticgaseis written in italic to avoid infinite recursion.

BM def BM

endcase

caseE[:T]is case B:T]is
’ | > any -> raise Match
endcase
case’ (’ E[:T](,E[:T)* ?)is
BM
> | > any -> raise Match
endcase

case’ (’ E[:T](,E[:T])* ?)’is
BM def
endcase

3.2.7.12 If-then-else

Concrete syntax
if E then B [elseB] endif

The defaulielseclause isxit.

Syntax sugar

if E then B, elseB, endif ® caseE :boolis true-> B; | false-> B, endcase

3.2.7.13 if-then-elsif-else

Concrete syntax
if E then B (elsif E then B)" [elseB] endif

The defaulielseclause isxit.

Syntax sugar

if E; then B,
if E; then B, else
elsifEx then By | aer if E> then B,
[elseBs] - [elseBs]
endif endif
endif

39

3.2.7.14 Raising exception
Concrete syntax
raiseX [’ (" E ?)’]

The default expression i§).

Syntax sugar

def

raise X [> (> E ?)’] =signalX [’ (* E ?) ’]; block

3.2.7.15 Breaking iteration
Concrete syntax

break [X][? (* E ?)’]

The default exception nameiisner and the default expression (3.

Syntax sugar
break X & raise X
break X > (’ E *)’ € raiseX * (* E »)>
break & raise inner

break ’ (" E ’)’d:efraiseinner’(’ E’)’

3.2.7.16 Successful termination

A new behaviour term is added in the abstract syntax, just to allow process definition and other terms to return values.
Note that this category belongs to the abstract syntax, so the user is not allow to use it: just as a result of a syntactic

translation or in the semantics it may appear.

abstract syntax
exit [(RN)]

The default termination value i©).

3.2.8 Type expressions

Concrete syntax
T =S

| none

| any

40

type identifier (T1)
empty type (T2)
universal type (T3)

Abstract syntax

T S

| none
| any
+| 7(7RT7)7

3.2.9 Record type expressions
3.2.9.1 Overview

Concrete syntax

RT = V=>T(V=T)"],etd
| etc
[T(T)
Abstract syntax
RT = V=>T(V=T)"[,etd
| etc
*|
+1

3.2.9.2 Positional
Concrete syntax

T(,T)"

Syntax sugar

def

(T1,..., Tn) = ($1=>Ty,...,$n=>Tp)

3.2.10 Record value expressions

3.2.10.1 Overview

Concrete syntax

RN = V=>N(V=>N)*
x| NGN)*

type identifier
empty type
universal type
records

named
universal record
positional

named
universal record

empty record

named
positional

41

(T1)
(T2)
(T3)
(T4)

(RT1)
(RT2)
(RT3)

(RT1)
(RT2)
(RT3)
(RT4)

(RN1)
(RN2)

Abstract syntax

RN = V=>N(,V=>N)* named (RN1)
«| (RN2)
+ | empty record (RN3)

3.2.10.2 Positional
Concrete syntax
N(,N)*

Syntax sugar

def

(Ng,...,Nn) = ($1=>Ny, ..., $n=>Np)

3.2.11 Gate parameter list

GPL *x:= G=>G(,G=>G)"[, ...] explicit instantiation (GPL1)
x| .. explicit instantiation (GPL2)
| G(,G6)* positional instantiation (GPL3)

See Section 3.2.7.5, as syntax sugar for explicit instantiation needs context information (formal parameter list of
the process to be instantiated).

3.2.12 Actual parameter list

APL x:= V= (EIP)(,V=>(E|IP)*[, ...] explicit instantiation (APL1)
x| ... explicit instantiation (APL2)
| (EIP)(,(E|P))* positional instantiation (APL3)

See Section 3.2.7.5, as syntax sugar for explicit instantiation needs context information (formal parameter list of
the process to be instantiated).

3.2.13 Exception parameter list

XPL xi= X=>X(X=>X)"[, ...] explicit instantiation (XPL1)
x| ... explicit instantiation (XPL2)
| X(,X)* positional instantiation (XPL3)

See Section 3.2.7.5, as syntax sugar for explicit instantiation needs context information (formal parameter list of
the process to be instantiated).

42

3.2.14 Record patterns
3.2.14.1 Overview

Concrete syntax

RP == V=>P(,V=>P)"[,etd
| etc
x| P(,P)”
Abstract syntax
RP = V=>P(,V=>P)"[,etd
etc

3.2.14.2 Positional
Concrete syntax

P(,P)*

Syntax sugar

def

(P1,...,Pr) = ($1=>Py,...,$n=>R,)

3.2.15 Record expressions

Concrete syntax

RE x:= V=>E(,V=>E)"
x| EGE)

Each record expression of typd is translated into a behaviour of typait(RT).

3.2.15.1 Positional record
Concrete syntax

V=>E(,V=>E)"

Syntax sugar

def

Vi =>E1,...,Vh=>Ey=7V1 :=Eq,

...,?Vn :=En

43

named
wildcard
positional

named
wildcard

empty record

named
positional

(RP1)
(RP2)
(RP3)

(RP1)
(RP2)
(RP3)
(RP4)

(RE1)
(RE2)

3.2.15.2 Record tuple
Concrete syntax

EGE)

Syntax sugar

Ei,....En®$1=>E,...,$n=>E,

3.2.16 Record of variables
3.2.16.1 Overview

Concrete syntax

RV = V=V (V=>V)*
x| VLV

3.2.16.2 Positional record
Concrete syntax

V(,V)

Syntax sugar

Vi, Ve Z$1=>Vp,... 80 =>

3.2.17 In parameters
3.2.17.1 Overview

Concrete syntax

IP xi= V=[P:]T

*| etc

*| PaslP
x| [P:]T
*~| IP,IP

with the restriction thagtc can occur at most once.
Each parameter list is translated to a typed record pattern of the form&sRR: RT

3.2.17.2 Singleton parameter list
Concrete syntax
V=[P:]T

The default pattern iany.

44

named
positional

singleton
wildcard
record match
tuple

disjoint union

(RV1)
(RV2)

(IP1)
(IP2)
(IP3)
(IP4)
(IP5)

Syntax sugar
(V=P:T) ¥ gargvas(V=P) : (V=T)
3.2.17.3 Wildcard

Concrete syntax

etc

Syntax sugar

etc® $argvas etc: etc

3.2.17.4 Record match
Concrete syntax

PaslP

Syntax sugar

P as$argvasRP : RT% $argvasP asRP : RT

3.2.17.5 Tuple parameter list
Concrete syntax
[P:]T

The default pattern iany.

Syntax sugar

def

(P:T)=($1=P:T)

3.2.17.6 Parameter list disjoint union
Concrete syntax

IP,IP

Syntax sugar

((%3,...,%nasRRA : RT),($L,...,$masRR :

def

RT:)) = ($1,...,$n,$n+1,...,$n+masRR,RP : RT;,RT)

45

Chapter 4

E-LOTOS semantics

4.1 Overview

This chapter describes the semantic objects and rules used for describing the E-LOTOS static and dynamic semantics.
At the semantics level, there exist some constructions which are not available in the grammar: they are defined just
to ease the (static and dynamic) semantics definition. The following are defined:

¢ after: used to define the semantics of time evolution, see Section 6.2.16. Used as abstract syntax.

e start: local clock in semantics of actions, see Section 6.2.6. It counts how many time the gate has been offered.
Used as abstract syntax.

e exit: successful behaviour end with return value. Used as abstract syntax. Its semantics definition is in Sec-
tion 6.2.9.

Besides, the following apply:
pi=alo ax=G|X]|i
We assume the following types declared:

type boolis true | false
type Listis Nil | congany, List)

4.2 Static Semantics

4.2.1 Static semantic objects for Base

The context for the static semantics gives the bindings for any free identifiers, and is given by the grammar:

C = V=T initialized variable C1)
| V=7T typed variable (C2)
| S=type type (C3)
| S=T type equivalence (C4)
| TET subtype (C5)
| C=(RT) —>S constructor (Ce)
| M= [(gate(RT))*]1(RT) [(exn(RT))*] — exit(T) process identifer (C7)

46

M= [(gate(RT))*1 (RT) [(exn(RT))*] — guarded(T) process identifer (C8)

|

| G=gate(RT) gate C9)
| X=exn(RT) exception (C10)
| trivial (C11)
| C,C disjointunion (C12)

where each identifier only has one binding.

The operations which we use on contexts are thédisjunct union), %" (matching union), “;” (context over-
riding), and “—" (subtraction).

We shall writeC; @ C5 to denote the matching union on context. It is well defined only if the common nanfes of
andC; have the same bindings in both contexts. Its formal definition is:

f(a) if a¢ Dom(g)
(f®g)(a)={ g(a) if ag Dom(f)
f(a) ifg(@="f(a

We shall writeC1; C, for context over-riding (with all the bindings @, and any bindings fror@; not overridden
by Cz)

We shall writeC — {V4, ..., Vn} for subtracting variables from the context\(if= Ta,...,Vh= Ty and
Vi=7T1,...,Vi=7T, belongs tdC, then they are removed).

In order to avoid many parentheses;“has higher precedence than “;”, and.”

The semantics for modules ugesamingon contexts. Since renaming is a particular case of substitution, we write
Clo] (B[o]) for the contexts that are obtained by applying the substitutionC (B).

Note that the grammar for record types overlaps with that of contexts. WheR&wdoes not contain any occur-
rences ofetc, we shall allowRT to range over contexts (for example in the type rule for sequential composition in
Section 6.2.15).

4.2.2 Judgements on static semantics for Base

In this section, we describe judgements that define the static semantics for the base language.

Behaviours The static semantics is given by a series of judgements, such as
C FB= exit(RT)?

meaning “in contex€, behaviouB has result typ&RT)"” or
C B= guarded(RT)

meaning “in contex€, behaviouB has result typ&RT) and cannot exit initially”.
Besides, the following rules apply:

C F B=exit(RT)
CFRTCRT
C F B= exit(RT")

C + B= guarded(RT)
CFRTCRT
C F B=>guarded(RT')

C F B= guarded(RT)
C F B=exit(RT)

lexit is overloaded. The context in which it appears will indicate if we refer to it as a behaviour or as the result of a judgements.

47

Type expressions Subtyping is a preorder:

CFTCT

CFTLCT CrT'CT”
CHrTCT”

We writeT =T’ for T C T andT' C T. We will write:
CFTiUT =T CFTINT=T

whenever (up tee) T; andT, have a least upper bound (respectively greatest lower bdund)

Record type expressions The following judgements are used in the definition of the static semantics for record type
expressions:

C FRT=record
CFRTCRT

Subtyping is a preorder:

CFRTCRT

CHFRTCRT CHRTLCRT
CFRTCRT

We writeRT = RT for RTC RT andRT C RT.

Value expressions The following judgements are used in the definition of the static semantics for value expressions:

CEN=>T

CEN=T
CrTLCT
CEN=T'

Record value expressions The following judgements are used in the definition of the static semantics for record
value expressions:

CFRN=RT

CFRN=RT
C+RTCRT
CFRN= RT

Patterns The following judgement is used in the definition of the static semantics for patterns:
CH(P=T)=(RT
This judgement means that in contéxiit is possible to match the type & with T, by means of the bindings

expressed i(RT).

48

Record of variables

C+ (RV=RT)= (RT)

CF (RV=RT)= (RT)
CFRT =RT"
CF(RV=RT)= (RT")

Behaviour pattern-matching
CF (BM=T)=exit(RT)
CF (BM=T)= guarded(RT)

General axioms

C,JFJ

This axiom means that any bindiddrom a context,J may be infered.

4.2.3 Extended identifiers

Theextended identifier e-idf an occurrence of aidentifier id, is an extension of an identifier with tiseopenforma-
tion of that identifier. The extended identifiedid of an identifierid belonging to the following classes: Typ, Con, Fun,
and Procld is a paix scpid >. The scopacpof the identifierid is the name of the module, generic module, interface,
or specification where it was defined or declared.
In the definition of semantics objects for the base language, all identifiers from classes Typ, Con and Procld are

extended identifiers.

4.2.4 Static semantic objects for Modules

For modules we define one context. We lsdor contexts produced by top-level declarations. It is defined by the
following grammar:

B := mod-id=C module (B1)
| gen-id= (mod-id=C)* —C generics (B2)
| int-id=C interface (B3)
| empty (B4)
| B,B disjoint union (B5)

We also use aatching unioroperation on contexts.

4.2.5 Judgements on static semantics for Modules

In this section, we describe judgements that define the static semantics for the module language.

Specification

F spec=- ok

49

Top-level declaration

B F top-dec= B’

Module body
B,C F m-bodyid = C’

The contexC represents the set of imported objects which may be used-bydy The source of the objects defined
by m-bodyis id. These objects are given By.

Module expression
B,C - mod-expid=C’

A module expression need both the bindings of module language (for aliasing, and actualization) and the bindings of
the base language (for instantiation).

The identifierid is the name of the source module (or generic module) for the objects created by the expression. A
module expression creates always objects except when it is an aliasing (i.e. a module identifier).

Module formal parameters

B+MP=B'

Interface expressions
B +int-expid = C

The identifierid is the source of the objects newly declaredrityexp

Interface body

C Fi-body,id = C’
Record module expression
B+ (RME= (mod-id=C)),id= ¢

Its static semantics need informations about the formal parameters list to be instantiated and returns the realization
resulted from the substitution of the actual parameters with the formal ones.

Declarations

CFD,id=C’

4.2.6 Cycle freedom
In our semantic definition we assume no cycle of modules names; that is, there is no sequence
mod-ich — --- — mod-id, = mod-ichy (k> 0)

of modules names, where the-$ ” relation is the use relation of thérfiport” construct.

50

4.2.7 Context morphism

Let C; andC, be two contexts (for example the bindings of two modulesioatext morphism gC; — C, is a 3-uple
of functions

def

g = <gr:C.T—=CT,0c:C1.C—-Co.C.ogn :Ci.M—Co,>
such that:
o@c(C1= (R =9) £ C= (gr(RT) = gr(9

gn (M= [(gate(RT))*] (RT) [(exn(RT))*] — exit(T))

def

= MMy= [(gate(gr (RT)))*1(gr(RT)) [(exn(gr (RT)))*] — exit(gr(T))
gn (M1 = [(gate(RT))*1 (RT) [(exn(RT))*]1 — guarded(T))

def

= [My= [(gate(gr (RT)))*1 (g7 (RT)) [(exn(gr(RT)))*] — guarded(gr(T))
whereC;,IM;, T; are extended identifiers.

A context morphism maps a context to another context. The arguments and the results of bindings should be
consistently mapped, i.e. the arguments/result type of the binding of an operation, should be equal to the image of the
arguments/result type of that operation.

4.2.8 Realization

A realizationis a special context morphisgnwhich is an identity on simple identifiers. For example, for the type
context,

or (< scp,S> =type) € < scp, S> =type

The realization changes only the scope of identifiers, i.e. their definition module, interface, or generic module
name.

4.2.9 Interface Instantiation

Intuitively, a module isan instanceof an interface if the former provides definitions of all objects declared in the second
one, and only for these objects.

Formally, a module bindin@ is an instanceof an interface binding,, writtenC, < Cy, if there exists a realization
morphismg such thatp(C,) = C;.

4.2.10 Interface Matching

Intuitively, in matching a module to an interface, the module will be allowed to define more components than those
declared by the interface. In this case, the module will be a superset of an instance of the interface.

Formally, a module bindin§; matchesn interface bindin§,, writtenC; >~ C, if exists a module bindin§’ such
thatC, < C' C Cy.

NOTE: This relation is a combination of interface instantiation and module enrichment. The module enrichment is, in our
case, the set inclusion.

4.2.11 Renaming/Instantiation

Overview A renamingis a list of mappings from old names to new names. These mappings may be used either as a
renaming to completely new names, or like an actualization of some formal objects with new (actual) objects.
The judgments foreninstconsidered as gnaminghave the form:

C Freninstid=g

51

whereC is the context of the renamed namigkis the source name of the new objects created by the renaming, and
is the morphism built fromeninst
The judgments foreninstconsidered as aactualizationhave the form:

C +-reninst/C' =g

whereC is the context of the actual parametdisjs the context of the formal parameters, ayid the morphism built
from reninst
Note thatg is an identity for all identifiers which are not in the supporgof

Renaming Rules

Ck S =type
CH(S = ©),d=(S—<id, S >)

The identifierS; may be a long or a short identifier, and it shall be define@.imhe identifierS, shall be short. The
resulting morphism maps the context®fon a new context wher®; is declared having the sourmk The resulting
morphism gives only the mapping for type names.

CFCG= (R =S
CH(C := C),id= (C1—~<id,C >)

The identifierC; may be a long or a short identifier, and it shall be define@.imhe identifierC, shall be short. The
resulting morphism maps the extended identiigion a new extended identifi€k is declared having the sourak

The resulting morphism gives only the mapping for constructor names. The whole morphism is obtained using the type
morphism.

C My = [(gate(RT))*T (RT) [(exn(RT))*1 — exit(T)
CF (M = My),id= (M —><id,M2>)

CkMy= [(gate(RT))*]1 (RT) [(exn(RT))*] — guarded(T)
CH (M1 := My),id= (N —~<id,Ny>)

The identifierr1; may be a long or a short identifier, and it shall be define@.iThe identifiel1, shall be a short
identifier. The resulting morphism maps the extended idenfifigon a new extended identifi€t, is declared having
the sourcaed. The resulting morphism gives only the mapping for process names. The whole morphism is obtained
using the type morphism.

C I reninst,id = g1
C I reninsb,id = g»

andgy are disjoint andyz, g is injectiv
C F (reninst , reninst),id = g1, g2 [0: andg;] @1,02is inj g

The morphisms generated by each renaming list shall be disjoint, i.e. the renaming list shall rename different
identifiers. Also, the resulting morphism shall be injective, i.e. it shall map two different contexts in two different
contexts.

Let C be the renamed contexgninstthe renaming list, anil the identifier of the source module or interface. The
resulting morphisng is defined as follows:

g:C—g

where:

52

gr(<src, S > =type) =<id, S > =type if (31 := $) € reninst
=< SIC, S > =type otherwise
gc(<sre,C > =(RT) =9 =<id,Co>=(@r(RT)) =0gr(9 if (C1 := Cp) €reninst
=< src,Cy > = (g7 (RT)) = gr(S) otherwise
gn(< src,My > = [(gate(RT))*1 (RT) [(exn(RT"))*] — exit(T))
=<id,My > = [(gate(gr (RT)))*] (gr (RT)) [(exn(gr (RT")))*]
—exit(gr(T))
if (M1 := Ty) € reninst
=< src,M1 > = [(gate(gr (RT)))*1 (g1 (RT)) [(exn(gr (RT")))*]
—exit(gr(T))
otherwise
All the requirements expressed by the rules shall be satisfied, i.e.:

Req.1 The morphisng shall be injective in each class of identifiers.
Req.2 The renaming listeninstshall rename different identifiers, i.e. @lof id := id’ shall be distinct.

Req.3 The contexg(C) shall be well formed, i.e. an extended identifier shall be bound only once.

Actualization Rules

CHS=type chce
CHE& = Sz)/C’,Sl:/typeé(SlHSz)pr[(p()&4

This rule deals with the elaboration of the actualization of types. The identSieand S, may be long or short
identifiers. The former shall be declared in the formal conf&xtand the second in the actual contéxt In the
mapping, the extended identifiers are used. The remainder of formal elements gb/eshsil have a realization in the
actual contex€ (implicit instantiation). The realizatiop may match the morphism given by the explicit instantiation.

CI—(C1 1= Cz)/C/,C1=>(V1:>T1,...,Vn:>Tn)—)Sl -
>Ci—CMi-T,.. . . ThnT) S~)

This rule deals with the elaboration of the actualization of a formal constructor. The resulting morphism must maps the

53

constructor names and result types.

C FNy= [GLy] (FPLy) [XLy] — exit(Ty)

F(GLi=GL)=01

F(FPLi=FPL) =02

"(XL1=>XL2)=>Q3 [(p(C,)CC]

F(My:= I'Iz)/C’,I'I1:> [GL1] (FPLy) [XL1] — exit(Ty) -
=>(M1~M2,000000300)

FO=0=1{}

C

F ((gateT1) = (gateTy)) = (T1 — T2)
FGL=Gly=g

FGL =GLy=>¢d
FGL,GL, = GLp,GL,=>go d

= ((V1:>T1) = (V1:>T2)) = (Tl — Tz)
FFPL=FPLy=g
FFPL = FPL,=d
FFPLy,FPL, = FPL,FPLL=>g0d

F((exnTy) = (exnTp)) = (Ty— To)
FXLi=Xl=g
FXLy=XL,=4d

F XLy, XL) = XL, XL, =>god

where
def

GL; = gateT(,gateT)"

def

FPLEV=T(V=T)

XL EexnT(,exnT)*
This rule deals with the elaboration of the actualization of a process. The iderfifiensdlM, may be long or short
identifiers. The former shall be declared in the formal conféxaind the second in the actual contéxtThe matching
of the parameter list gives three type morphisms, which shall match in the common elements. The resulting morphism
maps the processes names and the types names. The realpadiwaspond to the implicit actualization.

C Freninsy/C1= g1
C F reninsg/Ca= g2

is total onCy,C
C F (reninst, reninst) /C1,Co =01 © g2 [91 ® 02 is total onCq,Cy]

In the elaboration of the sequencing of actualizations, the morphisms generated by each renaming list shall match
in the common elements. Also, the resulting morphism shall be total on the formal parameter contexts.

54

Let C’ be the formal contexf; the actualizing context, armmeéninstthe actualizing list. The resulting morphigm
is defined as follows:

g:C'—=C

It shall be total inC’, i.e. for allobj € C' the valueg(obj) is defined inC. The morphism is defined by the following
rules:
gr(<src, S > =type) =< 816, S > =>type if (S :=) € reninst
andC F< src, S > =type
=< sIc, S > =>type if (S :=) € reninst
andC k< src, S > =type
= undefined otherwise
ge(<srcd,Cp > =(RT) =S =<src,C > = (gr(RT)) —»gr (S
if (C1 := Cp) €reninst
andC F< src,Cy > = (gr(RT)) —g7(9
=< src,Cy > = (gr(RT)) = gr(9)
if (C1 := Cp) & reninst
andC < src,Cy > = (g7 (RT)) = g7(9
= undefined otherwise
gn(< srd,M1 > =[(gate(RT))*1 (RT) [(exn(RT"))*]1 — exit(T))
=< src, My > = [(gate(gr (RT)))*1 (gr(RT)) [(exn(gr (RT")))*]
—exit(gr(T))
if (M1 := M) € reninst
andC k< src,My > =
[(gate(gr (RT)))*1(gr(RT)) [(exn(gr (RT")))*]
—exit(gr(T))
otherwise

4.3 Untimed dynamic semantics

4.3.1 Untimed dynamic semantic objects for Base

The untimed dynamic semantfds given by a series of judgements, such as

Ers’®¥p
meaning “in environmerit, behaviouB terminates with resul{RN)”. The environment gives the bindings for free
identifers, and is given by the grammar:

E = S=T type equivalence (E1)
| C=(RT)—>S constructor (E2)
| MO=ALGRMD)*I(RP:RT[(X(RT)*] =B process identifer (E3)
| trivial (E4)
| E,E disjoint union (E5)

Notethat environments have to carry type information. This is because LOTOS relies on run-time typing for much
of its semantics, for example the semantics of the nondeterministic exprassidndepends on the type rules for

The semantics for expressions with free variables ssibstitutionto replace free variables with values. The
grammar for substitutions is given by:

2We will use the term “dynamic semantics” for untimed dynamic semantics.

55

6 = V=N singleton (o1)
| trivial (02)
| o,0 disjoint union (03)

where each variable is only bound once. We wB{e] for B with all free variables replaced by values givendy
with the usuabi-conversion to avoid binding free variables. See Section 4.5 for the complete definition of substitution
operator.

Note that the grammar for substitutions is the same as the grammar for record Raluss we will use them
interchangeably (for example in the dynamic semantics of sequential composition in Section 6.2.15).
4.3.2 Judgements on untimed dynamic semantics for Base

In this section, we describe judgements that define the untimed dynamic semantics for the base language.

Behaviours The untimed dynamic semantics is given by judgements of the form:

E+rg"®¥p

Type expressions
E-TCT

In each case, the judgements are the same as for the static semantics, so we omit them.

Record type expressions
E-RTCRT

In each case, the judgements are the same as for the static semantics, so we omit them.

Value expressions

EFN=T
EFN=T
EFTCT
EFN=T'

In each case, the judgements are the same as for the static semantics, so we omit them.

Record value expressions

E - RN= RT
E - RN= RT
E FRTCRT
E F RN= RT

In each case, the judgements are the same as for the static semantics, so we omit them.

56

Patterns
EF(P=N)=(RN)

E - (P=N)=fall

The first judgement means that in environminit is possible to match the value Bfwith N, by means of the value
bindings of(RN). The second one means that it is not possible such matching.

Variable binding

E - (V=7T)

This judgment is introduced in local variable declarations. This means that the vafiabiestricted to (sub)type€.

Record of variables
E F(RV=RT)= (RT)

In each case, the judgements are the same as for the static semantics, so we omit them.

Behaviour pattern-matching

E - (BM= N) = falil
ErBM=>N)"EYB

4.3.3 Dynamic semantic objects for Modules

The semantic objects for the Modules dynamic semantics are given by the grammars below. The dynamic basis is given
by the dynamic environment of the base language, which is the result of top level declarations, and the environment of
modules, generic modules, and interfaces.

D = mod-id=I module (D1)
| gen-id= (mod-id=1)*—E generics (D2)
| int-id=1 interface (D3)
| E environment (D4)
| empty (D5)
| D,D disjoint union (D6)

Module and interfaces evaluatedsignatureg(or interfaces), which are a “view” of the module (interface). It
contains all the extended identifiers of the module (interface). The binding of a generic modflmdtca from a
record of module binding to a base language environment. The objects of the envirdnrmaentises the identifiers
declared in the interface list. Signatures are collection of type, constructor and process extended identifiers. They
are defined by the grammar below:

57

S type (ex-id) (1)
| C constructor (ex-id) (12)
M process (ex-id) (I3)
| 1l disjoint union (14)

To extract a signaturiefrom a dynamic environmeit the operation Sig is used defined as follows:
Sig(E) ¥ Dom(E)

Another further operation|” is required to cut down an environmeht to a given signaturé, representing the
effect of an explicit interface ascription. It is equivalent to the restriction of a function domainEhéoenain).

A signature is also a projection of thstatic contextC; it is obtained by omitting variable, gate, and exception
context, and replacing each type, constructor and process context by its domain. Thus in an implementation signatures
would naturally be obtained from the static elaboration. We choose to give separate rules here for obtaining them since
it is important to maintain separation between static and dynamic semantics, for reason of presentation.

After the top-level evaluation, the baflscontains the complete dynamic environment of the specification. This en-
vironment includes all complete specified (non-generic) type, constructor and process definitions, including the objects
locally defined by a module.

4.3.4 Judgements on untimed dynamic semantics for Modules

In this section, we describe judgements that define the dynamic semantics for the modules language.
Specification
F spec“ ﬂ\;) B

Top-level declaration

D I top-dec= D’

Module body
D F m-bodyid = E’

Module expression

D + mod-expid = E’

Module formal parameters

D+MP=D'

Interface expressions

D Fint-expid = |

58

Interface body

D +i-body,id =1

Record module expression
D + (RME= (mod-id=>1)),id = ¢
Declarations

EFD=E’

4.3.5 Environment morphism

The context morphism of the static semantics is adapted to the dynamic semantics environmé&ntantét, be two
environments. Arenvironment morphism:gg; — E» is a 3-uple of functions

def

g = <0Or: El.S—) EQ.S,gc : El.C—> E2.C,g|-| : El.ﬂ — E2.|_|,>
such that:
kG =>RND =9 € C=(gr(RT) =S
gn (M1 =ALGRD)*I(RP:RT) & My=A[(G(gr(RT)))*1(RP:gr(RT))
[(X(RT))*'1—B) [(X(gr(RT)))*1—g(B)

whereC;,IM;, T; are extended identifiers. Note thgais in this case a substitution.
A signaturerealizationis a special context morphisgwhich is an identity on simple identifiers. The realization
changes only the scope of identifiers, i.e. their definition module, interface, or generic module name.

4.3.6 Signature Instantiation

A signaturd is an instance of another signatigenotedl, < |4, if exists a realization morphismsuch thatp(l2) = |.

4.3.7 Renaming/Instantiation
Overview

E Freninstid=¢g
| Freninstid=g
E + reninsy/l = ¢

The definition is given by the static semantics rules.

59

4.4 Timed dynamic semantics

We shall writeE + B" 9% B’ when either:
e E+B"®Y B andd =0, or
¢ EFrBXS B andE BV B
Requirements on the time domain:

1. The only closed normal forms of type time are the special constants ranged aler by
2. The time domain is a commutative cancellative morpidith unit 0.

3. The order given by, < d, iff 3d.d; +d = dy is a total order.

Since time is a commutative cancellative monoid, it satisfies the properties:

di+do=dr+d; ifdi+d=dy+dthend;=d, d1+(d2+d3):(d1+d2)+d3 d+0=d=0+d

4.4.1 Judgements on timed dynamic semantics

In this section, we describe judgements that define the timed dynamic semantics.

Behaviours The timed dynamic semantics is given by judgements of the form:
ErBip

Behaviour pattern-matching

Er@BM=N)"EYp

4.5 Write-many variables: the value substitution operator

The static semantics assures that variables are used in a safe way: they always get a value (write) before usage (read).
Besides, variables may be reasigned as long as they exist. However, it is highly desirable to avoid dangerous use of
shared variables by parallel behaviours, as communication should be explicit.

When a variable receives a value, a “binding” is produced between its identifier and the value. The static semantics
checks that a binding exists when a variable is used (this assures that it is a variable and that it has a value).

Dynamic semantics passes bindings from a behaviour to the resulting one when some action or exception takes
place. Subsequent bindings are permitted, overriding existing ones. This is achieved via the value substitution operator
B[RN], which applies binding&N to a behaviouB. This operator is defined as syntactic substitution of values (see
Section 4.3.1) with the following exceptions:

60

Sequential composition
(B1 ; Bz) RN = ByRN ; By[RN]

with RN = RN— RN, beingRN’ = av(B;) are the bindings frors,>.
The following behaviour makes the following bindirig = 2,y = 2).

X:=1; Xx:=x+1;y:=X
In the following example, there are two possibilities:

X:=0;
(alx; ...
11
X:= X+ 1; blx; ...

)

we may see- al0 — bll — ... or maybe— b!l — al0 — ... as there is no “implicit” communication among
behaviours. The static semantics requires that each branch produces disjoint bindings.

Branching operator We consider as “branching” operators those composed by several subbehaviours and this com-
position may evolute as any of them: selection, disabling, suspend/resume, trap, and case are “branching” operators.
Note that these are semantics operaifthen-elseis syntax sugar afase

The subtituting operator should not perform a blind subtituion of values, as some branch may change any of the
bound variable and the new value need to be propagated. Therefore, the subtituing operator introduces the assignments
of bound variable before the subbehaviours, leaving the real subtitution to the sequentiafr(position (see above).
These assignments are called “dummy” asignments, and it is just a conceptual mechanism to carry bound.variables

(B1[|B2)[RN] ¥ RN;B1[|RN;B;

Let see an example:

X:=1;
(x:=x+1; a
(]

b

);

yi= X

Firstly, x is bound, withRN = (x = 1), which the sequential composition transfer to the selection operator (note
that it should stop the subtitution, gs= x should not be affected yet. Therefore, the after subtituion is:

(x:=1; x:=x+1;a

(]
x:=1;b
);

yi= X

3|t is easy and cumbersome to define it. In fact, it is part of the information produced by the static semantics checking.
4Tools (as simulator, compilers) may avoid easily these “dummy” asignments.

61

Now, if the upper branch is selected, the resulting bindingxis= 2), and if the lower branch is selected, the
resulting binding is(x = 1).
In general, we have:

(B1op B)[RN] & RN; By op RN By

with ope {[1, [>, [X>}.
The following example shows how substitution works with branching operators:

(B1 [> B2)[RN| £ By[RN] [> B, [RN]
bindings inB; do not affecB,, in the line of forgetting bindings when a behaviour is interrupted.
x:= 0; (x:=x+1;a;c;...) [>(b; x:= x+ 10))

If we see the sequencea— b— > the binding is(x = 10).
Fortrap andcaseis more cumbersome:

(trap trap
exceptionX;is By endexn exceptionXjis By endexn

exceptionXyis By endexn ¢f exceptionXis B, endexn

exit P is Bg endexn exit P is Be endexn
in in

B B[RN|
endtrap)[RN]| endtrap

Intuitively, we try some behavio. If the exceptiorX is raised, the partial bindings producedi®wre forgotten.
BehaviourBy is launched witRN], without implicit communication betweeBand the exception managers.

(caseexpris caseexpfRN] is
BM; RN; BM;
. def .
BMn RN; BM,
endcasg¢[RN| endcase

Variable declaration
(var LV in B) [RN] & var LV[RN] in B[RN]
whereRN = RN — RV.

Loop
(loop B endloop) [RN| o B[RN] ; loop B [RN] endloop

whereRN = RN — RN’ whenBB(R—>W).

62

B may produce some bindings, propagated through the ;" (see above). We could take some advantage here as
"untouched” variables may be substituted directly (this is the reason of introd[Ripinside the second unfolding
of the loop).

X:=1;
loop
a! x;
X:=X+1;
if x=10then break endif
endloop
; CIX

This behaviour will offemll —al2 —al3 —... —al8 —al9 —cl1— >.
We could get the value via traping the result;

X:=1;
trap
exceptionresult (7y:int) isx:=y;endexn
in
loop
arx;
X:=X+1;
if x=10then break result(x) endif
endloop
endtrap;
Cc!X;

63

Chapter 5

The E-LOTOS modules

5.1 Specification

An E-LOTOS specification is a sequence of top level declarations followed by a block which declares a behaviour or
an expression antry point The result of a such specification is the evaluation of this entry point, after the elaboration
of the top-level declarations.

5.1.1 Specification

[top-de¢

specificationX [import mod-exj, mod-exp*] is
[gatesG:T(,G:T)*] [exceptionsX:T(,X:T)"]
(behaviourB) | (valueE)

The import, gate and exceptions clauses are empty by default.

Static semantics

F top-dec=B
B - mod-exp,sp-id=>Cy --- B - mod-exp,sp-id=-C,
C1,...,Cp,
Gi1 = gate(Ty) -+ Gm=gate(Ty),
X1 =exn(T]) --- Xy = exn(T,) F B= exit(RT)
F (top-dec
specificationsp-id
import mod-exp, ... ,mod-exg is
gatesGy:T1, ... ,Gm: T
exceptionsXy: T/, ..., Xn: Ty
behaviour B) = ok

64

Dynamic semantic

I top-dec= D
D F mod-exp,sp-id= E; --- D F mod-exp,sp-id=Ep
Ey,.E,-B' Y B
F (top-dec
specificationsp-id
import mod-exp, ... ,mod-exp is
gatesG1:T1,...,Gm:Tm
exceptionsXy: T/, ..., Xq: T}
. H(RN)
behaviourB) "— B’

5.2 Top-level declaration

Atop-level declaration is a sequence (maybe empty) of module declarations, generic module declarations and interface
declarations.

5.2.1 Module not constrained by an interface
Abstract syntax
module mod-id[import mod-exg, mod-exp*] is m-body

The default import clause is empty.

Static semantics

B + mod-exp,mod-id=C; --- B + mod-exp, mod-id= C,
B,Ci®...0CnF m-bodymod-id=C
B I (module mod-idimport mod-exp, ... ,mod-exg, is m-body
= (mod-id=C,C1 ... Cy)

with side conditior]C andC; ®...® Cry have disjoint fields

The module body is checked in the context of objects imported by the importation clause. The module name is
carried on to assign the source part of the extended identifier of the objects declareably The imported contexts
are composed using the matching operatot ih order to allow the diamond importation scheme (to import several
time the same object). However, the objects declared by the module body shall be disjoint from the imported ones. For
this reason is used the disjunct composition operator “,” between contexts. The interface of the module is given by the
imported objects and the (new) declared objects.

Dynamic semantics

D + mod-exp,mod-id=E; --- D + mod-exp, mod-id= E,
DoE1o...© EnF m-bodymod-id= E
D F (module mod-idimport mod-exp, ..., mod-exp, is m-body
= (mod-id= Sig(E,E1©...0Eny)),E,E10...0En

The evaluation of a module declaration returns a basis composed from the environment of all imported and locally
declared objects, and the binding of the module identifier to the signature of the environment.

65

5.2.2 Module constrained by an interface
Abstract syntax
module mod-id : int-exp[import mod-exg, mod-exp’] is m-body

The default import clause is empty.

Static semantics

B I int-exp mod-id=-C’
B + mod-exp,mod-id=-C; --- B F mod-exp, mod-id= Cn,
B,Ci®...0CnF m-bodymod-id=C
B + (module mod-id: int-exp
import mod-exp, ... ,mod-exp, is m-body = (mod-id=C")

with side conditior]C,C1®...©Cyn D C" > C/]
The final interface of the module is those matched by the context generaiteedxy The scope of the new objects
declared bynt-expis (by default) the module nanmeod-id

Dynamic semantics

D F int-exp mod-id=- |
D + mod-exp,mod-id=E; --- D + mod-exp, mod-id= E,
DoE1o...© EnF m-bodymod-id= E
D (module mod-id: int-expimport mod-exp, ..., mod-exp, is m-body
= (mod-id=1"),E,E1® ... 0Ep

with side conditior{Sig(E ,E1® ... 0Em) D 1" > 1]
The final signature of the module is those matched by the signature generateeiy

5.2.3 Generic module not constrained by an interface
Abstract syntax
genericgen-id’ (* MP)’ [import mod-exg, mod-exp‘] is m-body

The default import clause is empty.

Static semantics

B + MP= mod-id=C
B,C + mod-exp,gen-id=C; --- B,C I mod-exp, gen-id= Cp,
B,C ©C1®...®Cn+ m-bodygen-id=C
B I (genericgen-id (MP)
import mod-exp, ... ,mod-exp,
is m-body = (gen-id= (mod-id=C) — (C,C ©C16...6Cy))

with side conditior]C andC ©C;1 ®...® Cyy have disjoint fields

The generic module parameters gives a list of bindings (formal) module identifiers, declared objects. Informally,
the objects of are the generic (or formal) objects of the module. These generic objects may be used in the imported
module expressions in order to allow partial instantiation of generic modules and/or generic modules parameterized by

66

generic modules . The module body is checked in the context of generic and imported objects. The context declared by
the module body must be disjoint from those of parameters and of importation objects. The target context (also called

the complete specification) is formed by the objects defined by the module body, the parameters, and the imported
objects.

Dynamic semantics

D MP= (mod-id=>1")
D,E mod-exp,gen-id= E; --- D,E I mod-exp, gen-id= En,
DeOEGEL®...0 Enk m-bodygen-id= E
D + (genericgen-id (MP) import mod-exp, ..., mod-exp, is m-body
= (gen-id= (mod-id=T) — (E,E ®E1® ... © Ep))

with side conditior{E andE ©E;1®...©Enare disjoin}t

No environment is elaborated from a generic module declaration. That means that only complete instantiated
objects will be included by the bad at the end of evaluation. The differences with the static rule is the use of the
“®" operator instead of the “,” operator. The reason is that now, the lasisntains environments bindings which
may be the same with the imported environments.

5.2.4 Generic module constrained by an interface
Abstract syntax
genericgen-id’ (> MP) : int-exp[import mod-exp, mod-exp*] is m-body

The default import clause is empty.

Static semantics
B I int-exp=C’
B + MP= mod-id=>C
B,C + mod-exp,gen-id=C; --- B,C I mod-exp, gen-id= Cp,
B,C®C1®...®CmF m-body=C

B I (genericgen-id (MP) : int-exp
import mod-exp, ... ,mod-exp,
is m-body = (gen-id= (mod-id=C) — C")

with side condition§C andC ©C1® ... ® Cyare disjointand[C,C ©C1®...©Cn D C” > C’]
The final interface of the module (including the formal parameterSY'isvhich instantiate the interface given by
int-exp and shall match the complete specification of the generic module.

Dynamic semantics

D + int-expgen-id=- |
D + MP= (mod-id=T)
D,E mod-exp,gen-id= E; --- D,E I mod-exp, gen-id= En,
DoE®E1®...0 EnF m-bodygen-id= E
D F (genericgen-id (MP) : int-expimport mod-exp, ..., mod-exp, is m-body
= (gen-id= (mod-id=1) = (E,E ©E1® ... Ep) L 1)

with side condition$E andE © E; ®...® Ep are disjointand[Sig(E,.E ©E1®...0Em) DI > 1]

67

5.2.5 Interface declaration
Abstract syntax
interface int-id [import int-exp(, int-exp] is int-exp

The default import clause is empty.

Static semantics

B Fint-exp,int-id=Cy -+ B I int-exp,int-id= Cr,
C10...0Cnti-bodyint-id=C
B + (interfaceint-id import int-exp, ... ,int-exp, isi-body) = (int-id= C,C1®...©Cp)

with side conditior{C andC;1 ®...® Ciy have disjoint fieldp
The interface body is checked in the context of objects imported by the importation clause. The objects imported
may satisfy the “diamond” rule, but the objects declared by the interface body shall be disjoint from the imported ones.

Dynamic semantics

D F int-exp,int-id =11 --- D F int-exp, int-id = I
l1®...®ImF i-body,int-id = |
D F (interfaceint-id import int-exp,, ..., int-exp, is i-body)
= (int-id=1,11...0)

with side conditior{l andl1 ®...® I, are disjoint

5.2.6 Sequential top declaration
Abstract syntax

top-dec top-dec

Static semantics

B top-deg =B’ B,B’Ftop-deg=B"
B I top-deg top-deg = B",B”

The elaboration of the sequencing phrase works on a description ordered by the “dependency” relation . This ordered
specification may be obtained in a first step of static analysis. The order is well founded (non-cyclic) according to
cycle-freedom hypothesis. The module bindings generated by each top level declaration shall be disjoint, i.e. each
module, generic module, or interface name shall be bound once.

Dynamic semantics

D - top-deg=D; D ®Djttop-deg=D,
D F top-degtop-deg=D1® D>

The evaluation of the sequencing phrase takes advantage from the static semantics check: the application of the
“©" operator is safe because in the static semantics is checks the double declaration of a module, interface, or generic
module identifier. We need to apply it in order to consider multiple importations of dynamic objects.

68

5.3 Module body

The module body defines the content of the module. It can be an explicit (generative) declaration, or an instantiation of
a module expression.

5.3.1 Block declaration
Abstract syntax

D

Static semantics

CHD,id=C’
B,C+-D,id=C’

Dynamic semantics

E+D,id=E’
DEFD,d=E

5.3.2 Module Expression
Abstract syntax

mod-exp

Static semantics

B,C F mod-expid=C’
B,C - mod-expid=C’

The resulting context is given by the module expression check.

Dynamic semantics

D + mod-expid = E
D + mod-expid = E

5.4 Module expression

Module expressions can be an aliasing to an (already declared) module or an instantiation of a given generic module,
probably renaming some identifiers and constraining to a given interface.
5.4.1 Module aliasing not constrained by an interface
Abstract syntax
mod-id[renaming ’ (* reninst’)’ |

The default renaming is() ’ .

69

Static semantics

B - mod-id=C’ C’Freninstid=g
B,C F mod-idrenaming ’> (? reninst?) ’ id = g(C’)

The objects declared byod-idgive the binding of the module expression. The aliasing does not change the source
of objects declared in the module.

The morphism generated by the renaming is formed fgeimst rules for renaming). The resulting binding is
renamed according to the renaming morphgniNote that the objects which are modified by the renaming, change
their source tad.

Dynamic semantics

D + mod-id=-1 D | I Freninstid=g
D + mod-idrenaming > (* reninst’) ’,id=g(D | I)

The module shall be already declared in the basis. By consequence, all its object®arg&hie environment is
obtained by the projection of the basis on the module signature.

5.4.2 Module aliasing constrained by an interface
Abstract syntax
mod-id : int-exp[renaming ’> (° reninst?’)’ |

The default renaming is() > .

Static semantics
B - mod-id=C;
B I int-expid = C,

Csreninstid=g CiDC>C
B,C F mod-id: int-exprenaming ’ (’ reninst’)’id = g(Cs) (22C22Cal

The context elaborated by the module expression shall match the interface expression context. The new objects declared
by the module expression or by the interface expression have as source name the iaentifier

Dynamic semantics
D + mod-id=-1
D Fint-expid=1" (D | 1) 1" Freninstid=g [SigD 4 1) 21" >1']
D mod-id: int-exprenaming * (* reninst?) ?,id=g((D { 1) { 1") - T

The module expressiamod-idis evaluated to an environment which signature shall contain a sigridturatching
the signature resulting from the evaluation of interface expressieaxp This constraint overlaps the static semantics
constraint. The resulting environment is obtained by projection ofrtbd-idenvironment on the signaturé.

5.4.3 Generic module actualization not constrained by an interface
Abstract syntax
gen-id’ (’ RME)’ [renaming ’ (’ reninst’) ’ |

The default renaming is() ’ .

70

Static semantics

B + gen-id= (mod-id=C) - C,C’
B + (RME= (mod-id=C)),id= ¢
o(C,C'[id/gen-id) - reninstid = g
B,C Fgen-id’ (’ RME *)’ renaming ’ (* reninst’) ’,id = g(@(C,C'[id /gen-id))

The second premise checks that the actual module parameters are compatible with the formal ones, and returns
the context of the actual parameters. We need the formal parameters maate&)(in order to handle (statically)
the tuples of actual parameters. The realizagayives the correspondence between formal module names and actual
module names. This morphism is used to actualize all the formal parameters used with the actual ones, and also to
modify the occurrences of the formal parameters used by the objects defined in the generic module. The morphism is
only a source names substitution because the objects declared by the actual modules must have the same name as the
objects declared by the formal modules (SdE rules). At the realizatiom is added the substitutiad /gen-idin
order to create new objects (the actualized ones) from the objects defined by the generic module.

Dynamic semantics
D I gen-id= (mod-id=T1)
D (RME= (mod-id= 1))
¢(E[id/gen-id) - reninstid =g
D Fgen-id> (’ RME *)’ renaming ’ (’ reninst’)’,id = g(¢(E[id/gen-id))

—E
=0

5.4.4 Generic module actualization constrained by an interface
Abstract syntax
gen-id’ (’ RME)’ : int-exp[renaming’ (’ reninst’)’]

The default renaming is() > .

Static semantics

B F gen-id= (mod-id=C) - C,C;
B + (RME= (mod-id=C))=¢
B I int-expid = C,
CsFreninstid=g
B,C gen-id’ (? RME ?)’ : int-exprenaming ’ (* reninst’) ’,id = g(Cs)

with side conditior{(C,C1[id /gen-id) D C3 > Cy]

Dynamic semantics
N—E

—

D)=o

D I gen-id= (mod-id=

D + (RME= (mod-id=

D Fint-expid =1
¢(E[id/gen-id | I') - reninstid =g

D F gen-id’ (’ RME *)’ : int-exprenaming ’> (* reninst”’) ’,id = g(@E[id/gen-id | 1))

with side conditior[Sig(E[id/gen-id) D 1" > I]

71

5.4.5 Generic module renaming/instantiation
Abstract syntax
gen-id’ (’ reninst’)’

The default renaming is()’ .

Static semantics

B F gen-id= (mod-id=C) - C,C’
Ctreninst/C=g
B,C F gen-ic (’ reninst’)’,id = g(C) © g(C'[id/gen-id)

This rule deals with the elaboration of explicit actualization of a generic module. The cénthall contain the
declaration of all actual parameters. The correspondence between formal and actual parameters is given by the list
reninst which plays here the role of an actualization. For this reason the form of the inference rule is changed. The
morphismg must be total (seeeninstrules for actualization), and is used to actualize the formal paramg(&}a)(

and to actualize the objects using these formal paramefgiitl/gen-id)), which are defined in thgen-idmodule.

These objects change their source moduid {@re new objects).

Dynamic semantics

D + gen-id= (mod-id=T) — Eo,E1

E Fren-list/T=g _ E
D,E I (gen-id(ren-list)),id = (E | g(1)) ® g(Ex[id/gen-id) [Slg(EO) = |]

It is similar to the static semantics rule, where instead of formal parameter context is used the signature of the param-
eters, and for the environment of these formal parameters is used the projection of the generic module environment on
the interface of parameters.

5.5 Module formal parameters

The formal parameters of a generic module is a list of (formal) module identifier, module interface. It bound for each
module identifier the context declared by its interface.

5.5.1 Single
Abstract syntax

mod-id: int-exp

Static semantics

B I int-expmod-id=C
B mod-id: int-exp=- (mod-id=-C)

The elaboration of the interface expressions typing the parameters is made using the formal module nhame as scope
name for the generative declarations.

72

Dynamic semantics

D F int-exp mod-id=- |
D F mod-id: int-exp= (mod-id=-1)

5.5.2 Disjoint union
Abstract syntax

MP , MP

Static semantics

BrMPi=C BFMP,=C’ [C & C'is well defined
B MP; , MP2:>C,C'

The side condition asserts that the bindings of formal modules shall matches in the shared objects (i.e., objects having
the same names should be bound to the same profile). In this way, the objects imported by two different interface
expression may be shared like in a “diamond” importation.

Dynamic semantics

D |—MP1:>D1 DF MP2:>D2
D FMP., MP,=> Dl,Dz

The side condition of the static rule is not necessary because signatures does not stock identifier’ bindings.

5.6 Interface expressions

An interface expression is a list of object interfaces. It can be obtained either by alising to an (already declared)
interface, or by renaming of an interface, or by an explicit (generative) declaration (possibly renamed).

5.6.1 Interface identifier
Abstract syntax

int-id
Static semantics

B Fint-id=C
B I int-id,id=C

The context generated is the context of the interface identifier.

Dynamic semantics

D Fint-id =1
D Fint-id,id =1

73

5.6.2 Simple renaming
Abstract syntax

’ [int-id renaming ’ (’ reninst’)’ ’]?

Static semantics

Brintid=C CFreninstid=g
B [int-id renaming ’ (’ reninst’)’]’ ,id = g(C)

The context of the interfadat-id is renaming using the renaming morphigmenerated fromeninst(seereninstrules
for renaming). The source of the renamed objects becanes
Dynamic semantics

D Fint-id=1 | Freninstid=g
D+’ [int-id renaming ’ (* reninst?)’ >17 id = g(I)

5.6.3 Explicit body
Abstract syntax
’ [i-body[renaming ’ (* reninst’)’ | 1’

The default renaming is() > .

Static semantics

Fi-bodyid=C C Freninstid=g
B I’ [’ i-bodyrenaming > (’ reninst’)’ *17,id = g(C)

The declarations dfbodymust be self contained (in the initial basis objects). The source of these objieLt3 ese
object are renamed according to the renaming morphigenerated fromeninst
Dynamic semantics

Fi-body,id=-1 | Freninstid=g
D+’ [’ i-bodyrenaming > (* reninst’)’ 17, id = g(l)

5.7 Interface body

An interface body is a list of object interfaces. The interfaces of processes are always opaque. The interfaces for types
are either opaque or completely defined.

5.7.1 Type hiding the implementation

Abstract syntax

type S

74

Static semantics

CktypeSid= (<id,S> =type)

Dynamic semantics

D FtypeSid= <id,S>

5.7.2 Type synonym
Abstract syntax

type SrenamesT

Static semantics

CHT=type
C F (type SrenamesT),id = (< id,S> =type,S=T)

Dynamic semantics

D + (type SrenamesT),id= < id,S>

5.7.3 Constructed type
Abstract syntax
typeSISC[7(7 RT 7)7] (>|>C[7(7 RT;);])*

The default constructor argument type(is

Static semantics

C,<id,S> =typet (RT) =type --- C,<id,S> =typet (RTy) = type
CH (type SisC1(RT) | --- | Co(RTY),id =
(<id,S> =type,<id,C; > = (RT) —S,...,<id,Cy > = (RT) —» 9

Note that the< id, S> =type is assumed in the context to allow recursive instantiatids. in

Dynamic semantics

D F (type SisCi(RT) | --- | Ch(RTy)),id= <id,S>,<id,C; >,...,<id,C, >

5.7.4 Named record type
Abstract syntax

type Sis > (° RT ?)?

75

Static semantics

CF (RT) =>type
CF (typeSis’ (’ RT ’)’),id= (< id,S> =type,S= (RT))

Dynamic semantics

D+ (type Sis’ (’ RT ?)?),id= < id,S>

5.7.5 Process declaration
Abstract syntax

processl1

T]

[’T
{ ([V[](, E
[raises’ [X[: T](,X[: T])* *17]

The default gate list ig], the default gate type iéetc), the default in parameter list i), the default result type is
none, the default exception list if] and the default exception type (3.

Static semantics

CrTi=>type - C+ Th=type

CHT/=type--- CFTy=type

CHT/=type--- CF T, =type

CF Te=type

C F (process [G1:T1, --. ,Gm:Tm] (V1:T1’,...,Vp:TF§)

:Teraises[X1: T/, ..., X,: Ty'1),id
=(<id,N > =[gate(T1), ... ,gate(Tm)] (V1:>T1’,...,Vp:>T5)
lexn(T"), ...,exn(Ty)]1 — exit(Te))

Dynamic semantics

D F (processn [G1:T1, ... ,Gm:Tm] V1= Tj,...,Vp=T))
:Teraises[X1: T/, ..., % : TY'1),id= <id, N >

5.7.6 Equations
Abstract syntax

egnseqn-dec

Static semantics

C - eqn-dees ok
C F egnseqgn-dee= ()

76

5.7.7 Sequential declaration
Abstract syntax

i-body i-body

Static Semantics

C ki-body;,id=C’ C,C'Fi-body,id=C"
C F (i-body; i-body,),id = C’,C”

Dynamic Semantics

D +i-body,id=1 D,I +i-body,id=I'
D F (i-body; i-body,),id =1, I’

5.8 Record module expression

The record module expression is the actual parameters of the generic module instantiation.

5.8.1 Single
Abstract syntax

mod-id=> mod-exp

Static semantics

B - mod-expid = C’ C' = ¢(C)]
B F ((mod-id=> mod-exp=- (mod-id=-C)),id = ¢

It shall match the same module identifieod-id The new objects declared by the module expressiod-exphas
as source the identifiégd. The context given by the elaboration of the module expression shall be an instance of the
contextC. The realization of this instance relation is givengoy

Dynamic semantics

D F mod-expid = E _ B
B ((mod-id=> mod-exp= (modias 1)), g a) — X

5.8.2 Disjoint union
Abstract syntax

RME , RME

77

Static semantics
B + (RMEy = mod-id, = C),id = ¢
B+ (RME = mod-ic = C"),id = ¢/
B F (RME;,RME; = (mod-id = C, mod-icb = C")),id = ¢, ¢f

Each part of the union shall match a different list of formal parameters. The morphisms resulting from each elaboration
are disjoint because the module names of the formal parameters are disjoint. The resulting morphism is given by their
disjoint composition.

Dynamic semantics
)

D + (RME, = mod-id, = T),id = ¢
D + (RME = mod-ich = I"),id = ¢f
D + (RMEy,RME; = (mod-id, = I, mod-ich = 1)), id = @, ¢

5.8.3 Renaming tuple
Abstract syntax

reninst, reninst

Static semantics

C Freninsg=C’ C’'Freninsb=C"
C I reninst ,reninse = C"”

5.9 Equation declaration

Abstract syntax
[forall RT] (ofsortT [forall RT]E (;E)")*

Static semantics
CF (RT) = type
C,RTF E = exit(bool)
C Fforall RT -> E= ok

5.10 Declarations

5.10.1 Type synonym
Abstract syntax

type SrenamesT

Static semantics

CHT=type
C F (type SrenamesT),id = (< id,S> =type,S=T)

78

Dynamic semantics

E I (type SrenamesT) = (S=T)

5.10.2 Type declaration

Abstract syntax
type SisC[’ (? RT)] (|’ C[> C RT ?)’])"
The default constructor argument type(js

Static semantics
C,<id,S> =typer (RT) =type --- C,<id,S> =typetr (RT,) = type
Ck (type SisCL(RT) | --- | Co(RTh)),id =
(<id,S> =type,<id,C; > =(RT%) —S,...,<id,Cy, > = (RT)) —» 9

Note that the< id, S> =type is assumed in the context to allow recursive instantiatids. in

Dynamic semantics

EF(typeSisCi(R) | --- | CGo(RTY)) = (C1= (RT) —»S,...,Ch= (RT) =9

5.10.3 Named record type

Abstract syntax
type Sis > (° RT ?)?

Static semantics

CF (RT) =>type
CF (typeSis’ (° RT’)’),id= (< id,S> =type,S= (RT))

Dynamic semantics

EF (typeSis’C RT 7)) = (S= (RT))

5.10.4 Process declaration

Abstract syntax
processi1 [[* [G[: T](,G[: T])"] *1”]
PO NVETIGVET)T)]
[:T]
[raises [X[: T](, X[: T])*]]
isB

The default gate list i§], the default gate type iéetc), the default in parameter list i§), the default result type is
none, the default exception list if] and the default exception type (3.

79

Static semantics

Ck (T)) =>type --- CF (Ty) = type
CH (M) =>type --- C+ (T)) = type
CH (T =type--- C+ (Ty) =type
C,Gi1=gate(Ty),...,Gm= gate(Tn),
Vi=T/,....\p=Tp,
X1=exn(T)),..., Xa=>exn(T,),
Proct B= exit(T)
C F (process [G1:Ti,-..,Gm: Tl (V1:T1’,...,Vp:T‘;)
: Traises[Xy: T/, ..., % : T/ is B),id
= (<id,N > = [gate(T1), ... ,gate(Ty)]
M=T],... Vp=T)
[exn(Ty"), ...,exn(Ty)] — exit(T))

Ck (T)) =>type --- CF (Ty) = type
CF (M) =type - CF (T)) =type
CH(T/)=type--- C+ (Ty) =type
C,Gi1=gate(Ty),...,Gm= gate(Tn),
Vi=T/,....\p=T,,
X1=exn(T{),...,.Xn=>exn(T),
Proct B=-guarded(T)
C F (processM [G1:Ti,-..,Gm: Tl (V1:T1’,...,Vp:T‘;)
: Traises[Xy: T/, ..., % : T/ is B),id
= (<id,N > = [gate(T1) , ... ,gate(Ty)]
M=T],. Vp=T)
[exn(T{"),...,exn(T;)]1 — guarded(T))

where

Proc= (<id,NM>= [gate(T1),...,gate(Tm)]
M=T.,...,Vp=>TH
[exn(T{), ...,exn(T)] — exit(T))

Note thatProc (the process declaration) is assumed in the context to allow recursive instantid@ion in

Dynamic semantics

E + (process [G1: T, ... ,Gm:Tm] (Vi T,...,Vp:Tp)
: Traises[Xy: T/, ..., % : Y1 is B),id
= (<id,M>=A[G1:Te,...,Gm: Tmd (Va:T, .. Vi T DX i T, ... X TV = B)

5.10.5 Sequential declarations

Abstract syntax
DD

Static semantics

Cr Dl,id =C" CFr Dz,id:>C"
CF (D1 Dy),id=C’,C"

80

Dynamic semantics

EFrDiid=E" EFDyid=E"

Er (Dl Dz),id = E',E"

81

Chapter 6

The E-LOTOS base language

6.1 Introduction

In this chapter, we give semantics for terms defined by abstract syntax. Each section is devoted to a category, mostly
of them divided in four parts:

Abstract syntax: just a reminder.

Static semantics: rules defining static semantics.

Untimed dynamic semantics: rules defining untimed dynamic semantics.

Timed dynamic semantics: rules for timed dynamic semantics.

If the category is just the join of simpler categories, you will find a number of subsections for every clause.

6.2 Behaviours

6.2.1 Disabling behaviour expression
Abstract syntax

DisB := BT [>BT singleton (DisB1)
| BT [>DisB disjoint union (DisB2)

Static semantics

C,RT, R F By = guarded(RT;,RT) C,RT,RL - By=guarded(RT,RT)
C,RT,RT F By [> B,= guarded(RT,R%,RT)

C,RT,RT - By = exit(RT,RT) C,RT,RT - B, = guarded(RT, RT)
C,RTLRLF By [> By = exit(RT,,R B, RT)

RT; andRT, are bindings from the context, aiRIl are new bindings in the disabling behaviour expressions: they
should be produced by boBy andB,. With that, we allow expressions as:

82

x:= 1;
(al; x:=2; z:= 2; a2
[> bl; z:= 3; b2

)
yi= X;

As the variablex is bound beforehand, there is no need to ensure thatByotimd B, bind it again. However, the
static semantics checks thes bound in both sub-behaviours. The same is done in all branching expressions (selection,
case, trap, ...) and it is very cumbersome forttap operator.

Untimed dynamic semantics

G(RN) B,
G(RN)

E+-B —
Er-Bi[>B, =—

19}

B/ [> By

E+-B—Bj
El—Bl [>By, —

o B, [>B;

E - B, 5(RN) B/

E+Bi[>B: 10, exit (RN)
X(RN)

EFB — B’
Er-B, [> 82 S|gnaIX (RN); (B} [> B2)

G(RN) B,
G(RN)

ErB, —
El—Bl [>B —

BI
19} /
E+-B,—B,

EFB.[>B % B,

E I B, XRY X(RN) B’

Er-B, [> 82 S|gnaIX (RN); B,

Timed dynamic semantics

ErB, % ErB, %,
ErBy[>B 28 B [>B,

6.2.2 Synchronization behaviour expression

Abstract syntax

SyncB = BT || BT synchronization (SyncB1)
| BT Il SyncB synchronization (SyncB2)

83

Static semantics

C By = exit(RTy) C By = exit(RT) [RT: andRT; have disjoint fields
CFBy || Bo=exit(RT,RT,)

C By = exit(RT) C B, = guarded(RT,) [RT, andR™, have disjoint fields
C B | | Bp,=guarded(RTy,RT)

C By = guarded(RTy) C - B = exit(RT) [RT, andRT, have disjoint fields
CF By || Bo= guarded(RT;,RT)

Untimed dynamic semantics
i0

EF-B — B’

EFBI1B %8, (1B,
EI—BZQB’Z
EFByI1B1%B I1B,

E |- B, CRY G(RN) B, E - B, CRY G(RN) RV gy
EI—BllleG(RN)B’lll B,
E|_81X(RN)B/

EFBLIIB> —>signalx (RN); (B} |1 Bp)
X(RN)

ErB, "V B,
EFByIIBy —>S|gnalx (RN);(B1 |1 BY)
Ere,"™We Erg,’®¥e,
6R R
ErB 118 "5 g B,

Timed dynamic semantics
ErB, % ErB, %,
EFByI1B 5% B [IB,

<d
ErBll st(d+d)eX|t(RN) |1 B, “<d]
Ere g Ers,"®9%p,
d+d> [0<d]
E+By 1By 57 By || exit(RN)

6.2.3 Concurrency behaviour expression

Abstract syntax

ConcB := BT [[[G(,G)*]]1| BT concurrency (ConcB1)
| BT I[[G(,G)*]1] ConcB concurrency (ConcB2)

84

Static semantics

C FBy=exit(RT) C FBy=exit(RT)

CFGi=gate(RT) --- C - G = gate(RTy) [RT: andRT, have disjoint fields
CFB:1 I[Gy,...,Gh] | B, = exit(RT;,RT)

C By = exit(RT) C B2 = guarded(RT,)

Cr G =gateRT) --- CFGn=0ate(RT) R, andRT, have disjoint fields
CFB1 I[Gy,...,Gn] | Bo=guarded(RT;,RT,)

C By = guarded(RTy) C F By=exit(RTy)

CrGi=gateRT) --- CFGn=gate(RT) __(ry; andRT, have disjoint fields
CFB;1 I[G1,...,Gnl| By=guarded(RT;,RT,)

Untimed dynamic semantics

ErB - %B,

EFBy I[G]1B, % B, 1611 B

Ere, B,

E By |G B, % By [(G1 B,

ErB G(RID B,)
E By 10611 B 5 B, 1G]] B, e# 6]
E |- B, CRY B,)
EFB;I[G]I BzG‘—R&“) Bi I [G]I B, [Gge]
Ere e Erg% g
EFB LG BzG' Vg G118,
E|_81X(RN) B,

E B, 1G]] By % signal X (RN) ; (B, 1 1G] 1 By)
E B, XRY B,

E +By 1TGT1 B, ™ signalX (RN ; (By 11611 BY)

Ere ¥ Erg,’®¥ g
E+B 116118, "~ g [B,

85

Timed dynamic semantics
Ere. 2B, ErB, %8,
ErBy I[G]1B, % B, |[G]] B,
EFBlﬁéﬂBfw+memKRMIUHIB

E“‘“‘) B’ | &1 | eX|t(RN)

[0<d]

E+-B;
EI—Bll[G]IBz

0<d]

6.2.4 Selection behaviour expression

Abstract syntax

SelB = BT [1BT choice
| BT [1SelB choice

Static semantics

C,RT, R F By = guarded(RT;,RT) C,RT,RL - By=guarded(RT,RT)
C,RT,RTL F By [1 B,= guarded(RT;, Rz, RT)

Untimed dynamic semantics

() B/

Er-B, ==
EFB [1B —

BI
G(RN) B,
G(RN)

Er-B, =
ErB [1B —

B/
Erg, 0 B,

EFBi[1B—>

0 B,

ErB, % B,
E+By[]1B % 10, gy

EF B, Y X(RN) B/

EFBi 1B —>signaIX (RN) ;B

E - B, &Y X(RN) B/

ErBy [Bz S|gnaIX (RN); B,

86

(SelB1)
(SelB2)

Timed dynamic semantics

Ere. 2B, ErB, %8,
EFBy[1B, 5% B, [1B,

6.2.5 Suspend/Resume behaviour expression
Abstract syntax

B [X>B

Static semantics

C,RTi,RBLF By = exit(RR,RT) C,RT,RB; X =>exn() F B,=> guarded(RT,RT)
C,RTLRLF By [X> By = exit(RT, R, RT)

C,RT, R F By = guarded(RT;,RT) C,RT,RT; X = exn() + By= guarded(RT,RT)

C,RT,RT I By [X> B,= guarded(RT, R, RT)

Untimed dynamic semantics

E - Bl G(RN) B/

E FB; [X> B, °&Y =Gy B, [X> By
ErB, 19 10, g

E - By [X> By 9 19, B) [X> B,
E - Bl 5(RN) Bl

EFBi [X>By 10, exit (RN)

EL le (RN) B’

E By [X>B, 10, signal X" (RN) ; (B} [X> By)
G(RN)

EFB, — B,
Er-Bi [X>B; =—

G(RN) trap exceptionX () is By [X> By in B,

ErB, 0 B,

E F By [X> By 1 trap exceptionX () is By [X> By in B}

X! (RN)

E-B,"— B’
EFBi [X>By 10, signal X" (RN) ;trap exception X () is By [X> B2 in B,

X' #X]

Timed dynamic semantics

ErB, % ErB, %,
E FBy [X>B, X8 B, [X>B,

87

6.2.6 Action
Abstract syntax

G P@P E start (N)

Static semantics

C+G=gate(RT)

CHPL= (RD))= (RTK)

Ck (P,=time) = (RT)
C;RT,RT - E = exit(bool)

C £ N= time [RT; andRT, have disjoint fields
C G P, eP; E start (N) = guarded(RT;,RTz)

Untimed dynamic semantics

E F (P.= (RN)) = (RN)
Er(P,=>d)= (RN

E - E[RN, RNp] °M4 £/

E G P oP; E start (d) ZFY exit(RN, RNb)

Timed dynamic semantics

7 o<d
E G P, eP; E start (d) GRS P eP, E start(d+d") [)

6.2.7 Internal action
Abstract syntax

Static semantics

C ki=guarded()
Untimed dynamic semantics
Eri 'O exitO
Timed dynamic semantics None.

6.2.8 Succesful termination without values
Abstract syntax

null

88

Static semantics

C F null = exit()

Untimed dynamic semantics

E F null 2% block

Timed dynamic semantics None.

6.2.9 Succesful termination
Abstract syntax
exit [(RN)]

The default termination value i§).
Note thatexit solely appears in abstract syntax, as a result of syntactic translation or as used by the semantics.

Static semantics

CFRN=RT
C F exit(RN) = exit(RT)

Untimed dynamic semantics

E F exit(RN) °FY block

Timed dynamic semantics None.

6.2.10 Inaction
Abstract syntax

stop

Static semantics

C + stop= guarded(none)

Untimed dynamic semantics None.

Timed dynamic semantics

0<d
Er stopﬂ stop[]

89

6.2.11 Time block
Abstract syntax

block

Static semantics

C F block = guarded (none)

Untimed dynamic semantics None.

Timed dynamic semantics None.

6.2.12 Delay
Abstract syntax

wait > (> E)

Static semantics

C F E= exit(time)
C F wait (E) = exit()

Untimed dynamic semantics

ErEXRE
E + wait (E) 2% block

Ere*XEP g
E F wait (E) XRWY \vait (EN

Timed dynamic semantics

Ere®dp
E F wait (E) &% wait (d')

6.2.13 Assignment
Abstract syntax
P:=E

The pattern must be irrefutable.

0<

d|

90

Static semantics

C FE=exit(T)
Ck(P=T)= (RD
CFP:=E=exit(RT)

Untimed dynamic semantics

Ere*XEP g

Erp:=E & p.-F

EreMe
EF(P=N)= (RN)
ErpP:=E°RY plock

Timed dynamic semantics None.

6.2.14 Nondeterministic Assignment
Abstract syntax
P:=anyT ["[’E’]’]

The pattern must be irrefutable. The default expressidtris] .

Static semantics

CHT=type
CH(P=T)=(RT
C;RTF E = exit(booD
CrHP:=anyT [’ E]’= guarded(RT)

Untimed dynamic semantics

EFN=T
E+ (P=N)= (RN)
E - E[RN] ™ g/
10

EFP:=anyT [’ E’]’ — exit(RN)

Timed dynamic semantics None.

6.2.15 Sequential composition

Abstract syntax

B;B

91

Static semantics
C F By =exit(RT)
C:RTiF By=exit(RT)
CFB1; Bo=exit(RT;RT)

C - By = exit(RT)
C;RT F By = guarded(RT,)
C By ; Bo= guarded(RT;;RT,)

C By = guarded(RT;)
C;RTi+ By = exit(RT) ‘none R
C B ; Bo= guarded(RT;;RT,)

The side condition of third rule bans constructions suc bk; stop; G! 2;

Untimed dynamic semantics

Erg BY g
ErB ;B VB ;B

E g, ORW B,
E F Bo[RN] *E¥ B,
E kB ; By 2% exit(RN) ; B)

Ere, " ®¥g
E F Bo[RN] ¥)
E B ; By, MR yoek

Timed dynamic semantics
ErB 2B,
ErBy; B 2% B ;B
E B, *RMG% g
E F Bo[RN] 22 B,

E+By; By "% exit(RND ; B,

6.2.16 Choice over values

Abstract syntax
choiceP after (N) [1 B

Static semantics
Ck(P=any)= (RT)
CkHN=time
C;RTF B= guarded(RT)
C I choiceP after (N) [1 B=> guarded(RT")

92

Untimed dynamic semantics

E - (N=any)
EF(P=N)=(RN)

E I- BRN SN @D g
E I choiceP after (d) [] BG@P B’

E - (N=any)
EF(P=N)= (RN)

ErBRN @ g
E I choiceP after(d) [1 B 10, g

E - (N=any)
EF(P=N)= (RN)

E F BRN] *RN@D
E - choiceP after (d) []1 B+ signalX (RN) ;B

Note this semantics is the only place where the timed semantics is used in the untimed semantics, thus breaking the
“clasical” stratification (0 for untimed transitions, 1 for timed ones) [5, 24]. However, a more complicate stratification
function may be defined and in order to proof that the semantics is well defined and the bisimulation is a congruence.

Timed dynamic semantics

VYN.((E - N=-anyandE F (P=N)= (RN)) impliesB[RN| s(d_>+dr>)
E I choiceP after (d) [1 B %% choiceP after (d +d') [1B

0<d]

6.2.17 Trap
Abstract syntax
trap (exceptionX [(IP)]is B endexn* [exit [P] isB] in B
The default input parameter (8 and the default exit pattern 9.
Static semantics To abbreviate notation, in these static semantic rllesands folC’,RT" ®... o RT ®© R ©
RT”. RT" are bindings available in the context, i.e., those variables that have a value, and may be actualized by some
of the B; in thetrap operator.RT are new bindings produced in thrap operator, so alB; must produces them. The

resulting behaviour bindRT" © ... RT © RTY” ® RT”,RT. With that we ensure that if new bindings are produced
in thetrap operator, any of its branches produces the same bindings, but bound variables may be reasigned freely in

93

any of the subbehaviours.

C;Xy=exn(RT),...

C'H (RT) =>type --- C'+ (RTy) = type
C'H(RR=RNh)= (RT) --- C'F (RR=RT) = (RT)
C;RT FBi=exit(RT",RT) --- C;RT; F By= exit(RT,",RT)
,Xn=exn(RTy) F B= exit(RT"”,RT)

C;Xy=exn(RT),...

C + (trap exceptionX; (RR :RTy) is By
... exceptionX,(RR:RT,) is By in B)
= exit(RTl”’ ©...0RTYoRE"©RT",RT)

C'H (RT) =>type --- C'+ (RT,) = type
C'H(RR=RNh)= (RT) --- C'F (RR=RT) = (RT)
C;RT, F B1= guarded(RT",RT) --- C;RT; I Bn=guarded(RT;",RT)
,Xn = exn(RT,) + B=guarded(RT",RT)

C;:Xy=>exn(RT),...

C + (trap exceptionX; (RR :RTy) is By
... exceptionX, (RRy:RT,) is By in B)
= guarded(RT" ©...0 R ©RTY" ® RT",RT)

C'F (RTY) =type --- C' - (RTy) = type
C'+H(RR=RT)= (RT) --- C'F (RR=RT) = (RT)
C;RT, F Bi= exit(RT”,RT) --- C;RT, I By= exit(RT,",RT)
, Xn=exn(RT,) + B= exit(RT” RT')
Ck(P=(RT))= (RT)
C;RT"F B = exit(RT",RT)

C;Xy=exn(RT),...

C F (trap exceptionX; (RR :RTy) is By
... exceptionX,(RR,:RT,) is By
exit Pis B'in B)
= exit(RTl”’ ©...0RTY oRE"©RT",RT)

C'H (RT) =>type --- C'+ (RTy) = type
C'H(RR=RT)= (RT) --- C'F (RR=RT) = (RT)
C;RT, F By = guarded(RT",RT) --- C;RT; I Bn=guarded(RT;",RT)
,Xn=exn(RT,) F B= exit(RT”,RT")
Ck(P=(RT))= (RT)
C;RT"+ B = guarded(RT}",RT)

C;Xy=exn(RT),...

C F (trap exceptionX; (RR :RT) is By
... exceptionX,(RR,:RT,) is By
exit Pis B'in B)
= guarded(RT" ®...0RTY®RTY" @ RT",RT)

C'H (RT) =>type --- C'+ (RT,) = type
C'H(RR=RNh)= (RT) --- C'F (RR=RT) = (RT)
C;RT/ F By = guarded(RT,",RT) --- C;RT; I By= guarded(RT,",RT)
,Xn = exn(RT,) + B=guarded(RT" ,RT")
CkH(P=(RT))= (RT"
C;RT"+ B = exit(RT",RT)

C F (trap exceptionX; (RR :RTy) is By
... exceptionX,(RR,:RT,) is By
exit Pis B'in B)
= guarded(RT" ®...0RT®RTY @ RT",RT)

94

Untimed dynamic semantics HereX ranges oveK andexit (which we consider to be equal &.

Ersp
E (trap X (RP:RT) isBin B)"TY (trap X (RP:RT) isBin B

(124
E+s"EPp

E F((RR)= (RN)) = (RN)

E +B[RN]"®Y B

Et (trap X (RP:RT) isBin B) "®¥ B

Timed dynamic semantics
ErB%p
E - (trap X (RP:RT) isBin B) %% (rrap X (RP: RT) isBin B
ErpHRe g
E+((RR) = (RN)) = (RN)
E F B[RN] %% B!
E F (trap X (RP:RT) isBin B) 9" g

6.2.18 General parallel
Abstract syntax

par [G#n(,G#n)*] in
[[G(,6)*] 17 ->B(Il ' [’ [G(,G)*] 1’ -> B)*

95

Static semantics

CF Gi=gate(RT) --- C+ Gp= gate(RTp)
C+ Gi=gate(RT) --- CF Gn= gate(RTm)
Ck Blz>exit(RTl') .- CFBph=> exit(RT})
C I (par Gi#Ny, ... ,Gp#N, :
[Gi] — By Np < |{Gj|Gpe Gj,1< j <m}|

RT, ...RT;, have disjoint fields
N1 <[{Gj|G1eGj,1<j<my

| 1 [Gm] — Bm) = exit(RT,,...,RT})

C+Gi=>gate(RT) - C - Gp=gate(RTy)
C + G1= gate(RTR) -+ C I Gm= gate(RTm)
C By = exit(RT))

F B; RT o
¢ ,:'>'guarded(P RT, ...RT, have disjoint fields

C I Bm= exit(RT,) N1 < [{Gj|G1€Gj,1<j<m}
CF (par Gi#N1, ..., Gp#Np :

[C1] = By Np < {Gj | Gpe Gj,1< j <mi|

| | [Gm] — Bm) = guarded(RT,,...,RT,)

Here, we assumid ranges over natural numbers greater than zero.

96

Untimed dynamic semantics

ZC{1,...,m}
ViesEFB L5 B =/ =N
E F (par Gi#Ny, ... ,Gp#Np Gj € Niez Gi
[Gi] =By - |1 [Gm] = Br) VigZBi =8
Gj(RN)
— (par G1#Ng, ..., Gp#Np
[G1] = B} - |1[Gm] — Bly)
G¢ {Gy,...,Gp}
ViesErB &P g s={i|GeG,1<i<m}
E F (par Gi#Ng, ... ,Gp#Np Z#0
[G1] =By -+ |1 [Gpl = Bm) Vi ¢ 5.8 =B
CEY (par Gi#Ny, ..., Gp#N,
[G1] = B} - |1[Gm] — Bly)
E+B Py { G¢G;]
E F (par Gi#Ni, ... ,Gp#Np Vi# j.B =B
| 1[G1] =By -+ I1IGj1 = Bj -+ |1[Gm] — Bm)
CRY (par Gi#Ny, ... ,Gy#N,
| 1[G1] =By |1[Gm] = Bm)
Erg 2w
E (par Gl#Nl,...,Gp#Np
|1[G1] =By -+ 11[Gj1 = Bj -+ 1[Gl — Bm)
19, (par Gi#Ny, ..., Gp#N,
I1{G1] =By -+ 11[Gj] =B -+ | 1[Gl — Bm)
E I—BJ X(RN) BJ
E F (par Gi#Ny, ..., Gp#Np
|1[G1] =By -+ 11[G1 = Bj -+ 1[Gl — Bm)
19, signalX (RN) ; (par G1#N1, ..., Gp#Np
1G] =By -+ 11[Gj] =B -+ | 1[Gl — Bm)
E - Bl 6(RN) .E+ Bm B(RN) Bm
El—(parGl#Nl,..., o#Np [G1] — By -+ |1 [Gm] — Bm)
2R (par Gi#Ny, ... ,Gp#Np [G1] — By - [[Gm] — Bly)
Timed dynamic semantics
EFB 2B, .. EFB, % B,
E - (par Gi#N1, ...,Gp#Np [G1] — By -+~ |1 [Gm] — Bm)
XD (par Gi#N, ... ,Gp#Np [G1] — B} -+ [[[Gml — Bly)
E - B, s(d+d) "EF BJ B(Fgﬂd) B’ "EF Bms(d+d) Bm [0< d’]
E F (par Gl#Nl,... Gp#Np
|1[G1] = By -+ I1[Gj1 = Bj -+ |1 [Gm] — Bm)
SO (par Gy#Ny, ..., G#N,
| 1[G1] = By --- | 1[Gj] — exit(RN) --- | | [Gmn] — Bm)

97

6.2.19 Parallel over values
Abstract syntax

parPinN||| B

Static Semantics

CEN=List CF (P=any)= (RT) C,RTF B= guarded(none)
CFparPin N ||| B= guarded(none)

CEN=List Ct (P=any)= (RT) C,RTF B= exit(none)
CkparPin N ||| B=exit(none

CEN=List CF (P=any)= (RT) C,RTF B= guarded()
CFkparPin N ||| B= guarded()

CEN=List Ct (P=any)= (RT) C,RTFB=exit()
CrkparPinN ||| B=exit()

Untimed dynamic semantics

E+(P=N)= (RN) EFBRN Il (parPinNy I11B)" ™Y g
E Fpar Pin conNz,Np) | 1| B“ﬂ) B’

[herep:=G|i|9d]

EF(P=N)= (RN) EFBRN Il (parPinN; |11 B)*EY g
E I par Pin cons(N,Np) ||| B&signalx (RN) ;B

Timed dynamic semantics

Er(P=N)=(RN) EFBRN Il (parPinN, |llB) s
E Fpar Pin cons(Ng,N2) ||| B R g

6.2.20 Variable declaration
Abstract syntax

var Vi:Ti[:=Eq],...,Vn:Tn[:=E] in B

98

Static semantics
C—{Vi,....Va} F (V1,...,Va=>T1,...,) = (RT,RT")
C F By=exit(RT")
C) (V1:>?T1);

: (Va=7Tn);RT - B=> exit (RT,RT")
CFvarVi:Ti[:=E1],...,Vn:Ta[: =En] in B=exit(RT)
C—{Vo,...,Va} F (V1,....Va=T1,...,Ta) = (RT,RT")
C F By = exit(RT")
C;(Vi=7T);

RT is disjoint withRT ,RT"
andRT” C RT,RT"

; (Vn=7Ty); RT' + B=guarded(RT",RT)
C kvarVi:T[:=E1],...,Vh: Ty[: =E,] in B=>guarded(RT)

RT is disjoint withRT',RT"
andRT” C RT,RT"

where

Bo = (?Vj1,...,?%Vjm) := (Ej1,...,Ejm)
{Jla,Jm} = {k|Vk:Tk::Ek}

If there is no variable initializatiorB, = exit(). (V;=7T;) informs about the type df;, but does not implicate a value.

Untimed dynamic semantics
ErB, %Y B,
E+BRN' Y B
E b var Vi:Tu[:=Ed,...,Va: Tal: =En] in B* SN var Vi, ... Vo: T, .., To in B

Erg* &V p

E +var RV:RTin B*®Y var RV:RTin B'

5(RN’,RN”)
-

E+B
E+RN=RT
E + (RV=RT)= (RT)

E I var RV:RTin B®2Y" plock

B/

where
B2 = (?Vj1,...,?%Vjm) := (Ej1,...,Ejm)
{Jlaalm} = {k|Vk:Tk::Ek}

Note that the first rule only applies when the variable declaration includes instantiation of at least one variable. In
such case, the appropiate values are substitutBdand the behaviour evolutes in a form without instantiations.

The second rule only applies when no instantiation is provided in the declaration, or when these instantiations have
been substituted iB.

Timed dynamic semantics
ErB:%p
E +var RV:RTin B % var RV:RTin B’

99

6.2.21 Gate hiding
Abstract syntax

hide G[: T](,G[: T])"in B
The default gate type ietc).

Static semantics

CkTi=type - C+Ty=type
C;G1=gate(Ty),...,Gy= gate(T,) + B= exit(RT)
CrhideGi:Ty,...,Gn:Tyin B= exit(RT)

CrTi=type - C+Th=type
C;G1=gate(Ty),...,Gy= gate(T,) - B=guarded(RT)
CrhideGy:Ty, -+ ,Gn: Ty in B= guarded(RT)

Untimed dynamic semantics

Ersp

— — G
E - hide G:T in B8 "% hide G:T in B ued]
Er-gafYp

E F (RN) = (RT)
. — . 10 .. — .
E I hide G:T in B —% hide G:T in B

Timed dynamic semantics
ErB%p
E + Brefusing (G:T,d)
E + hide G(RT) in B' % hide G: T in B'

whereE Brefusing (G:T,d) if there is noE - (RN) = (RT) andd’ < d such thaE + g & RNGD gy
Note that we use negative premise to define the timed dynamic semantics.
6.2.22 Renaming
Abstract syntax
rename((gateG[(IP)]isG[P]) | (signalX[(IP)]is X [E]))" in B

The default gate input parameter(stc), the default gate pattern isbargv, the default exception input parameter is
(), and the default exception value is $argv.
Patterns should be irrefutable.

100

Static semantics

CrH (RT) =>type --- CF (RTy) = type
C+(RAR=RT)= (RT/) --- CF (RRn=RTm) = (RT)
C:RT/FG| Pi=exit O --- C;RTyF G, Pm=exit O
CF (RT) =type --- C F (RTy) = type
CH(RPR=RT)=(RT") --- CF(RR=RT) = (RT"
C;RT" Fsignal X{ E; = exit () --- C;RT)" F signal X/, En= exit ()
C;Gi=gate(RT)®
...©Gm=gate(RTy)
oXi=exn(RTD o
... OXm=>exn(RT)) - B=exit(RT)
C F (rename
gateG1(RR:RT) isG)| Py -+ gateGm(RRn:RTy) is Gy, Pm
signal X1 (RP,:RT) is X] E; --- signal Xm(RF,:RT;) is X}, En
in B) = exit(RT)

Ck (RT) =>type --- CF (RTy) = type
CH(RR=RT)= (RT") - CF (RRyv=RTm) = (RT;)
C;RTFG) Pi=exit O --- C;RTy F Gy, Pn=exit ()
C+ (RT) =type --- C + (RTy) = type
CH(RPE=RT)= (RT") --- C+ (RF,=RT) = (R
C;RT/" +signal X{ Ey = exit () --- C;RTy" I- signal X, En = exit ()
C;Gi=gate(RT)®
... Gn=gate(RTn)
OX1=exn(RT)o
... ®Xm=exn(RTy) - B=guarded(RT)
C + (rename
gateG1(RR:RT) isG) Py --- gateGm(RRn:RTw) is Gp, P
signal X; (RP;:RT,) is X] E1 --- signal Xm(RRF,:RT;) is X, En
in B) = guarded(RT)

101

Untimed dynamic semantics

ErB"m

» Xm}]

» Xm}]

Gi,...,Gm, X1,...

E I (rename N (rename kg {Gs m

gateG1(RR:RT) isG) P, gateG1(RR:RT) isGy P;

gateGn(RRn:RTy) is G, Pm gateGn(RRn:RTy) is Gy, Pm

S|gnal X1(RP:RT)) is Xl = S|gnal X1(RP:RT)) is X1 =

S|gnalxmmF’ RT) is X, En S|gnalxmmP' RT,) is X}, En

in B) in B')
Erg* Ry
EF(((RR): (RT))=>(RN)):>(RN’)
E FB[RN] R B (Go G
7 i € yeresGmy X1, ...

E + (rename aRND (rename & ! m

gateG1(RR:RT) isG| P,

signal X1 (RP:RT,) is X] E1

signal Xm(RP,:RT;) is X} En
in B)

whereB;

Timed dynamic semantics

Ergi%p

gateG1(RR:RT) isG) Py

gateGn (RRn:RTy) is G, Pm
S|gnaIX1(RI3’1 RT) |sX1 E1

S|gnaIXma?P' RT,) is X} En
in B')

= G/ B in the case of gates arii = signal X/ E; in the case of exceptions.

E (rename

gateG1(RR:RT) isG; Py ---

signal X1 (RR:RT)) isX{ Eg ---

signal Xm(RP,:RT}) is X} En
in B)

6.2.23 Process instantiation

Abstract syntax

n [[G(,G)"]1 (LE(,

E)"D) [IXGX)]

ECN (rename

gateG1(RR:RT) isG| Py ---
gate G (RRn:RTy) is G, Pm
signal X1 (RP:RT)) isX{ Eg ---
signal Xm(RP,:RT) is X/, En

in B)

The default gate and exception lists are the empty[lisand the default argument (3.

102

Static semantics

CHN=[gate(RT),...,gate(RTm) 1 (RT) [exn(RT)), ... ,exn(RT;)1 — exit(RT)
C+ Gyi=gate(RTy) --- CF Gy= gate(RTy)

Ck(Eg,...,Ep) = exit((RT))

CEXpi=exn(RT)) - CF Xn=exn(RT})

CHM[G1,...,Gml (E1,...,Ep) [Xq,...,X%]=exit(RT)

CHN= [gate(RT),...,gate(RTn)1 (RT) [exn(RT)), ... ,exn(RT;)1 — guarded(RT)
C+ Gyi=gate(RTy) --- CF Gy= gate(RTy)

CF (Es,...,Ep) = exit((RT))

CEXp=exn(RT)) - CF Xn=exn(RT})

CHM[G1,...,Gml (E1,...,Ep) [X1,...,Xn] =guarded(RT)

Untimed dynamic semantics

E+N=AGRDI(RP:RT[X'(RT)]I—>B
E (rename
gateG] (RR:RT) isG) Py ---gateG,(RRn:RTy) is Gy, Pm
signal X{ (RP:RT) is X{ E; ---signal X,(RR,:RT;) is X}, En
in caseE: (RT) is (RP) — B" Y B/
Erné e 1" p

Timed dynamic semantics

EFN=AIG(RTI(RP:RT [X'(RT)] B
E I ((rename
gateG] (RR:RT) isGj Py ---gateG,(RRn:RTy) is Gy, Pm
signal X{ (RP:RT)) is X{ E; ---signal X,(RR,:RT;) is X}, En
in caseE : (RT) is (RP) — B) X2 g’
EFn i E X1 % p

6.2.24 loop iteration
Abstract syntax

loop B

Static semantics

C - B= exit(RT)
C + loop B= guarded(none)

Untimed dynamic semantics

E +B: loopB"EY B’
E FloopB WEY g

103

Timed dynamic semantics

E+B; loopB % B
El—loopBﬂ B’

6.2.25 Case

Abstract syntax
caseE[:T] is BM endcase

The default type is the principal type Bf(notethis requires static information).

Static semantics

C FE=exit(T)
CH(BM=T)=exit(RT)
C FcaseE: T isBM= exit(RT)

CFE=exit(T)
CF (BM=T)= guarded(RT)
C I caseE: T is BM= guarded(RT)

Untimed dynamic semantics

EreXMp
Er(BM=N)"Y B
E - caseE: T isBM'EY B

Erg*EY g
E + caseE: T is BM 2 caseE’: T is BM

Timed dynamic semantics
EreXWe
Er(BM=N) 2B
E |- caseE: T isBM “% B

6.2.26 Case with tuples
Abstract syntax

case’ (" E[:T](,E[:T])* *)is
BM
endcase

The default type is the principal type Bf(notethis requires static information).

104

Static semantics

CrTi=type--- C+Th=type
CF (Ea,...,En) = exit(RT)

CF (BM= (RT)) = exit(RT) [with RT = ($1 => T1,..., % => Tn)]
Ctcase(E;:Ty,...,En: Ty) is BM= exit(RT)

CTi=type - C+Ty=type
CF (Ea,...,En) = exit(RT)

C F (BM= (RT))= guarded(RT) With RT = ($; => T T
CFcase(Ey:Ty,...,En: Tn) is BM= guarded(RT') [ha L8]l

Untimed dynamic semantics

EFEy,....E. Y EL . E,
Et+ (BM= (RN)"®Y B
E b case(Ei:Th,...,En:Ty) isBMPEY B

El_EjX(N)EJ(| -
; X(N) : [with E/ = Ej if i # j]
E Fcase(E1:Ty,...,En:Ty) isBM — case(E]: Ty,...,E/:Tp) isBM

Note thate,, ..., E, ORI E1,....Ej corresponds intuitively to parallel evaluation. Anycase, evaluatidh cdnnot

produce bindings, so they may be evaluate in any arbitrary order.

Timed dynamic semantics

ErEy,....E. %Y E .. E,

EF(BM= (RN) 2B
E - case(Ey:Ty,...,En:Ty) isBM 2% B

6.2.27 Signalling
Abstract syntax
signalX [(" E 7)’]

The default expression tsue.

Static semantics

C FE=exit((RT))
CkX=exn(RT)
C F signal X E=> guarded()

105

Untimed dynamic semantics

ErEXEY E

E FsignalX E XRW oxit()

E+gX®RY e

E signal X g X/ RW signal X E'

Timed dynamic semantics None.

6.3 Type expressions
6.3.1 Type identifier

Abstract syntax

S

Static semantics

C,S=typet S=type

C.S=TFS=T

6.3.2 Empty type
Abstract syntax

none

Static semantics
C F none=-type

CknoneC T

C F none= (V = none,RT)

6.3.3 Universal type
Abstract syntax

any

106

Static semantics

C - any=type

CHTCany

6.3.4 Record type
Abstract syntax
(RT)

Static semantics
C F RT=record
CF (RT) =>type

C+RTCRT
CF (RT) C (RT)

6.4 Record type expressions

Rules for record type expressions will be given in a compositional way, given first the semantics foetiteamsl
V => T and then the semantic for disjoint unidRT,RT).

6.4.1 Singleton record

Abstract syntax
V=T

Static semantics
CHT=type
CH(V=T)=record

CFTCT
CH(V=T)C(V=>T)

6.4.2 Universal record

Abstract syntax

etc
Static semantics

C F etc=record

CHRTCetc

107

6.4.3 Record disjoint union
Abstract syntax

RT,RT

Static semantics

CrRT=record CFRB=record gy ongry,
C +RT,RT= record

CFRRLCRT CHRRLLCRT
CFRT,RLLCRT,RT

have disjoint fields

CFRT,RL =RT,,RTy

Ck(RR,RTL),RE =RT, (R, RT)

CF(,RT=RT

6.4.4 Empty record

Abstract syntax

0

Static semantics

CF()=record

6.5 Value expressions

6.5.1 Primitive constants
Abstract syntax

K

Static semantics In this chapter we will not discuss the static semantics of primitives—this is left to the design of the
standard libraries.

6.5.2 \Variables
Abstract syntax

\Y,

108

Static semantics

CV=>TRV=ST

6.5.3 Record values
Abstract syntax

>(>RN7)7

Static semantics

CFRN=RT
CkF (RN)= (R

6.5.4 Constructor application
Abstract syntax
CIN]

The default argument i§) .

Static semantics

CHC=((RT) =9
CEFN= (RT)
CFCN=S

6.6 Record value expressions

6.6.1 Singleton record
Abstract syntax

V=N

Static semantics

CEN=T
CFV=N=>(V=T)

6.6.2 Record disjoint union
Abstract syntax

RN,RN

109

Static semantics

CFRN=RR _CFRN=RT gy andRN: have disjoint fields
CFRNLRN = RTL,R

6.6.3 Empty record

Abstract syntax

0

Static semantics

CEO=0

6.7 Patterns

In this section the semantics of pattern matching (the sole use of patterns) is defined.

6.7.1 Record pattern
Abstract syntax
) () RP)))

Static semantics

C + (RP=RT)= (RT)
(RP) = (RT)) = (RT)

CH(
C F (RP= (V=any))= (RT)
CH(

(RP) = any) = (RT)

These rules require that{RT) C T then eithe = (RT') andRTC RT or T = any.

Dynamic semantics

E+((RP)=N)= (RN)
EF ((RP) = N) = fall

RN |N = (RN
E F ((RP) =N) = fall 2 | (RND]

The last condition means thitis not a bracketer record of values.

6.7.2 Wildcard
Abstract syntax

any: T

110

Static semantics

CHT=type
CH(any:T=T)= 0

Dynamic semantics

EFN=T
E+(any:T=N)= 0O

6.7.3 Variable binding
Abstract syntax

v

Static semantics

CrTCT /
= T eC
CEV=T)=>(V=>T) V=21 eC]

[AV=2T' |V=7T' € C]

CFV=T)=>(V=>T)

If there exists a restriction via a local variable declaratiwmay be a value of a subtype ©f (the declared type). If
there is no variable declaration, any type would match

Dynamic semantics

EFN=T

E-TCT
= T eE
EF(®V=N)= V=N) V=7T"cEl

[AV=7T' |[V=7T' € E]

EF(@V=N)=(V=N)

6.7.4 Expression pattern
Abstract syntax

'E

Static semantics

C FE=exit(T)
CFUIE=T)=0

Note that no bindings can be producedEn

111

Dynamic semantics

S3(N)
EF(E=N)= 0

SN
EFE—FE C[N#NT
E+ ("E=N)=fail

Ere* e
E+ ("E=N)=fail

6.7.5 Constructor application
Abstract syntax

C[P]
The default pattern ig).

Static semantics

CFC=RM =S
CHSCT
CH((P=(RD)=(RT)
CFH(CP=T)=(RT)

Dynamic semantics

EF(P=®RN)=(RN) \y—_c(rRN
EFCPoN = ®D
EF(P= (RN))=fall [N=C(RN)]
EF (CP=N)=fall

CN|N=CN
E + (C P=N)=fall 2 |]

6.7.6 Explicit typing

Abstract syntax

P:T

Static semantics

CHT=type
CFTCT
CH(P=T)=(RT
CH(P:T=>T)= (RT

112

Dynamic semantics

EFN=T
EF(P=N)= (RN)
EF (P:T=N)= (RN)

EFN=T
E - (P=N)=fall
E+ (P:T=N)=fail

EFN=T
E+-TNT = none
E - (P: T = N)=falil

6.8 Record patterns

Static semantics

C F (RP=RT) = (RT)

Dynamic semantics

E F (RP=RN) = (RN)

E - (RP=RN) = fail

6.8.1 Singleton record pattern
Abstract syntax

V=P

Static semantics

CH((P=T)=(RT
CH(V=>P) = (V=>T))= (RD

Dynamic semantics

EF(P=N)= (RN)

EF(V=P)=(V=N))= (RN)
E - (P=N)=fall
E+(V=P)=(V=N))=fail

6.8.2 Record wildcard
Abstract syntax

etc

113

Static semantics

Ck(etc=RT)= 0O

Dynamic semantics

E+ (etc=RN)= O

6.8.3 Record disjoint union
Abstract syntax

RPRP

Static semantics

C(RAR=R®)= (RT) CH(RR=RDH)= (R [RT] andRT; have disjoint fields
CF(RR,RR=RT,RL)=> (RTl’,RTZ’)

Dynamic semantics
E+(RR=RN)= (RN) E - (RR=RN)= (RN,
RA,RR = RN, RNy) = (RN, RN))

Er(
E - (RR = RN) = fail

E F (RR,RR. = RN, RN\p) = fail
Er(

Er(

RB = RN) = fail
RRA,RR = RN, RN = fall

6.8.4 Empty record pattern

Abstract syntax

0

Static semantics

CHO=0))=0

Dynamic semantics

EF((O=0)=0

114

6.9 Record of variables

6.9.1 Singleton record variable
Abstract syntax

V=V

Static semantics

CH(V=V)=NV=T)=>V'=T)

6.9.2 Record disjoint union
Abstract syntax

RV,RV

Static semantics

CFRU=RE)= RT) CFR%=RE) = RE) Ry andRT, have disjoint fields
C F (R\,R\%=RT,RT) = (RT,RT;)

6.10 Behaviour pattern-matching
6.10.1 Single match

Abstract syntax
p[;[; E :]:]_>B

The default selection predicateligrue].

Static semantics

CH(P=T)= (RT)
C:RTF E = exit(booD
C:RTF B=exit(RT")
CH((PLE] ->B)=T)=exit(RT)

CH(P=T)= (RT

C;RTF E = exit(bool)

C;RTF B= guarded(RT)
CF((P[E]->B)=T)=guarded(RT)

115

Untimed dynamic semantics

E + (P=N)=fall
E - ((P [E] -> B) = N) = fail

E - (P=N)= (RN)

E + E[RN °™5° £/

E - ((P [E] -> B)=N) = fall
E - (P=N)= (RN)

E - ERNEY !

E + ((P [E] -> B) = N) = fail
E+(P=N)= (RN)

E - E[RN] °™9 g/

ErBRN"®Y B

E+((PIE]->B)=N) "B p

Timed dynamic semantics

EF(P=N)= (RN)

E - E[RN] °™9 g/

E - BRN X% B
Er((PIE]->B)=N) Qg

6.10.2 Multiple match

Abstract syntax

BM ’ |’ BM

Static semantics
C,RT,RR+

BM1=T) = exit(RT;,RT)

C,RT,RE F (BMy=>T) = exit(RT,RT)

C,RT,RLF
C,RT,RLF

(BM; | BMy) = T) = exit(RT, R, RT)

BM; = T) = guarded(RT;,RT)

C,RT,RL F (BMz2=T) = guarded(RT,RT)

C,R%,RT

~| |

(BMz1 | BM2) = T) = guarded(

RT,RT,RT)

116

Untimed dynamic semantics
BMi=>N) "B B
(BMy1BMp) = N) "E5 B
BM1 = N) = fail

BM, = N) " B

(BMy1BMp) = N) "E5 B
BM1 = N) = fail
BM, = N) = fail
(BM11BMz) = N) = fail

Er
Er
Et+
Er
Er

Et+
Er
Et+

<

<

e~~~ o~ o~ |~

Timed dynamic semantics
EF(BM=N) 2B
E - ((BMLIBMp) =N) &% B
E - (BM; = N) = fall
Er(
EF(

BMy=N) £2 B
(BMyIBMp) = N) ¥2 B

117

Chapter 7

Predefined library

This chapter presents the predefined library and the predefined type scheme (e.g. strings, sets, and lists) of E-LOTOS.
The types and functions of the predefined library are immediately available in each E-LOTOS specification. The type
scheme declarations are translated into a set of type and functions declarations (as suggested by the “rich term syntax
of [20]).

These libraries try to be upward compatible with the existing LOTOS library. Whenever possible, the names used
for types, functions, and sorts are preserved.

For each predefined type is presented the interface containing the declaration of the type and of the operations
allowed for this type, and the implementation module. The static and dynamic semantics of the types and operations
defined are those induced by the implementation.

For each type scheme is presented the interface and the implementation of the type and of the operations allowed
for this type.

The interfaces contain the axiomatic description functions using ACT ONE equations.

7.1 Booleans

This section contains the interface and the implementation module for boolean values. The construetbent]
“false’ are defined as syntactic items and cannot be redefined as operators. Thus, they cannot be overloaded at alll.

interface Boolean is
type bool is
true | false
endtype
function not (x: bool) : bool
function infix or (x: bool, y: bool) : bool
function infix and (x: bool, y: bool) : bool

function infix implies (x: bool, y: bool) : bool

function infix iff (x: bool, y: bool) : bool

118

function infix xor (x: bool, y: bool) : bool
function infix == (x: bool, y: bool) : bool
function infix '= (x: bool, y: bool) : bool

eqns forall x, y: bool
ofsort bool

not (true) = false ;
not (false) = true ;

(x or true) = true ;
(x or false) = x ;

(x and true) = x ;
(x and false) = false ;

(x implies y) = (y or not x) ;

(x iff y) = ((x implies y) and (y implies x)) ;
(x xor y) = ((x and not y) or (y and not x)) ;
(x == y) = (x iff y) ;
(x '=y) = (x xor y)

endeqns

endint
The implementation of the boolean type is given byRhelean module below.

module Boolean is

type bool is
true | false
endtype

function not (x: bool) : bool is
case X in
true -> false
| false —> true
endcase
endfun

function infix or (x: bool, y: bool) : bool is
case (x, y) in
(false, false) -> false
| (any: bool, any: bool) -> true
endcase

119

endfun

function infix and (x: bool, y: bool) : bool is
case (x, y) in
(true, true) -> true
| (any: bool, any: bool) -> false
endcase
endfun

function infix implies (x: bool, y: bool) : bool is
y or not(x)
endfun

function infix iff (x: bool, y: bool) : bool is
x implies y and (y implies x)
endfun

function infix xor (x: bool, y: bool) : bool is
x and not(y) or (y and not(x))
endfun

function infix = (x: bool, y: bool) : bool is
x iff y
endfun

function infix <> (x: bool, y: bool) : bool is
X Xor y
endfun

endmod

7.2 Natural Numbers

This section contains the interface and the implementation module for natural values. The constants of type natural are
recognized by the parser (tokemat>), and may be used like in traditional programming languages. The constructors
of typenat are0 andSucc.

The compatibility with the Standard LOTOS library is kept at the levelaafuralNumber module. However, the
BasicNaturalNumber module and interface are not given.

interface NaturalNumbers imports Boolean
is
type nat is
0, Succ (n: nat) (* All the constants 0, 1, ... are available *)
endtype

function infix + (m: nat, n: nat) : nat raises RANGE_ERROR

function infix * (m: nat, n: nat) : nat raises RANGE_ERROR

120

function infix ** (m: nat, n: nat) : nat raises RANGE_ERROR
function infix - (m: nat, n: nat) : nat raises RANGE_ERROR
function infix div (m: nat, n: nat) : nat raises ZERO_DIVISION
function infix mod (m: nat, n: nat) : nat raises ZERO_DIVISION
function infix pred (m: nat) : nat raises RANGE_ERROR
function infix == (m: nat, n: nat) : bool

function infix '= (m: nat, n: nat) : bool

function infix < (m: nat, n: nat) : bool

function infix <= (m: nat, n: nat) : bool

function infix >= (m: nat, n: nat) : bool

function infix > (m: nat, n: nat) : bool

eqns forall m, n : nat
ofsort nat
m+ 0 = m;
m + Succ(n) = Succ(m) + n;

m*x 0 = 0;

m * Succ(n) =m + (m * n);
m **x 0 = Succ(0);

m ** Succ(n) = m * (m ** n)
0-0-=0;

m- 0 = m;

Succ (m) - Succ (n) =m - n;

(m < n) =>
m div n = 0;
(m >= n) and (n > 0) =>
mdivn = ((m - n) div n) + 1;

(m < n) =>
m mod n = m;
(m >= n) =>
mmod n = ((m - n) mod n);

pred (Succ (n))

1]
[=]

ofsort bool

121

0 == 0 = true;
0 == Succ(m) = false;

Succ(m) == 0 = false;
Succ(m) == Succ(n) = m = n;
m !=n = not(m == n);

0 < 0 = false;

0 < Succ(n) = true;
Succ(n) < 0 = false;
Succ(m) < Succ(n) = m < n;

m<=n=m<mnor (m=n);

m >=n = not (m < n);
m > n = not (m <= n);
endeqns

endint

module NaturalNumbers imports Boolean
is
type nat is
0, Succ (n: nat) (* all the constants 0, 1, ... available %)
endtype

function infix + (m: nat, n: nat) : nat raises RANGE_ERROR is
(* if m > MAX_NAT then raise RANGE_ERROR endif *)
case n in
0 ->m
| Succ (nl: nat) -> Succ (m) + nil
endcase
endfunc

function infix * (m: nat, n: nat) : nat raises RANGE_ERROR is
(* if m > MAX_NAT then raise RANGE_ERROR endif x*)
case n in
0->0
| Succ (nl: nat) -> m + (m * nl)
endcase
endfunc

function infix ** (m: nat, n: nat) : nat raises RANGE_ERROR is
(¥ if m > MAX_NAT then raise RANGE_ERROR endif *)
case n in
0 ->0
| Succ (nl: nat) -> m * (m ** nl)
endcase
endfunc

122

function infix - (m: nat, n: nat) : nat raises RANGE_ERROR is
case (m, n) is
(0, 0) >0
| (0, Succ (any: nat)) -> raise RANGE_ERROR
| (any: nat, 0) -> m
| (Succ (ml1: nat), Succ (nl: nat)) -> ml - nl
endcase
endfun

function infix div (m: nat, n: nat) : nat raises ZERO_DIVISION is
if (n = 0) then
raise ZERO_DIVISION
elsif (m < n) then
0
else
((m-n) div n) + 1
endif

endfun

function infix mod (m: nat, n: nat) : nat raises ZERO_DIVISION is
if (n = 0) then
raise ZERO_DIVISION
elsif (m < n) then
m
else
((m-n) mod n)
endif

endfun

function infix pred (n: nat) : nat raises RANGE_ERROR is
case n is
0 -> raise RANGE_ERROR
| Succ (nl: nat) -> nil
endcase
endfun

function infix == (m: nat, n: nat) : bool is
case (m, n) is
(0, 0) —> true
| (0, Succ (any: nat)) -> false
| (Succ (any: nat), 0) -> false
| (Succ (ml1: nat), Succ (nl: nat)) -> ml1 == nil
endcase
endfunc

function infix <> (m: nat, n: nat) : bool is

not (m == n)
endfunc

123

function infix < (m: nat, n: nat) : bool is
case (m, n) is
(any: nat, 0) -> false
| (0, Succ (any: nat)) -> true
| (Succ (m1: nat), Succ (nl: nat)) -> ml < ni
endcase
endfunc

function infix <= (m: nat, n: nat) : bool is
m < n or (m=n)
endfunc

function infix >= (m: nat, n: nat) : bool is
not (m < n)
endfunc

function infix > (m: nat, n: nat) : bool is
not (m <= n)
endfunc

endmod

7.3 Integral Numbers

This section contains the interface and the implementation module for integer values. The constants of type integral
are signed natural values. Since natural constants are recognized by the parsem@ekenthe integral values may

be used like in traditional programming languages (with an unary operator “+” or “-” in front of the unsigned natural
value). The constructors of tygat arePos (for positive integers) antleg (for negative integers).

interface IntegerNumbers imports NaturalNumbers
is
type int is
Pos (n: nat)
| Neg (n: nat)
endtype
(x Pos (X) ==X ; Neg (X) == - X -1 %)
(* Pos (Pos (X)) == Neg (Neg (X)) == X %)
function succ (n: int) : int raises RANGE_ERROR
function pred (n: int) : int raises RANGE_ERROR
function sign (n: int) : int
function abs (n: int) : int

function - (n: int) : int raises RANGE_ERROR

function infix + (m: int, n: int) : int raises RANGE_ERROR

124

function infix * (m: int, n: int) : int

raises RANGE_ERROR

function infix ** (m: int, n: nat) : int raises RANGE_ERROR

function infix - (m: int, n: int) : int

raises RANGE_ERROR

function infix div (m: int, n: int) : int raises ZERO_DIVISION

function infix mod (m: int, n: int) : int raises ZERO_DIVISION

function infix pred (m: int, n: int) : int raises RANGE_ERROR

function infix == (m: int, n: int) : bool

function infix '= (m: int, n: int) : bool

function infix < (m: int, n: int) : bool

function infix <= (m: int, n: int) : bool

function infix >= (m: int, n: int) : bool

function infix > (m: int, n: int) : bool

function nat (k: int) : nat raises RANGE_ERROR

function int (k: nat) : int raises RANGE_ERROR

eqns forall M, N: nat, X, Y: int
ofsort int
succ (Pos (N)) Pos (Succ (N));
succ (Neg (0)) = Pos (0);
succ (Neg (Succ (N))) = Neg (N);

pred (Pos (0)) = Neg (0);
pred (Pos (Succ (N))) = Pos (N);
pred (Neg (N)) = Neg (Succ (N));

sign (Pos (0)) = 0;
sign (Pos (Succ (N))) = 1;
sign (Neg (N)) = Neg (Succ (0));

abs (Pos (N))
abs (Neg (N))

Pos (N);
Pos (Succ (N));

- (Pos (0)) = Pos (0);
- (Pos (Succ (N))) = Neg (N);
- (Neg (N)) = Pos (Succ (N));

125

Pos (0) + X = X;

Pos (Succ (N)) + X = Pos (N) + succ (X);
Neg (0) + X = pred (X);

Neg (Succ (N)) + X = Neg (N) + pred (X);

X-Y=X+ - (Y);

Pos (M) * Pos (N) = Pos (M * N);

Pos (M) * Neg (N) = succ (Neg (M * Succ (N)));
Neg (M) * Pos (N) = succ (Neg (Succ (M) * N));
Neg (M) * Neg (N) = Pos (Succ (M) * Succ (N));

X *x 0 = Succ (0);
X *% Succ (N) = X * (X *x N);

(m < n) =>
m div n = 0;
(m >=n) =>
mdivn = ((m - n) div n) + 1;

(m < n) =>
m mod n = m;
(m >=n) =>
mmod n = ((m - n) mod n);

Pos (M) == Pos (N) = M == N;
Pos (M) == Neg (N) = false;
Neg (M) == Pos (N) = false;
Neg (M) == Neg (N) = M == N;

X '=Y =not X ==Y);

Pos (M) < Pos (N) = M < N;
Pos (M) < Neg (N) = false;
Neg (M) < Pos (N) = true;
Neg (M) < Neg (N) = M > N;

X<=Y=(@X<Y) or XeqY);
X >Y =not (X <=Y);
X >= Y =not (X <Y);
nat (Pos (N)) = N;
int (N) = Pos (N);
endeqns

endint (* IntegralNumbers *)

126

The modulelntegralNumbers may be either an external module, or may implement the equations above raising
exceptions for the unspecified cases.

7.4 Rational Numbers

This section contains the interface and implementation module for rational values. The constants of type rational are
recognized by the parser (tokemational>), and may be used like in traditional programming languages. The
constructor of typerational is frac . This constructor receives two irreducible integral numbers, the second one
(the denominator) should be greater than 0.

Note that the LOTOSPHERE project proposes the nafead ” for the rational numbers.

interface RationalNumbers imports IntegerNumbers is

type ratiomnal is
frac (num: int, den: int) (* den > 0 *)

endtype
function infix + (f1: rational, f2: rational) : rational
function infix - (f1: rational, f2: rational) : rational
function infix * (f1: rational, f2: rational) : rational
function infix ** (m: ratiomal, n: int) : ratiomal

function infix / (f1: rational, f2: rational) : rational raises ZERO_DIVISION

function max (fl1: rational, f2: rational) : rational
function min (f1: ratiomnal, f2: rational) : rational

function abs (f: rational) : ratiomal

function round (f: rational) : rational

(* this function returns the nearest integral value of f, except for
halfway cases, which are rounded to the integral value larger in
magnitude *)

function ceil (f: rational) : rational
(* this function returns the least integral value greater than or
equal to f %)

function floor (f: ratiomnal) : rational
(* this function returns the greatest value less than or equal to f x)

function infix > (f1: rational, f2: rational) : bool
function infix >= (f1: rational, f2: rational) : bool
function infix < (f1: rational, f2: ratiomnal) : bool
function infix <= (f1: rational, f2: rational) : bool
function infix == (f1: rational, f2: rational) : bool

127

function infix '= (f1: rational, f2: ratiomnal) : bool

endint (* RationalNumbers *)
The implementation uses a local functigrd” (greater divisor) to reduce fractions which are not irreducible.

module RationalNumbers imports IntegralNumbers is

type ratiomnal is
frac (num: int, den: int) (* den > 0 *)
endtype

(* local function *)
function gd (m: int, n: int) : int is
case n is

0 ->m
| any int -> gd (n, m mod n)
endcase

endfun

function reduce (f: rational) : rational is
var gd: int = gd (f.num, f.den)

in
frac (f.num div gd, f.den div gd) (* div is the integral division *)
endvar
endfun

function minus (f: ratiomnal) : rational is
frac (minus (f.num), f.den)
endfun

function infix + (f1: rational, f2: rational) : ratiomnal is
reduce (frac (fl.num * f2.den + f2.num * fl.den, fl.den * f2.den))
endfun

function infix - (f1: rational, f2: rational) : rational is
reduce (frac (fl.num * f2.den - f2.num * fl.den, fl.den * f2.den))
endfun

function infix * (f1: rational, f2: rational) : rational is
reduce (frac (fl.num * f2.num, fil.den * f2.den))
endfun

function infix ** (f: rational, p: int) : rational is
if p == 0 then
frac (1, 1)
elsif p < O then
(f *x (p+ 1))/ ¢£
else (* p > 0 *)
(f % (p - 1)) * £

128

endif

endfun

function infix / (f1: rational, f2: rational) : rational raises ZERO_DIVISION is
case f2 in
frac (nmum => 0, den => any int) -> raise ZERO_DIVISION
| any rational -> reduce (frac (fl.num * f2.den, f2.num * fl.den))
endcase
endfun

function max (f1: rational, f2: rational) : rational is
if f1 >= £f2 then fl1 else f2 endif
endfun

function min (f1: rational, f2: rational) : rational is
if f1 >= £f2 then f2 else f1 endif
endfun

function abs (f: rational) : ratiomnal is
frac (abs (f.num), f.den)
endfun

function round (f: ratiomal) : int is

(f.num / f.den) +

(if (f.num rem f.den) >= (f.den / 2) then 1 else 0 endif)
endfun

function ceil (f: ratiomnal) : int is

(f.num / f.den) +

(if (f.num rem f.den) >= 0 then 1 else 0 endif)
endfun

function floor (f: ratiomal) : int is
(f.num / f.den)
endfun

function infix > (f1: rational, f2: rational) : bool is
(f1.num * f2.den - f2.num * fi.den) > 0
endfun

function infix >= (f1: rational, f2: rational) : bool is
(f1.num * f2.den - f2.num * fi.den) >= 0
endfun

function infix < (f1: ratiomal, f2: rational) : bool is
(f1.num * f2.den - f2.num * fi.den) < O

endfun

function infix <= (f1: ratiomal, f2: rational) : bool is
(f1.num * f2.den - f2.num * fi.den) <= 0

129

endfun

function infix == (f1: ratiomal, f2: rational) : bool is
(f1.num * f2.den) == (f2.num * fl.den)
endfun
function infix '= (f1: rational, f2: rational) : bool is not (f1 == f2) endfun

endmod (* RationalNumbers)

7.5 Floating Point Numbers

This section contains the interface for floating point values. These values are recognized by the parset{teken
), and may be used like in traditional programming languages. The operations provided for floating point numbers are
the classical ones. They may be obtained by external implementation.

Note that this predefined type appears also in the LOTOSPHERE proposal.

interface FloatNumbers imports IntegralNumbers is

type float is
[+|-]<nat>. [<nat>] [E[+|-I<nat>]
endtype

function infix + (f1: float, f2: float) : float
function infix - (f1: float, f2: float) : float
function infix * (f1: float, f2: float) : float
function infix ** (f1: float, f2: int) : float
function infix / (f1: float, f2: float) : float raises ZERO_DIVISION

function max (f1: float, f2: float) : float
function min (f1: float, f2: float) : float

function abs (f: float) : float

function sqrt (f: float) : float
function exp (f: float) : float (*x e"x *)
function log (f: float) : float (* log_10 x *)

function sin (f: float) : float
function cos (f: float) : float
function tan (f: float) : float
function asin (f: float) : float
function acos (f: float) : float
function atan (f: float) : float

function sinh (f: float) : float
function cosh (f: float) : float
function tanh (f: float) : float
function asinh (f: float) : float

130

function acosh (f: float)
function atanh (f: float)

function
function

function round (f: float)

(* this function returns the nearest integral value to f, except for
halfway cases, which are rounded to the integral value larger in
magnitude *)

function

pi :
e

ceil

float
: float

(f: float)
(* this function returns the least integral value greater than or

equal to f *)

function floor (f: float)
(* this function returns the greatest value less than or equal to f *)

function
function
function
function
function
function

infix
infix
infix
infix
infix
infix

> (f1:
>= (f1:
< (f1:
<= (f1:
== (f1:
1= (f1:

endint (* FloatNumbers *)

7.6 Characters

This section contains the interface and the implementation module for character values. The constants of type character
are written between quote symbols (e.g., 'A) and are recognized by the parser {icker>). They represent the

ISO Latin-1 characters.

float, f2:
float, f2:
float, f2:
float, f2:
float, f2:
float, f2:

: float
: float

: float

: float

: float

float)
float)
float)
float)
float)
float)

interface Characters imports NaturalNumbers is

type char is

(* all the
endtype
function pred (c: char)
function succ (c: char)
function nat (c: char) : nat
function char (n: nat)
function tolower (c: char) char
function toupper (c: char) : char
function isalpha (c: char) : bool

IS0 Latin-1 characters between simple quotes *)

char raises RANGE_ERROR
char raises RANGE_ERROR

char raises RANGE_ERROR

131

: bool
: bool
: bool
: bool
: bool
: bool

function isdigit (c: char) : bool
function isxdigit (c: char) : bool
function islower (c: char) : bool
function isupper (c: char) : bool
function isalnum (c: char) : bool

function infix > (cl1l: char, c2: char) : bool
function infix >= (cl1l: char, c2: char) : bool
function infix < (cl: char, c2: char) : bool
function infix <= (cl1l: char, c2: char) : bool
function infix == (cl1l: char, c2: char) : bool
function infix '= (cl: char, c2: char) : bool

endint (* Characters *)

7.7 Strings

interface Strings imports NaturalNumbers, Characters is

type string is
endtype

function length (s: string) : nat

function concat (sl: string, s2: string) : string
function prefix (s: string, n: nat) : string

function suffix (s: string, n: nat) : string

function substr (s: string, nl: nat, n2: nat) : string

function index (sl: string, s2: string) : nat (* search from left *)+
function rindex (sl: string, s2: string) : nat (* search from right *)+

function nth (s: string, n: nat) : char

function infix > (sl: string, s2: string) : bool
function infix >= (sl: string, s2: string) : bool
function infix < (sl: string, s2: string) : bool
function infix <= (sl: string, s2: string) : bool

function infix == (sl: string, s2: string) : bool
function infix != (sl: string, s2: string) : bool
function string (c: char) : string
function string (n: nat) : string
function string (n: int) : string

function string (f: float) : string

function int (s: string, b: nat) : int raises RANGE_ERROR
function float (s: string) : float raises RANGE_ERROR

132

endint (* Strings *)

7.8 Enumerated Type Scheme

The declaration of an enumerated ty§ie with valuesCi, ...,Cn :

type ET is
enum C1, ..., Cn
endtype

is translated into (substituted with) the following list of declarations (the interface of objects generated for an
enumerated type):

type ET is
Ct| ... | Cn
endtype

function min : ET
function max : ET

function pred (x: ET) : ET raises RANGE_ERROR
function succ (x: ET) : ET raises RANGE_ERROR

function infix > (x: ET, y: ET) : bool

function infix >= (x: ET, y: ET) : bool

function infix < (x: ET, y: ET) : bool

function infix <= (x: ET, y: ET) : bool

function infix == (x: ET, y: ET) : bool

function infix !'= (x: ET, y: ET) : bool

function pos (x: ET) : nat

function ET (n: nat) : ET raises RANGE_ERROR
function string (x: ET) : string

The implementation of these function declarations is given below:

function min : ET is C1 endfun
function max : ET is Cn endfun

function pred (x: ET) : ET raises RANGE_ERROR is
case X is
Cl -> raise RANGE_ERROR
c2 -> C1
I
| Cn -> Cn-1
endcase
endfun

133

function succ (x: ET) : ET raises RANGE_ERROR is
case X is
Ci1 -> C2
|
| Cn -> raise RANGE_ERROR
endcase
endfun

function pos (x: ET) : Nat is
case x is

Ci1 >1
I
| Cn ->n
endcase

endfun

function ET (n: nat) : ET raises RANGE_ERROR is
case n is
1 ->C1
|
| n -> Cn
| any nat -> raise RANGE_ERROR
endcase
endfun

function infix > (x: ET, y: ET) : Bool is pos (x) > pos (y) endfun

function infix >= (x: ET, y: ET) : Bool is pos (x) >= pos (y) endfun
function infix < (x: ET, y: ET) : Bool is pos (x) < pos (y) endfun
function infix <= (x: ET, y: ET) : Bool is pos (x) <= pos (y) endfun
function infix == (x: ET, y: ET) : Bool is pos (x) == pos (y) endfun

function infix '= (x: ET, y: ET) : Bool is pos (x) != pos (y) endfun

7.9 Record Type Scheme

A record type declaration:

type RT is
record F1: T1, ..., Fn: Tn
endtype

is translated into (substituted with) the following list of declarations (the interface of objects generated for a record
type):

type RT is
RT (F1: T1, ..., Fn: Tn)

134

endtype

(* selectors of RT %)
function get_F1 (x: RT) : Ti

function get_Fn (x: RT) : Tn

(* setup fields functions of RT *)
function set_F1 (x: RT, f: T1) : RT

function set_Fn (x: RT, f: Tn) : RT

The implementation of the function declarations above is:

function get_F1 (x: RT) : Tl is x.F1l endfun
function get_Fn (x: RT) : Tn is x.Fn endfun
function set_F1 (x: RT, f: T1) : RT is

RT (F1L => f, F2 => x.F2,, Fn => x.Fn)
endfun
function set_Fn (x: RT, f: Tn) : RT is

RT (F1 => x.F1, F2 => x.F2,, Fn => f)
endfun

7.10 Set Type Scheme

The declaration of a type s8T with elements in the scalar tyfre
type ST is set of T endtype

is translated into (substituted with) the following list of declarations (the interface of objects generated for a set
type):
type ST

function {} : ST
function full : ST

function union (si1: ST, s2: ST) : ST
function diff (s1: ST, s2: ST) : ST
function inters (si1: ST, s2: ST) : ST

function card (s: ST) : Nat

function isin (e: T, s: ST) : bool

135

function isempty (s: ST) : bool
function issubset (s1: ST, s2: ST) : bool
function isdisjoint (s1: ST, s2: ST) : bool

function infix > (s1: ST, s2: ST) : bool
function infix >= (s1: ST, s2: ST) : bool
function infix < (s1: ST, s2: ST) : bool
function infix <= (s1: ST, s2: ST) : bool
function infix == (s1: ST, s2: ST) : bool
function infix !'= (s1: ST, s2: ST) : bool

The typeST is implemented like a list of elements. The constructors atg
implementation is not visible to the user, so no pattern-matching is allowed on set types.

type ST is

nil
| cons (e: T, s: ST)
endtype

function {} : ST is nil () endfun
function full : ST is cons (nil () endfun

function union (s1: ST, s2: ST) : ST is
case sl is
nil () -> s2
cons (e: T, s: ST) ->
if isin (e, s2) then
union (s, s2)
else
cons (e, union (s, s2))
endif
endcase
endfun

function diff (s1: ST, s2: ST) : ST is
case sl is
nil () -> nil ()
cons (e: T, s: ST) ->
if isin (e, s2) then
diff (s, s2)
else
cons (e, diff (s, s2))
endif
endcase
enfunc

function inters (s1: ST, s2: ST) : ST is
case sl is

136

and “cons .

However, this

nil () -> nil ()
cons (e: T, s: ST) —>
if isin (e, s2) then
cons (e, Inters (s, s2))
else
inters (s, s2)
endif
endcase
endfun

function card (s: ST) : nat is
case s is
nil -> 0
| cons (any T, s1: ST) -> card (s1) + 1
endcase
endfun

function isin (e: T, s: ST) : bool is
case s is
nil () -> false
| cons (el: T, sl: ST) -> (e == el) orelse isin (e, sl)
endcase
endfun

function isempty (s: ST) : bool is
case s is
nil () -> true
| any ST -> false
endcase
endfun

function issubset (si1: ST, s2: ST) : bool is
case (s1, s2) is
(nil, nil) -> true
| (nil, any ST) -> true
| (any ST, nil) -> false
| (cons (el: T, sil: ST), any ST) ->
iselem (el, s2) andthen issubset (sl11, s2)
endcase
endfun

function isdisjoint (s1: ST, s2: ST) : bool is
isempty (inters (s1, s2))
endfun
function infix > (s1: ST, s2: ST) : bool is
issubset (s2, sl1) and not (isempty (diff (s1, s2)))

endfun

function infix >= (sl1: ST, s2: ST) : bool is issubset (s2, s1) endfun

137

function infix < (s1: ST, s2: ST) : bool is
issubset (s1, s2) and not (isempty (diff (s1, s2)))
endfun

function infix <= (s1: ST, s2: ST) : bool is issubset (s1, s2) endfun

function infix == (s1: ST, s2: ST) : bool is
issubset (sl1, s2) and issubset (s2, sl)
endfun
function infix '= (s1: ST, s2: ST) : bool is not (sl == s2) endfun

The “in extenso” (i.e. by giving the list of their elements) for a set type:
{EL, ..., En }
is translated into:

union (cons (E1, nil ()), union (..., cons (En, nil ())))

7.11 List Type Scheme

The declaration of a type ligiT with elements of type :
type LT is list of T endtype

is translated into (substituted with) the following list of declarations (the interface of objects generated for a list
type):

type LT

nil ()
| cons (e: T, 1: LT)
endtype

function isempty (1: LT) : bool

function [] : LT
function tcons (1: LT, e: T) : LT

function head (1: LT) : T raises EMPTY_LIST
function taill (1: LT) : LT raises EMPTY_LIST

function nth (1: LT, n: nat) : T raises RANGE_ERROR
function concat (11: LT, 12: LT) : LT

function length (1: LT) ! nat
function == (11: LT, 12: LT) : bool
function !'= (11: LT, 12: LT) : bool

138

The typeLT has the constructors arail ” and “cons ”. These constructors are visible, so pattern-matching is
allowed on list types. The base type of the list must have an equality funetiot)."

function isempty (1: LT) : bool is
case s in
nil -> true
| any LT -> false
endcase
endfun

function [] : LT is nil () endfun

function tcons (1: LT, e: T) : LT is
case s in
nil -> cons (e, nil)
| cons (el: T, 11: LT) -> comns (el, tcoms (11, e))
endcase
endfun

function head (1: LT) : T raises EMPTY_LIST is
case s in
nil -> raise EMPTY_LIST
| cons (e: T, any LT) -> e
endcase
endfun

function tail (1: LT) : LT raises EMPTY_LIST is
case s in
nil -> raise EMPTY_LIST
| cons (any T, 11: LT) -> 11
endcase
endfun

function concat (11: LT, 12: LT) : LT is
case (s1, s2) is
(nil, any LT) -> 12
| (any LT, nil) -> 11
| (any LT, cons (e: T, 1: LT)) -> concat (append (11, e), 1)
endcase
endfun

function length (1: LT) : nat is
case s in

nil -> 0
| cons (any T, 1: LT) -> Succ (length (s))
endcase

endfun

function nth (1: LT, n: nat) : T raises RANGE_ERROR is

139

case (s, n) is
(nil, any nat) -> if n > O then raise RANGE_ERROR else nil endif
| (cons (e: T, any LT), 0) -> e

| (cons (any T, 11: LT), any nat) -> nth (11, n - 1)
endcase

endfun

function == (11: LT, 12: LT)
case (s1, s2) is
(nil, any LT) -> false

| (any LT, nil) -> false
| (cons

: bool is

(el: T, 11p: LT), coms (e2: T, 12p: LT)) ->

(el == e2) andthen (11p == 12p)
endcase

endfun

function !'= (11: LT, 12: LT) : bool is not (11 == 12) endfun

The list may be specified “in extenso” by using the following notation:
[EL, ..., En]

whereE1 , ...,En are expressions of tyf. This notation is equivalent with

cons (E1, cons (... cons (En, nil ()) ...))

140

Appendix A

Tutorial

A.1 The base language

The 1SO formal language LOTOS [6, 4] is composed of a process algebra part (based on CCS [18] and CSP [11]) to
describe behaviours, and an algebraic language (ACT ONE [8]) to describe the abstract data types. This language is
mathematically well-defined and expressive: it allows the description of concurrency, nondeterminism, synchronous
and asynchronous communications. It supports various levels of abstraction and provides several specification styles.
Good tools exist to support specification, verification and code generation. Despite these positive features, this language
is currently under revision in ISO [22] because feedback from users has indicated that the usefulness of the language is
limited by certain characteristics relating both to technical capabilities and user-friendliness of the language.

Two main enhancements address datatypes and time. There is no notion of quantitative time in standard LOTOS,
which precludes any precise description of real-time systems. Furthermore, the LOTOS algebraic datatypes are not
user-friendly and suffer from several limitations such as the semi-decidability of equational specifications, the lack of
modularity and the inability to define partial operations.

For example, a simple router of packets containing a data field and an address field might be defined in standard
LOTOS:

processRouter[inp,left,right] : noexit : =
inp7p: packet
(
[getdestp) = L] —> left! getdatdp) ; Router[inp, left, right]
[1 [getdestp) = R] -> right!getdatdp) ; Router[inp, left, right]
)

endproc

This definition suffers from some problems of readability for non-LOTOS experts (for example the use of selection
predicates and choice rather thacegeconstruct) but is quite understandable compared to the definition of the packet

141

datatype:

type Packets Data
sorts
packetdest
opns
mkpacket: dest data-> packet
getdest: packet-> dest
getdata: packet-> data
L : ->dest
R: ->dest
egns forall p: packet de:dest, da:data
ofsort packet mkpackefgetdest(p) ,getdata(p)) = p
ofsort dest getdestmkpacket(de da)) = de
ofsort data getdatdmkpacket(de,da)) = da
endegns
endtype

This can be compared with the equivalent process declaration in the base language presented here:

processRouter[inp: packet left: data right: datd is
var
p:packet
in
inp(?7p) ;
casep.deis
L -> left(!p.da)
| R->right(!p.da
endcase
Router[inp, left, right]
endvar
endproc

with the corresponding data type declarations:

type destisL | R endtype
type packetis (de=>dest da=>datd endtype

Note that:
e The gates in the Router process are explicitly typed.

e We can use field projection to access the fields of the packet, rather than using hand-crafted selection functions.

The scope of the variable p is made explicit bipeal variable declaration.

Thecasestatement is made explicit, rather than implicit using selection predicates and choice.

We have moved the recursive call outside ¢hsestatement, avoiding the need to duplicate it.

The definition of the ‘dest’ type as a union, and the ‘packet’ type as a record is made explicit, and much shorter.

142

The revised LOTOS language is a two-layer language. The higher layer is the module language and it will be described
in the next section. The lower layer is the base language which we will informally present in this section.

The static semantics of the base language is based on judgements Euclas exit (T) meaning ‘in context
expressiork has result typd’ for example:

1= float,x = float, / = (float float) — exit (fload - 1/x = exit (float)

means ‘in a context where 1 and x are floats, Am&la function from pairs of floats to floats, then the expressjon 1
has result type float’. The static semantics includes:

e User-definable record, union types, and recursive types.
e Subtyping (for example we could allow integers as a subtype of floats).

¢ Imperative write-many variables, with a static semantics which ensures that every variable is written before read,
and that shared variables cannot be used for communication between processes.

e Gates are explicitly typed (but we can use subtyping to provide the power of standard LOTOS untyped gates).

The dynamic semantics is based on judgements sueh-&8 AN meaning ‘in environmertt expressiort reduces
(with actiona (N)) to E". For expressions, possible valuesoo@re an exceptioX or a successful termination action
0. For example the expressiopZterminates with value.b:

- 1/2%9% block

and 1/0 raises the exception Div:

Div ()

F1/0 block

The dynamic semantics includes:
e Behaviours communicating on gates with other behaviours.
e Behaviours or expressions raising exceptions, which may be trapped by exception handlers.
e Behaviours with real-time semantics.

In fact, the semantics of expressions is given by treating expressions as a subclass of behaviours: expressions can only
perform exception or termination actions, and cannot communicate on gates, or have any real-time behaviour. Unifying
expressions and behaviours in this way allows for a much simpler and uniform semantics.

The language described in this document is based on previous proposals for real-timed LOTOS [16] and LOTOS
with functional datatypes [12, 13]. Many of the language features, especially the imperative features, are based on the
language proposed in [10]. A previous version of the language can be found [15].

A.1.1 Basic concepts
A.1.1.1 Declarations

A specification in the base language is given by a setemflarations These declarations can be structured at the
module level (see Section A.2).

These declarations come in three flavotlypedeclarationsfunctiondeclarations, androcessdeclarations. In the
base language, all type, constructor, function and process identifiers must be unique—all treatment of overloading is
left to the module language.

143

Type declarations A type declaration is eithertgpe synonyror adatatypedeclaration. A type synonym declares a
new type identifier for an existing type. For example we can declare a type ‘point’ synonymous with a record of floats
as:

type pointis
(x=>float, y=>float)
endtype

and we can declare a recursive data type of integer lists as:

type intlist is
nil
| congint,intlist)
endtype

Type synonyms can be used interchangably, for example the following declarations are the same:

type colpixelis
(pt=>point, col=>coloun
endtype
type colpixel is
(pt=> (x=>float, y=>float) , col=>colour)
endtype

We can use colpixel and colpi%eds the same type (for example any function expecting a colpixel will accept a
colpixel). More succinctly, type equality istructuralnot byname

Data type declarations define new types, listing alldbistructordor that type. Since there can be more than one
constructor, we can definmiontypes, for example:

type pduis
sendpacketbit) | ack(bit)
endtype

It is possible to define recursive data types, such as the datatype of lists above.
Finally, there is a shorthand for renaming types:

type coderenamesnatendtype

The base language doast provide a mechanism for defining parameterized types—this is left for the module
system.

Function declarations A function declaration defines a new function, which can be used in data expressions. For
example:

function reflect(p: point) : pointis
(X=>p.y,y=>p.Xx)
endfunc

The function parameters are given as a list of typed variables — in E-LOTOS we decorate binding occurrences of
variables with?. A function can have more than one input parameter, and can return a record of results, for example

144

(we will fill in the details later):

function partition (x:int,xs:intlist) : (intlist,intlist) is
var
lessintlist : = all of xsless tharx,
gtr:intlist: = all of xs greater thanx
in
(less gtr)
endvar
endfunc

This function can be called (for example):

function quicksort(xs:intlist) :intlist is
casexsis
nil ->
nil
| cong7y,7ys) ->
var
| :intlist, g:intlist
in
(?l,7g) :=partition (y,ys)
append(quicksort(l) ,cons(y,quicksort(g)))
endvar
endcase
endfunc

This style of function is very common, so we provide some syntax sugar for it, isingd out parameters. For
example, the partition function could have been written:

function partition (in x:int, in xs:intlist, out lessintlist, out gtr:intlist) is
?less: = all of xsless thark;
7gtr : = all of xsgreater tharx

endfunc

and then used in quicksort as:
partition (y,ys, ?l,7g)
rather than:
(?l,79) :=partition (y,ys)
Functions may raise exceptions (described below) which have to be declared, for example:

function hd (xs:intlist) : int raises[Hd] is
casexsis
nil -> raise Hd
| cong(7x,any:intlist) -> x
endcase
endfunc

145

When such a function is called, the Hd exception is instantiated, for example the following will raise the exception Foo:
hd (nil) [Foal

Most often, we use the same exception name as in the declaration:
hd (nil) [Hd]

This acts as a visual reminder that the hd function can raise the exception Hd.
Exceptions can be typed, for example:

function foo () raises[Foo: (string)] is
raise Foo("Hello world")
endfunc

Any untyped exceptions are assumed to have type
Note that function declarations are just syntax sugar for a subclass of process declaration.

Process declarations Process declarations are very similar to function declarations: they have parameter lists, in and
out parameters, and a list of typed exception parameters.

However, there are two important differences between functions and processes: processes can have real-time be-
haviour, and they can communicate on gates. For example, a simple counter process is defined:

processCounter[up : none,down :nonej is
up; (down| || Counter[up,down])
endproc

By default, gates have typéetc), which allows communication of arbitrary data, for compatibility with existing
LOTOS. Also, the default return type of a procesaud .
Process behaviours are discussed further in Section A.1.1.4.

A.1.1.2 Typing
Type expressions We have already seen a number of type expressions, for example:
e The data type intlist, and the type synonym point are tyytle identifiers
¢ The type(x=>float,y=>float) is arecord typewith fieldsx and y.
e The type(int,intlist) is apair type in fact this is syntax sugar for the record tyl=>int, $2=>intlist) .

Record types can bextensiblefor example the typéname=>string, etc) is a record type with at least one field, but
which can be extended to have others.
In addition to type identifiers and record types, we have two special types:

e The empty typaonewith no values, used to give the functionality of processes sustogor Counter which
never terminate.

e The universal typany which is a supertype of every other type, used to give types for gates which can commu-
nicate data of any type, for compatibility with existing LOTOS.

146

Subtyping The base language suppostsbtyping for example we could have integers as a subtype of floats. The
built-in subtyping is on records: we allow a record ty{@tc) which is a supertype of any other record. For example, the
type (name=>string, etc) is a record with at least one field ‘name’ of type string. This record type can be extended to
many subtypes, for exampl@ame->string, age=>int, etc) or (name=>string, age=>int) . Note the difference between
these last two types: the former can be extended with further fields, where the latter cannot.

We include a specialonetype, which has no values. The typeneis the most specialised type, aady is the
most general type. Since a record type withane field cannot have any values, we can identify it witbne, for
example the pair typénone,int) has no values, so is equivalent to the tyjgme This means that the one-element
record type(none) is the most specialized record type, af&c) is the most general.

For examplestop is a behaviour of typexit (none), meaning that it will never terminate. Sincaone) is the
least general record type, we can ss@p wherever a process of any record type is required.

Similarly, if G is a gate of typgate(etc) then we can communicate values of any type alGagthis is the same
semantics as the existing untyped gates in standard LOTOS.

A.1.1.3 Data expressions

In contrast to standard LOTOS (which has a separation between processes and functions), E-LOTOS considers func-
tions to be restricted forms of processes (with no communication or real-time capabilities). The language of expressions
is therefore very similar to the language of behaviours, and shares many features such as pattern-matching, exception
raising and handling, and imperative features.

Normal forms A normal formis a data expression which cannot be reduced any further. For examplésinot in
normal form, but 2 is. A normal form is one of the following:

e A primitive constant, such aflello world" or 2, for one of the built-in types.
e Avariable, such as x or gtr.

e A record of normal forms, such a&=>1.5,y=>—3.14), () or (5,nil()) (which is just syntax sugar for
($1=>5,%2=>nil))).

e A constructor applied to a normal form, such ag hibr cong5,nil()).

We will let N range over normal forms, ar(@RN) range over record normal forms.

Pattern-matching The expression language includesaseoperation, which allows branching depending on the
value of an expression, for example we can find the head of a list with:

casexsis
nil -> raise Hd
| cong7x,any:list) -> x
endcase

This case operation consists of a value to branch on (in this case xs) together with a list of possibilities, given by
patterns If the list is empty, then the first pattern will match, and the Hd exception will be raised. If the list is non-
empty, then the second pattern will match, x will beund tothe head of the list, and will then be returned as the
result.

Case expressions are evaluated by evaluating the expression to normal form, and then attempting to match the
resulting value against each pattern from top to bottom until a match is found. If the value does not match any pattern
(which cannot occur in the above example), a special Match exception is raised.

147

Note that coné?x,any:list) is a structured pattern. At the highest level, we find the list constructor cons, built
from a record pattern that includes the elementary patterradany: list. For a list to match this pattern, it has to
have the form conéhd,tl).

When a list matches the pattern cons, any:list), the variable x is bound to the head of the list, for example
producing the substitutiopx=>hd]. Since substitutions have the same syntax as records, we will make a pun between
record normal forms and substitutions.

We also allow expressions in patterns, which are evaluated when the pattern is matched, and match any value equal
to the result. This is most often used to match against constants, for example:

casex is
10 ->"zero"
| any:int -> "nonzero"
endcase

Sometimes, it is useful to match against an expression, for example we can check to see if a list is a palindrome (using
a function which reverses a list) with:

casexsis
Ireverséxs) -> "palindrome"
| any:list -> "nonpalindrome"
endcase

The main use of matching against expressions is in communication, as we shall see in Section A.1.1.4.
Patterns can be explicitly typed, which is useful in the presence of subtyping. For example, if int is a subtype of
float, then we can constructasestatement to decide whether a value is an integer or not:

casex:floatis
any:int -> "integer"
| any:float-> "noninteger"
endcase

Again, the main use for explicitly typed patterns is in communication.
A pattern is one of the following:

e A bound variable, for examptex.
o A free expression for examplé or ! reverse€xs).
e The typed wildcard patterany:T.

e Arecord pattern, for examplé=>7px,y=>7py), (), or (?x,any:T)
(which is just syntax sugar fdi$1=>7x,$2=>any: T)).

¢ An extensible record pattern, for example=>7pXx,etc), (etc), or (?x,etc) whereetc is a pattern which
matches any other fields. Note the difference betw@nany: T) and (?x,etc): the former will only match
tuples with two fields where the latter will match tuples with any (positive) number of fields.

e Arecord pattern with aasclause to bind part of the record, for exampfall as?x,etc) or (7x,7all as eto.
e A constructor applied to a pattern, for example nil or ogns any: list) .
o An explicitly typed pattern, for examplgy :int.

e A guarded pattern, for examptg :int [y < 10] which matchs any integer less than 10.

148

It is easy to define operators suchifastatements as syntax sugar on top of the case operator, for example the expres-
sion:

if E then E; elseE; endif
can be expanded to:

caseE is
true-> E;
| any:bool-> E;
endcase

elsif-statements are also syntax sugar, for example the expression:
if E1 then E elsif E3 then E4 elseEs endif
can be expanded to:

if E1 then
E>
else
if E3 then
Esq
else
Es
endif
endif

Exceptions Expressions can raise exceptions, in order to signal an error of some kind, for example when we attempt
to take the head of an empty list:

function hd (xs:intlist) : int raises[Hd] is
casexsis
nil -> raise Hd
| cong7x,any:intlist) -> x
endcase
endfunc

Exceptions either propagate to the top level, ortemppedby an exception handler. For example we can declare a
function:

function hdO (xs:intlist) : intis
trap
exceptionHd is 0 endexn
in
hd (xs) [Hd]
endtrap
endfunc

Then hdO(conda,a9) returns a, and hd@nil) returns 0, since the Hd exception raised by hd is trapped by the
exception handler.

149

Exceptions can be typed, for example:

trap
exceptionError (codeint) is
casecodeis
10 -> "minor error"
| '1->"major error"
| any:int -> raise Unknown (code
endcase
endexn
in

endtrap

We can declare more than one exception in a single trap operator, for example:

trap
exceptionFoois E; endexn
exceptionBaris E; endexn
in
E
endtrap

Note that Foo and Bar are only trappeddnnotin eitherE; or E,. So if E raises Foo or Bar, then it will be handled,
but if E; or E, raises Foo or Bar then it will not.
In addition, we can write a ‘handler’ for the successful termination of an expression, for example:

trap

exceptionParseErrois 0 endexn

exit (x:string) is string2int(x) [ParseErrdr endexit
in

E
endtrap

This is useful in the case where we want any ParseError exception raigedoblye trapped, butot any ParseError
exception raised by the call to string2int. It is impossible to write this without the capability to handle successful
termination—of the two obvious ‘solutions’, one does not type-check:

string2int (
trap
exceptionParseErrois 0 endexn
in
E
endtrap
) [ParseErrar

150

and the other traps the ParseError exception raised by string2int:

trap

exceptionParseErrois 0 endexn
in

string2int(E) [ParseErrar
endtrap

Thetrap operator both declares and traps the exception—this means it is impossible for an exception to escape outside
its scope. This can be contrasted with a language such as SML where exception declaration and handling are separated,
so it is possible for exceptions to escape their scope:

local
exceptionFoo
in
raise Foo
end
Note that the only way in which an exception can be observed by its environment is by trapping it—it is impossible for
expressions to synchronize on exceptions.
Imperative features The data expression language is functional, but supports a language of record expressions which
mimics an imperative language with write-many variables. For example, the imperative expression:
?X :=0; 7y :="hello world";
is equivalent to the behaviour:
(x=>0,y=>"hello world")

The simplest imperative expression is an assignment E, whereP is an irrefutable pattern ariel an expression, for
example:

X :=4
As we remarked earlier, we allow the use of out parameters as syntax sugar for assignment, for example:
partition (y,ys,?l,79)
is shorthand for:
(7l,79) := partition (y,ys)

There is a sequential composition operator whose syntax jsE». It is like the LOTOS enabling operator because it
combines two expressions, but it has a slightly different semantics: it does not perform an irdetioal.

Thevar operator is used to restrict the scope of variables, with syrdaxLV in E endvar, wherellV is a list of
typed variables. For example:

var

X:int
in

7x:=E; X*X
endvar

151

has the same semanticseag E. Optionally, some of the local variables can be initialized, for example we could have
written:

var
X:int:=E
in
X % X
endvar

An iteration (or loop) operator is included in the language. This operator allows recursive processes to be specified
without using explicit process identifiers.

Loops with local variables can be declared—these local variables can be initialized, and should then be assigned to
on each iteration of the loop. A loop can be broken withreak command. For example, an imperative function to
sum a list of numbers can be defined:

function sum (xs:intlist) : intis
var ys:intlist: =xs,
total:int: =0
in
loop
caseysis
nil -> break (total)
| cong7z,7zs) -> 7total : = total+ z; 7ys:=2zs
endcase
endloop
endvar
endfunc

The breakable loop is then defined using exception handling, for example the above loop is shorthand for:

trap
exceptionlnner (x:int) is x endexn
in
loop
var ys:intlist: =xs,
total:int:=0
in
caseysis
nil -> raise Inner (total)
| cong7z,7zs) -> 7total : = total+ z; 7ys:=2zs
endcase
endvar
endloop
endtrap

We also allow named loops, so that you can break a loop other than the innermost one, for example:

loop fredin ...
loop janetin ...
if bthen breakfred ...

152

function partition (x:int, xs:intlist) : (intlist,intlist) is
loop
var
lessintlist:=nil,
gtr:intlist: = nil,
restintlist: = xs
in
caserestis
nil -> break ((less,gtn)
| cong(7y,7ys) [y <x] ->
?less:=congy,les9 ; 7gtr :=gtr; ?rest:=ys
| cong7y,7ys) ->
7less:=less 7gtr := congy,gtr) ; 7rest:=ys
endcase
endvar
endloop
endfunc

Figure A.1: The imperative version of partition

As an example of the imperative features, an imperative definition of quicksort partitioning is given in Figure A.1. It
can be compared with the functional definition given in Figure A.2.
Besides, we provide usuahile andfor, which are syntactic sugar ftmop.

function fact (n:int) : int raises [OutOfRang@ is
if n < 0then raise OutOfRangeendif
var X:int,ressint:=1in
for x:= 2 while x <=nby x:=x+1do
res: = res* X
endfor
endvar
endfunc

function NumElementgL :intlist) : intis
var X:int,total: int:=01in
while L <> NIL do
total:=total+ 1 ;
cons(?x, 7L):=L
endwhile
endvar
endfunc

Static semantics The static semantics for expressions is given by translating them into the behaviour language de-
scribed below. For expressions which do not assign to variables, the typing is given by judgements:

CFE=exit(T)

153

function partition (x:int, xs:intlist) : (intlist,intlist) is

casexsis
nil ->
(nil, nil)
| cong7y,7ys) ->
var
lessintlist, gtr:intlist
in
(7less, 7gtr) := partition (X,ys)
if x>y
then (congly,less , gtr)
else(less, congy,gtn)
endif
endvar
endcase
endfunc

Figure A.2: The functional version of partition

meaning ‘in contex€, expressiork has result typd'. The contextC gives the type for each of the free identifiers
used inE, for example we can deduce:

X=int, *x= (int,int) — exit (int) F Xxxx=exit (int)

meaning ‘in a context where x is an integer anid a function from pairs of integers to integers, thesxeeturns an
integer’.
Expressions which assign to variables but do not return a result have typing given by judgements:

CFE=exit Vi=>T1,...,Va=Th)

meaning ‘in contex€, expressiorE assigns to variableg, through toV,, the typesT; through toT,’. For example we
can deduce:

2=int F ?x:=2= exit (X=int)

meaning ‘in a context where 2 is an integer, thten=2 assigns an integer to the variable x'.
Expressions which both assign to variables and return a result have typing given by judgements:

CrE=exit(T,Vi=T1,...,Va=>Th)
which combines the above two semantics. For example:
2=int, *= (int,int) — exit (int) F ?Xx:=2; Xx*x= exit (int,x=int)

meaning ‘in a context where 2 is an integer ani$ a function from pairs of integers to integers, thlen=2; XX
assigns an integer to the variable x and returns an integer’.

Note that x is not free in the expressiox: =2; x xX since it is bound by the assignment statement. This is reflected
in the type judgement above, which does not require x to be in the context.

154

Dynamic semantics The dynamic semantics of data expressions is defined by the translation into behaviour expres-
sions. There are two ways in which a data expression can have observable behaviour: either it terminates successfully,
or it raises an exception.

Expressions which terminate successfully with a value have dynamic semantics given by judgements:

ErEXNE

meaning ‘in environmerit, the expressiof returns normal fornN and then behaves liKg"’. As it happensE’ will

always be an expression with no behaviour, since an expression cannot do anything after terminating, but we use this
notation for symmetry with the case of exception raising. The context gives the bindings of function identifiers, and
other similar static information required at run-time. For example:

o 2%2%% block

maning ‘the expression#2 returns the value 4 and then has no observable behaviour’.
Expressions which terminate successfully having assigned values to variables have dynamic semantics given by
judgements:

O(V1=Ng,...,Vh=Np)
E "E 1 1 n n El

meaning ‘in contexE, the expressiol assigns normal formil; through toN, to variablesV; through toV,'. For
example:

Fooox:=2°%22 plock

meaning ‘the expressiorx: =2 terminates, having assigned the value 2 to the variable x, and then has no observable
behaviour'.
Expressions which both assign to variables and return a result have dynamic semantics given by judgements:

5(N,V1:>N1,...,Vn:>Nn)

EFE E’

combining the two semantics, for example:
Fooexa=2; xxx X252 plock
Similarly, the semantics of exceptions is given by judgements:
ErEXRE
For example:
raiseX (1) 8 block

The semantics is defined formally in Sections 3.2.7.14 and 6.2.27.

A.1.1.4 Behaviour expressions

Some knowledge of LOTOS is assumed in this document. However, for completeness, we provide the syntax of Basic
LOTOS (i.e. LOTOS without datatypes) together with some brief explanations.

B:=stop|exit|M[G'1|G;B|i;B|B[1B|BI[G]IB|hideG"'inB|B>>B|B[>B
The semantics is as follows:

e Deadlock:stopis an inactive behaviour.

155

e Termination:exit is a behaviour that terminates successfully. It performs an action o gattthen deadlocks.
e Process instantiatioii [G] instantiates the previously delared process definition with paran@ters

o Action-prefix: G; B is a behaviour that first performs acti@and then behaves like.

¢ Internal action-prefixi; B is a behaviour that first performs the internal actiamd then behaves likg.

e External choiceBs [] By is a process that can behave either H¢eor like B, depending on the environment.
e Parallelism:B; | [G]| By is the parallel composition d&; andB; with synchronisation on the gates(ﬁn

e Abstraction:hide G in B hides in behaviouB all the actions from the s&, i.e. it renames them intio

e Enabling:B; >> By is the sequential composition Bf andBsy, i.e.B; can start whe; has terminated success-
fully.

¢ Disabling:B; [> By allowsB; to disableB; providedB; has not terminated successfully.
The main differences between this language and the E-LOTOS base language that we have designed are as follows:

e Actions are particular behaviours and the two forms of sequential composition (action-prefix and enabling) are
unified.

o New features are added such as pattern-matching, exceptions, assignment, time and other operators (e.g. an
explicit renaming operator).

The behaviour language can be seen as an extension of the data language with communication between parallel pro-
cesses and real-time features.

Communication Behaviours can communicate gates The simplest communicating process is one which syn-
chronizes on a gat@: this is just writtenG. Such synchronizations can then be sequentially composed, for example a
behaviour which alternates between in and out actions is:

loop
inp; outp
endloop

Behaviours can also send or receive data on gates, for example a one-place integer buffer is:

loop
var x:int
in
inp(?x) ; outp(!x)
endvar
endloop

Here the variable x isoundby the communication on the inp gate, andréein the communication on the outp gate.
The resulting behaviour copies integers from the inp gate to the outp gate.
When synchronizing on a gate, you can specify any pattern to synchronize on, for example:

G(age=>!28,name>7na,address> (numbee>7no, streee>! "Acacia Ave",etc))

will synchronize on any person aged 28 living in Acacia Avenue, and will bind the variables na and no appropriately.
This use of patterns in communications is the main reason for allowaryd! in patterns.

156

You can also specify selection predicatepecifying whether a synchronization should be allowed, for example to
select anyone in their 20s living on Acaica Avenue, you might say:

G(age=>7a,name>7na,address> (numbe&>7no, streee>! "Acacia Ave",etc))
[20 < aandalsoa < 29]

Gate parameters are given in process declarations, for example:

processBuffer [inp: (int) ,outp: (int)] is
loop
var x:int
in
inp(?x) ; outp(!x)
endvar
endloop
endproc

Gates may be typed: by default each gate has ¢gp@ , so can communicate data of any type, for example:

processOverloadingExampl€overloaded (out x:int, out y:bool) is
overloaded?x:int) ;
overloaded?y :bool)

endproc

The first communication on the overloaded gate has to be of type integer, and the second has to be of type boolean.
We can usas patterns to match against all or some of a record. This is particularly useful when the record is
extensible, for example we can write a simple router capable of handling any type of data as:

processRouter[inp: (de=>dest etc) , left, right] is
var destinationdest, data (etc)
in
inp(de=>7destination 7dataas eto ;
casedestinationis
L -> left'data
| R ->right!data
endcase
Router[inp, left, right]
endvar
endproc

Concurrency Concurrent behaviours can synchronize on their communications. For example, two behaviours which
are forced to synchronize on all communications are:

G(address> (numbee>7no, streee>!"Acacia Ave",etc) ,etc)
| | G(age=>!28,name=>7na,address>any:addrType

Since the two behaviours are forced to synchronize on the@dtes has the same semantics as:

G(age=>!28,name>7na,address> (numbee>7no, streee>! T" AcaciaAvé, etc))

157

Data may be communicated in both directions in a synchronization, for example:

G(age=>!28,name>7na,etc) ; By
|1 G(age=>7a,name>!"Fred",etc) ; B,

has the same semantics as:

G(age=>!28,name>!"Fred",eto) ;
(?na:="Fred"; B1) || (7a:=28; By)

Parallel behaviours have to synchronize on termination, for example the following will terminate immediately, after
setting variables x and y:

7x:=11| 7y:=2
Two behaviours which have no synchronizations at all (apart from synchronizing on termination) are:

overloaded?x:int)
|| | overloaded?y:bool)

This will communicate twice on the overloaded gate: once inputting an integer, and once inputting a boolean, but the
order is unspecified. Once both inputs have happened, the process can terminate. This process has the same semantics
as:

overloaded?x:int) ; overloaded?y:bool)
[1 overloaded?y:bool ; overloaded?x:int)

Note that the variables bound by concurrent processes are all the variables bound by the components, and that there is
no possibility of communication by shared variables.

General parallel operator E-LOTOS has a parallel operator which allows explicit synchronization and “n among
m” synchronization:

par Gi#ny,...,Gp#np in
[I‘l] for Bl

...

| | [[n] for By

endpar

This operator says that: if soni® can do an action with nam@&, and this action is specified in tHg set (the
synchronization ligt then this action must be synchronized with the actions of the others behaviours as follows:

o if Gis specified in thdist of degreegG;#ny, ..., Gp#np) with the degree n, theB; has to synchronize iG with
n-1 other behaviours which have G in their synchronization list;

¢ if G does not appear in the list of degrees, then it has to synchronize with all other behaviourdhathgir
synchronization list.

On the other hand, i& is not in thel; set,B; can do it in interleaving with the other procesggs

158

Time Behaviours have real-time capabilities, given by three constructs:
e atime type, with addition and comparisons on times,
e await operator, to introduce delays, and
¢ an extended communication operator, which is sensitive to delay.

The time datatype is a total order with addition. We shaltleainge over values of type time.
The delay operator is just writtamait (d) which delays by timal and then terminates. For example a behaviour
which communicates on gaevery time unit is:

loop

G;

wait (1)
endloop

We can delay by an arbitrary time expressieait (E), for example:

loop
var x:time
in
G(?Xx);
wait (x)
endvar
endloop

Also, we have a simple way to write a nondeterministic delay:

loop
var x:time
in
G;
7X :=anytime;
wait (x)
endvar
endloop

Communications can be made sensitive to time by addief§ annotation, which matches the pattéio the time at
which the communication happens (measured from when the communication was enabled). For example:
G(?x:int)e?t[t < 3]
is a behaviour that agrees to accept an integer value (to be bound to variable x), provided that less than 3 time units
have passed, whereas:
G(?x:int)@!3
is similar, but the action can only occur at time 3, because the pattern variable has been replaced by a patt&:nn value
This behaviour has the same semantics as:

var
t:time
in
G(?x:int)e?t[t= 3]
endvar

159

The time features are directly inspired by ET-LOTOS [16] but are adapted to fit with other new paradigms of the
language, such as:

e action is a behaviour,
e sequential composition does not generateaation,
¢ the presence of pattern-matching,
¢ the presence of exception raising and handling.
Urgency Animportant concept isirgency a behaviour is urgent if it cannot delay—for example if there is a compu-

tation which must be performed immediately. For example, sequential composition is urgent—once the first behaviour
terminates, control is immediately passed to the second without delay. For example, consider the process:

loop
loop tick endloop [> wait (1) ;
loop tockendloop [> wait (1)
endloop

This will perform any number of ‘tick’ actions during the first time interval, then at time 1 control is handed over, and
any number of ‘tock’ actions is performed until time 2, and so on. Each of the hand-overs is urgent, so we know it is
impossible for a ‘tick’ action to happen in an even time interval, or a ‘tock’ action to happen in an odd time interval.

In E-LOTOS, the urgent actions are:

¢ Internal {) actions, whether written explicitly or caused by hiding.
e Exception raisingX) actions.
e Termination §) actions.

All of these actions happen immediately. However, there is one exception to the urgency of these actions: it is possible
for a termination to be delayed by a parallel behaviour. For example the following behaviour will terminate at time 2:

wait (1) ; exit | | wait(2) ; exit

The urgent semantics of exceptions given here is basically the same as the ‘signals’ model of Timed CSP [7].

Hiding The syntax for hiding is like in existing LOTOS, except that the (declared) gates are typed. For example in:

hide mid: (int) in
Buffer [inp, mid] | | Buffer [mid, outp]
endhide

a new mid gate is declared, which can communicate integers, and is then replaced byiimtetioak. This operator
preserves the property of urgency ofialind allows the modelling of urgency on hidden synchronization. This means

that one can express that a synchronization should occur as soon as made possible by all the processes involved. For
example the behaviour:

hide Gin
wait(1) ; G; By
[l wait(2); G; By
endhide

160

has the same semantics as:

wait(2); i;

hide Gin
Bill By

endhide

The hidderG occurs after 2 time units, which is as soon as both processes can p&form
The behaviour:

hide Gin
Gert[t>31; B
endhide

has the same semantics as:

wait(3); ?t:=3; i;
hide G in B endhide

Again the earliest possible time f@to occur is after 3 time units.
The behaviour:

hide Gin
Gert[t>3]; B
endhide

has two possible semantics depending on whether the type time is discrete or dense. If time is a synonym for natural
numbers (discrete time), the behaviour has the same semantics as:

wait(4); 7t:=4; i;
hide G in B endhide

because 4 is the smallest natural number strictly greater than 3. On the other hand, if time is a synonym for rational
numbers (dense time), the behaviour has the same semantics as:

wait (3) ; block

The reason why this process timestops after 3 time units without even performing the Gidklbacause there is no
smallest rational (or earliest time) strictly greater than 3.

Having to hide synchronizations to make them occur as soon as possible is sometimes criticized, because there
are cases where one would like to still observe those gates. The problem here lies in the interpretation of the word
‘observation’. Observing requires interaction, and interaction may lead to interference. Clearly, we would like to show
the interaction to the environment without allowing it to interfere. There is a nice solution to this problem. It suffices
to raise an exception (signal) immediately after the occurrence of the hidden interaction as follows. Consider two
processes, Producer and Consumer, that want to synchronise on the sync event as soon as they are both ready to do so.
We add a special monitoring process that synchronizes with them and sends a signal just after sync occurred:

Producer = var t:timein 7t:=anytime; wait (t) endvar; sync; Producer
Consumer = syng var t:timein 7t:=any time; wait(t) endvar; Consumer
Monitoring = syng signalyes; Monitoring
System = hide syncin (Producerl | Consumer | Monitoring)

The signal operator is the same aaise except that it allows computation to carry on after the exception has been
raised:raise X is shorthand fosignal X ; block.

161

Suspend/Resume This operator is an extension of the LOTOS disabling which allows the resume of the interrupted
behaviour. The resume is done through an exception gate which is specified inside the operator. For example, in
process:

wait(4); By [X > wait(1); i; wait (2) ; raise(X)

the left behaviour is continously suspended by the internal action after one time unit. The left behaviour is suspended
during two time units and then resumes via the exception X. The left behaviour is blocked when it is suspended; it does
not evolve in time or in actions. It results, in our example, that this process is resumed in the following state after its
first suspension:

wait(3); By [X > wait(1); i; wait (2) ; raise(X)
and not in

wait (1) ; By [X > wait(1); i; wait(2) ; raise(X).

The right behaviour is always restarted after a resume, it means, for instance, that the following two expressions

have the same semantics:

B1 [X > By; raise(X)

B; [X > By; signal(X); Bs

This quite simple operator can be used to specify more complex interruption mechanisms where, for instance, a
behaviour can suspend several behaviours. For example, consider the process:

(B1 [X1 > G1; Gjsraise(Xy) |11 B2 [Xo > Gz; G;raise(Xo))
| [G1,G2, G, G|
B3

The behaviouB; controlB; andB; through the gat&; andG]. For instanceBz can suspen8; with the gateG; and
resume it withG}. In this way, it is possible to specify more complex interruption mechanisms used, for instance, in
real-time schedulers.

Let us remark that the LOTOS disabling is a special case of this Suspend/Resume operator where no exception gate
has been specified.

Renaming An explicit renaming operator is introduced in the language. It allows one to rename observable actions
into observable actions, or exceptions into exceptions.

Renaming an observable action into another observable action may be much more powerful than one might think
at first, because it allows one to do more than just renaming gate names. For example, it can be used to change the
structure of events occurring at a gate (adding or removing attributes), or to merge or split gates.

The simplest form of renaming just renames one gate to another:

rename
G (x=>7i:int) is G' (x=>"i)
in
B
endren
Note the syntactic similarity between renaming and function declaration or exception trapping. This form of renaming
is so common that we provide a shorthand for it:
rename
G (x=>int) is G’
in
B
endren

162

We can remove a field from a gate:

rename

G (x=>7i:int,y=>any:bool) is G'(!i)
in

B
endren

We can add a field to a gate:

rename

G (x=>7i:int) is G' (x=>1i,y=>!true)
in

B
endren

We can merge two gat€® andG” into a single gaté&:

rename
G (x=>7i:int) is G(x=>!i,y=>!true)
G" (x=>7i:int) is G(x=>!i,y=>!false)
in
B
endren

We can also split one gate G into two gates G1 and G2:

rename
G (x=>7i:int,y=>11) is Gy (')
G (X=>7i:int,y=>12) is G (i)
in
B
endren

We can rename exceptions in a similar way.

Imperative feature for behaviours As with expressions, a number of “imperative” features are supported to ease
writing specifications. Some examples witlop has been presented. As the rest are obvious, we only present some
little examples:

processprotocol [down: packetup] is
var
code packet
data (etc)
in
down(de=>7code ?dataas eto ;
while code«>disconnecto
up'!data;
down(de=>?codeg, 7dataas etQ
endwhile
endvar
endproc

163

Static semantics The static semantics for behaviour expressions is very similar to that of data expressions, and is
given by judgements:

CHB=exit(V=T)
For example:
G= gate any- (G(7x:int) ||| G(?y:bool)) = exit (x=-int,y =-bool)

However, it is useful to identify the behaviour expressions that cannot terminate initially, i.e. without having first
performed an (internal or observable) action or sent a signal. These behaviours will type as:

C FB=guarded (V=T)
And of course, the following rule is valid:

C FB=guarded (V=T)
CFB=exit V=T)

By carefully requiring behaviour expressions to be so guarded in some contexts (e.g. choice, disabling and sus-
pend/resume), we can preserve time determinism even though sequential composition and exception handling do not
introduce an internal action.

Dynamic semantics The dynamic semantics of data expressions is given by two kinds of reduction:

e Successful terminatiol + E °®Y g/,
e Exception raisind= - E XRW e

The dynamic semantics of behaviour expressions extends this with three new kinds of judgement:

e Internal action€& B Iﬁ) B.
o CommunicatiorE - B FY B,
e DelayE FBE% B/,
For example (up to strong bisimulation):
i; G(7t);wait (t) &> G(7t) ;wait (1)
3 7t:=3; wait (3)
R 2t:=3; wait (1)
ER - 2t:=3; wait (0)
=9 plock
The urgency of internal, exception and termination actions is given by the properties:

e No behaviouB can offer both'ﬁ> andﬂ.

« No behaviou can offer both"EY’ andﬂ.

e No behaviouB can offer bothaﬂ\ﬁ) andﬂ.

164

For example:

2t: =32 plock

but:

?t:=3§&

However, in order to get the correct synchronization semantics for termination, we have to allow terminated processes
to age when placed in a parallel context. Consider the following example:

7t:=3 | | wait(2) ; ?y:=true

We would like this to have semantics (up to strong bisimulation):

?t:=3 | | wait(2) ; 7y: =true G ?t:=3 | | wait (1) ; 7y: =true
= 7t:=3 | | wait(0) ; 7y:=true
6(t=>3,_y=)>true) block

In order to achieve this, we allow terminated processes to age in a parallel composition. The alternative would be to
treatd actions (and sequential composition) in the same way as gates (and hiding), but this would have introduced
many negative premises into the semantics (for example sequential composition and exception handling), which we
have tried to avoid. The semantics presented here only uses negative premises in the semantics of hiding.

A.2 The module language

LOTOS has only a limited form of modules, which encapsulate data types and operations but not processes. Moreover,
this mechanism does not support abstraction: every object declared in a module is exported outside. These deficiencies
make LOTOS difficult to use, and cause problems for users and tool implementors alike. A critical evaluation of
LOTOS data types from the user point of view can be found, for instance, in [19].

One of the goals of E-LOTOS is to develop a modularization system, which should allow export and import, hiding,
and generic modules. The modules used in the data part should be the same as those used in the behavioural part, so
‘process’ declarations should be allowed as well as ‘type’ and ‘operation’ declarations. For abstraction and code re-use,
interfaces and generic modules are very useful.

For example, a simple router of packets containing a data field and an address field is specified in LOTOS as

165

follows:

specificationRoutelin, left, right] : noexit : =
type Naturalis
sorts nat

endtype
type Datais
formalsorts data
endtype
type Packets Data
sorts
packetdest
opns
mkpacket: dest data-> packet
getdest: packet-> dest
getdata: packet-> data
L : -> dest
R: ->dest
egns forall p: packet de:dest, da:data
ofsort packet mkpacketgetdest(p) ,getdata(p)) = p
ofsort dest getdestmkpacket(de,da)) = de
ofsort data getdatdmkpacket(de da)) = da
endtype
type NatPackets PacketactualizedbyNaturalusing
natpackefor packet
datafor nat
endtype
behaviour Routefin, left, right]
where
processRouter[in, left, right] : noexit : =
in?p:natpacket
(
[getdestp) = L1 -> left! getdatdp) ; Router[in, left, right]
[1 [getdestp) = R] -> right! getdat&p) ; Router[in, left, right]
)
endproc
endspec

Apart from readability problems of the specification language discussed in Section A.1, this specification suffers
from some problems of re-usability. For example, it is not possible to parameterize the Router process specification
by a generic data type, because the behaviour part of standard LOTOS must refer only to fully instantiated types. So,
to obtain a Router dealing with boolean data, one has to re-write the process Router to accept BoolPackets instead of
NatPackets.

This can be compared with the equivalent specification using the module language presented here (the base language

166

is one presented in Section A.1):

interface Datais
type data

endint

module Destinationis
type destis L | R endtype

endmod

genericRouterD: Data) import Destinations
type packetis (de=> destda=> data endtype
processRoutelin: packetleft: dataright: datd is

endproc
endgen
module NatRouteris
Router(Naturalrenaming (types nat :=datg)
endmod
specificationRouterimport NatRouteris
gatesin:any, left: any,right: any
behaviour
Router[in, left, right]
endspec

Note that:

Abstract data types, like data, can be declared into interfaces.
Generic modules are parameterized by interfaces, in a functional style.

Process and behaviours can be declared in modules and generic modules; generic data types can be used into
behaviour expresions.

Modules and generic modules can import other modules in order to use their definitions.

Modules present a “by default” interface, which contains all the definitions. However, an interface can restrain
the module through an explicit declaration.

Generic modules are instantiated by modules which match a specified interface (via a renaming). For example,
the Natural module matches the interface Data if we map the type data to nat. So, the generic router module can
be instantiated with Natural to obtain a router managing naturals as data.

A specification entity can import modules already declared. The body of the specification could be a behaviour
expression or an expression. The gates and exceptions used in the body have to be declared.

The name space is flat. An extension of this proposal with a dot notation for identifiers will be investigated.

For this proposal we present a complete abstract syntax and a static semantics.
The abstract syntax contains: specification declaration, module declaration, module expressions, generic module
declarations, interface declarations, interface expressions, and declarations.

167

The static semantics of this language is formally defined. Itis based on judgments 8ueh@sdecs C meaning
‘in the contextB of top-level declarations, the top level definitimp-deds well formed and gives the conte&t. For
example:

F (module OnePoinis type M is(x:int,y:int)) = (OnePoint {M = type,M = (Xx=-int,y=-int) })

means ‘then the OnePoint module definition is bound to a context (signature) where the type M is declared, and it is
equivalent to the type paix: int,y : int)’. We assume in this section some built-in (pervasives) types like int, bool, etc.
The static semantics includes:

¢ Abstract data types.

Modules declaration and module expressions.

Generic modules parameterized by interfaces, and generic module instantiation.

Interface declarations and expressions.

e Enrichment, sub-typing, and matching relation between interfaces and modules semantic objects.

¢ Renaming of modules and interfaces.

The module language described in this paper is based on previous discussions for the module language [14] and on
previous proposals for LOTOS with a module system [23].
A.2.1 Basic concepts
We provide here a short introduction to this proposal by giving example of how it responds to issues formulated in the
questionnaire of [21, Subsection 7.2].
A.2.1.1 Naming

The domain of names is not structured. However, an extension of this proposal with a structured domain for identifiers
will be investigated.

A.2.1.2 Specification structuring

A specification in modular-E-LOTOS is given as a sequenceaduledeclarationsgeneric moduledeclarations, and

interfacedeclarations.

Modules Modules are sequencesagclarationf types, constructors, processes, functions, and value constants. For
types, functions, processes, and values constants the user has to provide an implementation. Modules can be declared
usingmodule declarationsvhose simplest form is:

module mod-idis decendmod

168

wheremod-idis a module identifier andecis a (base language) declaration, enriched with value constant declarations.
For example, a one-point domain has the following declaration:

module OnePoinis
type M is zero() endtype
value0:M is zero() endval
function infix + (x:M,y:M) :M is
case(zero() ,zero()) is
(Ix,'y) >0
endcase
endfunc
endmod

Unlike the SML module system, we have not nested modules; the possibility to declare nested modules in SML is
unusual, makes the module system more complex, and it is not obvious whether the extra complexity is necessary.
Processes can be declared in modules. For example, the specification of a data-flow process is:

module DataFlowis
processFlow [In: (int,int),Out: (int)] is
In(?x:int,?y:int) ; Out(! (x+y)) ; Flow [In,Ouf]
endproc
endmod

Note that the typ@nt is a built-in type, so no importation clauses are needed.

Interfaces Intuitively, aninterfaceis a module type. Whereas a module expression declares a module, an interface
expression specifies a class of modules. For example, the data-flow module has the interface:

interface DataFlowis
processFlow [In: (int,int),Out:int]
endint

An interface is not the type of any particular module, but rather of a whole class of modules, namely all the modules
thatmatchthe interface. For example, the interface DataFlow can be matched by any module which has at least a a
process with name Flow, gates of tyfiat,int) andint, and with functionalityexit(none) (noexitin LOTOS).

In the language we accept equations to be specified in interfaces. For example, the Monoid interface is:

interface Monoidis
type M
value0:M
function infix + (M,M) : M
egns forallx,y,z: M —>

(0+Xx) =x;
(x+0)=x;
(x+y) +2) = (x+ (y + 2));
endeqgns
endint

Tools could treat equational specifications just as (type checked) comments, so we should ensure that (as in Extended
ML) the equations can be commented out without affecting the semantics of the module.

169

Generic Modules Genericity is a useful tool to construct specifications and for code reuse. Here we provide a mean
for genericity using generic modules. Generic modules allow standard libraries of components to be built up, and
support code reuse of both components and glue. The simplest declaration of a generic module is:

genericgen-id (mod-id : int-id) is decendgen

wheregen-idis a generic module identifiemod-idis a identifier for a formal module matching the interfaceid,
anddecare declarations of the base language.

Generic modules cannot be parameterized by generic modules.

So, as well as specifying the exports of a module, interfaces are also used to specify the parameters of a generic
module. For example, a generic list module can be implemented using monomorphic lists as follows:

interface List imports Monoidis

type E

function inj(x:E) :M
endint
interface EqTypeis

type E
endint
genericGenericList(Eq: EQTyp® :List is

type M is nil () | congE, M) endtype

valueOis nil () endval

function infix + (s1:M,s2:M) :M is

caseslis
nil() — s2
| cong(7X,7XS) — coONYX,XS+S2)
endcase

endfunc

function inj (x:E) : M is congx, nil ()) endfunc
endgen

This module can be used as follows:

module ListNat: [List renaming (typesE := nat) lis

GenericListNaturalrenaming (types nat :=E))
endmod

A.2.1.3 Abstraction, Hiding

Abstraction is present by abstract data types declaration in interfaces. An abstract data type can be specified as follows:
type S
This abstract data type may be implemented by a lot of concrete (or manifest) data types. For example, if we declare:

interface Setis
type Element
type Set
value empty: Set
function insert(x: Elements: Se? : Set
function deletdx: Elements: Se) : Set
function memberx: Elements: Se : bool
endint

170

several implementations for type Set may be given: using list, binary trees . ..

An issue of abstract data types (ADT) is type equality. Equality is an important concept in LOTOS, since it is used
implicitly by synchronization. So far, all types allow equality, but the module system can introduce data abstraction,
so it is no longer possible to see the internal representation of a data type. Our proposal consider abstract data types as
equality types. Users have to define an equality function for each abstract data type used in communication.

Another means for abstraction is hiding. It constrains an existing module interface (or view) by another (more
general) interface, provided that the module matches the second interface. The effect is to obtain different views of the
module, depending on the current interface of the module. Consider, for example, the following specification:

interface VIEW1 is
type S
valuex:S
valuey:S
endint
interface VIEW2 is
type S
type pairSis (x:S,y:S) endtype
endint
module A is
type Sis ACK () IREQ() endtype
valuex : Sis ACK () endval
valuey : Sis REQ() endval
type pairSis (x:S,y:S) endtype
endmod
module A1:VIEW1 is A endmod
module A2:VIEW?2 is A endmod

As a result of constraint A1 by VIEWL1, only the components specified in VIEW1 are accessible for users of Al.
Hence, pair, ACK and REQ are not accessible via Al.

A.2.1.4 Composition of modules and interfaces
There are several means to compose modules and interfaces:
¢ Importation of interfaces into interfaces usirighport int-exp, - - -, int-exp,"clause.
¢ Importation of modules into modules and generic modules usimgdrt mod-exp, - --,mod-exp”.
e Renaming of interfaces and modules, whose simpler form is:
module mod-id is
mod-idrenaming (typesS:=S,...opnsC :=C',...)
endmod

¢ Instantiation of generic modules, whose simpler form is:

module mod-idis gen-id(mod-id) endmod

171

Interface importation Interfaces can import other interfaces. For example, the interface for pre-orders extends that
for partial orders with one equation:

interface PreOrdelis
type T
function infix <=(x:T,y:T) :bool
egns forallx,y,z: T
X<=X;
(x<=y andalsoy<=z)=>x<=y;
endegns
endint
interface PartialOrdeimport PreOrdeiis
egns forallx,y: T
(x<=y andalsoy<=x)=>x=y;
endegns
endint

Note that the sort bool and the operations on this sosXaandandalsg are built-in.

Module importation Modules can import other modules: the coercion of the natural numbers type (assuming an
appropriate Natural module) to a Monoid structure is made by:

module NatMonoid: Monoidimport Naturalis
type M is nat endtype
endmod

In the case of multiple importation, the definitions provided by each importer must be compatible. Thus, if two or more
modules provide definitions for a common name, these definitions must be the same.

Instantiation Instantiation provides code re-use. For example, generic List can be instantiated several times:

module ListNat: [List renaming (typesE := nat)] is
GenericListNaturalrenaming (types nat:=E))
endmod
module ListBool: [List renaming (typesE :=bool)] is
GenericLis{Booleanrenaming (types bool:=E))
endmod
The result of the first instantiation is a module having as type E the type nat, and M being a list of naturals. The
interface of this module is the List interface where the E type is replaced by nat. Similarly for the second instantiation.
Importing the modules ListNat and ListBool will generate a name clash for M, +, and inj. To avoid this a renaming can

be applied, as described in the next paragraph.
Since lists, arrays and sets are frequently used in specifications some rich syntax for them is suitable (see A.2.1.8).

Renaming Renaming is used to give an unique name to objects to avoid name clashes. The solution proposed is
compatible with ACT ONE renaming of types. For example, obtaining a module of integer lists with type ListNat is as
follows:
module ListNatis
GenericLis{Naturalrenaming (types nat:=E))
renaming (typesListNat : = List)
endmod

172

A.2.1.5 Equational specifications

We allow equational specifications in interfaces. For example, in the Monoid interface:

egns forallx,y,z: nat
(x+0)=x;
x=(x+0);
(x+(y+2))=((x+y)+2);
endeqgns

Many tools will treat these specifications just as (type checked) comments, so we should ensure that (as with Extended
ML) the equations can be commented out without effecting the semantics of the module.

An extension of the solution proposed here is presented in [9]. It allows to specify equations, relations and proper-
ties.

We have to provide a formal semantics for when equations are valid (although this is obviously not computable, so
we cannot expect automatic tools for checking validity).

A.2.1.6 Relationship with the external environment

External declarations are allowed for modules to allow interfacing to other specification or implementation languages.
For example, one could give an external implementation of the Monoid module by declaring:

module ExtMonoid: Monoidis external endmod

Any object declared to bexternal has no formal dynamic semantics.

A.2.1.7 Compatibility with ACT ONE

The module system of E-LOTOS will include algebraic specifications in interfaces. For example, we can compare the
LOTOS specification:

type Monoidis
sorts
M
opns
0: >M
+_:M,M->M
egns forallx,y,z:M
ofsort M
X+0=X;
0+Xx=x;
(x+y)+z=x+(y+2)
endtype

173

with the declaration from the example data language:

interface Monoidis
type M
value0:M
function infix +(x:M,y:M):M
egns forallx,y,z:M
(x+0)=x;
(0+x)=x;
(x+y)+2)=(x+(y+2))
endegns
endint
module Monoid: Monoidis external endmod

There is a strong resemblance between such specifications and ACT ONE data type declarations. There are, however,
a number of differences, which need to be resolved:

1. ACT ONE allows overloading, as long as the sort of any expression can be determined statically,

2. module Monoid is specified to my structure which satisfies the axioms, not just the initial one (in particular
we may wish to introduce an initial declaration similar to the current external),

3. the relationship between generic modules and ACT ONE parameterized types and type renaming should be
clarified.

A.2.1.8 Base environment

Thebase environmeris a collection of signatures (i.e. interfaces) and (possibly generic) modules which are predefined,
and can be used in any E-LOTOS specification. They play the same role for E-LOTOS as the standard libraries do for
LOTOS, and the relationship with them should be clarified.

For each module:

We should give an interface, a module, and (where necessary) the dynamic semantics for the module.

We should specify if the module gervasiveor not. A module is pervasive if it is available everywhere without
explicit import reference. The identification of pervasive modules will be the subject of further discussions.

We should specify whether the module will be defined with genericity.

We should specify whether the types and functions contained in the module will be defined using the base
language, or if they will be implemented externally (e.g. real or floating-point numbers).

In the present paper, the built-in data types and the rich term syntax are not described in detail. In the given
examples, the implementation parts are often omitted and only interfaces are provided. A detailed specification should
be provided maybe based on existing proposals, for example [10] [20].

We propose the followingredefined typeghe type ‘int’, the type ‘real’, the type ‘bool’, the type ‘char’, the type
‘string’. All these types can be declared in a Standard module which can be pervasive.

Also we propose a set abnstructed typewith their rich term syntax: enumerated types, subrange types, record
types, arrays, sets, and lists.

174

A.2.1.9 Static semantics

Modules In static semantics, a module is a context. Modules can be declaredrusithgle declarationswhose
simplest form is

module mod-idis decendmod

wheremod-idis a module identifier andecis a (base language) declaration enriched with value declarations. The con-
text associated with the module identifrand-idis generated by the declarationsdiec For example, the declaration

module Ordltemis

type itemis int endtype

function leq(i :item,j:item) : boolis i<=j endfunc
endmod

elaborates to the following environment
Ordltem=- {item=-int,leq=- [1 (i = item,j = item) [1 — exit(booD }

In this example we suppose that integers are pervasive.

Interfaces Intuitively, aninterfaceis a type for modules. Whereas a module expression declares a module, an in-
terface expression specifies a class of modules. An interface is represented semantically by a context bound to the
interface identifier. For example, the Monoid interface declaration below

interface Monoidis
type M
value0:M
function infix +(M,M) :M
egns forallx,y,z:M ->
(0+x) = x;
(x+0) =x;
(x+y)+2) = (x+(y+2));
endegns
endint

elaborates to the following environment
Monoid=> {M = type,0= M, += [1(M,M) [1 — exit(M)}

Over interfaces bindings and modules bindings we defimagchrelation. Intuitively, a modulenatchesan interface
if the former provides compatible definitions for each definition given in the second one.

Generic modules The static semantics object corresponding to a generic module is an application from a record of
module bindings to a module binding. For example, the result of elaborating a generic module declaration

genericgen-id (mod-id : int-id) is decendgen

gen-id= (mod-id=C) — C’

whereC is the binding (type) of the interface identifiet-id, andC’ is the result of elaboratindec

The elaboration of a generic module instantiation consists to check first that the actual module parameters match
the domain of the binding (herémod-id=-C)), and then deriving the result frofiY, by instantiation of the formal
parameters used in the generic module body.

175

Closure Restrictions The semantics presented requires no restrictions on reference to non-local identifiers. For
example, it allows an interface expression to refer to external interface identifiers and to external module identifiers; it
also allows a generic module and a renaming morphism to refer to external identifiers of any kinds.

However, forimplementation purposes, one may want to impose the following restrictions on reference of identifiers
(ignoring references to identifiers bound to the base environment, which may occur anywhere):

¢ In any interface bindingnt-id import ... is int-exp the only non-local references int-expare to identifiers
of the imported interfaces. For example, in the following monomorphic list declaration:

interface List import Monoidis
type E
function inj (x:E) :M

endint

the only one non-local reference is to type M imported from Monoid interface.

e In any generic module bindingen-id (mod-id: int-exp* : int-exg import ... is mod-expthe only non-local
references are to interface identifiers and to identifiers of the imported modules, exceyttekgtmay refer to
mod-idand its identifiers. For example, in the following generic module declaration:

genericGenericListEq: EqTyp® : List is
type M is nil) |congE,M) endtype
valueOis nil () endval
function infix +(s1:M,s2:M):M s
caseslis
nil() — s2
| cong(7X,7XS) — conNYX,XS+S2)
endcase
endfunc
function inj (x:E) :M is congx, nil ()) endfunc
endgen

the only non-local declarations are to interface identifier EqType and to identifiers declared into EqType, E.

A.3 An E-LOTOS specification of the ODP trader

A.3.1 Introduction

In this annex, we present an E-LOTOS specification of the ODP trader computational viewpoint. The ODP trader is
an object which enables software components to find appropriate services providers within an open and dynamically
changing distributed system. The trader specification is a good example of how the language can be applied to specify
real problems.

Our E-LOTOS specification follows the informal computational description of the trading function givenin [1]. The
specification is not complete in the sense that it does not include all the functionality given in the informal description.
But, it describes an important portion of this functionality and mostly features not considered here can be added directly
without difficulties. A previous version of this specification is presented in [17].

In what follows, Section A.3.2 gives an informal overview of the trading function. Section A.3.3 details some
relevant parts of our E-LOTOS specifications. Finally, Annex A.3.3 contains the complete E-LOTOS specification of
the trader.

176

A.3.2 An overview of the ODP Trader

In order to use services in an open distributed systems, users need to know which services are available and who are
their providers. Since sites and applications are frequently changing in large distributed systems, it seems compulsory
to have a mechanism which enables software components to find appropriate services providers. This mechanism,
called Trading Function, is supplied in ODP [2, 3] by tireder object

Following the philosophy of ODP, the trader is specified through several viewpoints. In the next sections, we gives
an informal description of this viewpoints.

A.3.2.1 Enterprise viewpoint

From the enterprise viewpoint, a trader is an object that enables clients to find dynamically suitable servers in an ODP
system. A trader can be viewed as an advertiser where objects can announce their capabilities and become aware of
capabilities of other objects.

An announcement in a trader is callsérvice offer It describes the characteristics or properties satisfied by the
service. In addition to service properties, a service offer also contains the interface where the service is available.

Advertising a service offer is callegkport When a trader accepts an export request, it stores the exported service
offer in a centralized or distributed database. This database is often teanéck offer space

On the other hand, an importer can require knowledge about adequate service providers. In this case, the trader
accepts a request, calledport, containing an expression of service requirements desired by the importer. The trader
matches the importer’s service request with its database of service offers and selects a list (probably empty) of appro-
priated service offers which satisfy the requirements made by the importer.

The list of matched services offers is returned to the importer which may then interact directly with any service
described in the list. The Figure A.3 summarize the interactions of a trader and its clients.

TRADER

import
replies exports
import

requests

service
replies

service
invocations

Figure A.3: Interactions of a trader and its clients

Export and import activities are governed hiyading policy, which comprises trader policies, importer policies and
exporter policies. Where an activity involves interactions between objects, the resulting policy will be a compromise

177

between the wishes of the interacting objects. Therefore, a trader’s behaviour is limited by the policies established for
these activities. In other words, trader policies determine and guide a trader’s behaviour. For example, a trader policy
can restrict resources used by an individual import request.

Several autonomous traders can be ’linked’ in order to share their service offer spaces. Thus, a trader also can
play the role of exporter or importer with respect to other trader(s). Such a group of autonomous traders is termed
interworking group A trader within an interworking group enlarges the service offer space for its users by including
offers of other traders in the group. This enlargement of the service offer space is made indirectly when a trader
propagates import requests to neighbor traders.

A.3.2.2 Information Viewpoint

The trader information viewpoint defines the information elements and the relationships between them which are ma-
nipulated by the ODP trading function. In the standard [1], this viewpoint is formally described using the formal
specification notation Z. The specification includes basic concepts for information and, static invariant and dynamic
schemata for the ODP trading function. In this annex we do not consider this viewpoint.

A.3.2.3 Computational Viewpoint

The trading function computational viewpoint describes an object template for a trader. This object has interfaces for
service and management operations. Service operations are related to import and export activities whereas management
operations are provided to add, delete or modify links to other traders.

In the standard [1], this viewpoint description comprehends:

¢ signature templates for the service interface and management interface (defined in CORBA IDL),
¢ types used in the operations parameters (defined in CORBA IDL), and
¢ informal descriptions of the trader’s behaviour.

The trader’s behaviour is given by the behaviour of every service operation and management operation, plus a set of
constraints on interleaving of actions performed by these operations. In the next section, we give in E-LOTOS a formal
description of the trader’s behaviour. This formal specification could be viewed as a complement of the informal one
givenin [1].

A.3.3 E-LOTOS Specification of the trader

This section outlines our E-LOTOS specification of the ODP trader computational viewpoint. Here, we present only
the most relevant parts of the specification. In particular, we pay attention in the definition of the trader’s behaviour.
The Section A.3.4 contains the complete specification including type and functions definitions which are used to define
the behaviour of operations.

A trader is modeled by a process which can interact with the environment through two ports. In one port, the trader
receives operation invocations from clients and management objects. In the other port, it returns the results to the
respective invokers. Following the ODP terminology, we will ¢atiminationto the action of return a result.

The following E-LOTOS code shows a scenario where a trader communicates with other client objects. The trader
receives invocations on the gatev and send the respective terminations on the geie

par inv#2, ter#2, bind#2
[inv,ter] -> Trader[inv,ter](...)
| | [inv,ter] -> importer[inv,ter]
[| [bind] -> importerExporter [bind]

178

| | [inv,ter,bind] -> binding0bject[inv,ter,bind]
endpar

This behavior expression represent a scenario where:
e TheTrader andimporter processes directly interchange data using andter.

e TheTrader andimporterExporter processes are indirectly communicated throughbtheligObject pro-
cess which redirerects invocations and terminations of one to other process.

A.3.3.1 Type declarations

In the specification, the greatest part of the type declarations comprise types for the operation parameters. The standard
[1] defines these types in CORBA IDL and translate them to E-LOTOS is very easy. Also, we translate exception
declarations given in CORBA IDL to type declarations in the E-LOTOS notation. In order to made more concise the
specification, we have wiped the tailing string “Type” from all type names in [1].

Ports are typed in E-LOTOS, therefore we need specify types for data exchanged (offered) by E-LOTOS processes.
In particular, we need specify which are the types involved in trader interactions. In the rest of this section we describe
these types.

The signature for operation invocations and operation terminations is defined in the following types:

type InvocationSig is
ExportOfferInv (serviceDescription => Servicedescription,
servicePropValues => PropertyValuelist,
offerPropValues => PropertyValuelist,
servicelnterfaceld => Interfaceld)
| ImportOfferInv (serviceDescription => ServiceDescription,
matchingCriteria => Rule,
preferenceCriteria => Rule,
orderingRequirementList => OrderRequirementList,
servicePropertiesOfInterest => PropertiesOfInterest,
offerPropertiesOfInterest => PropertiesOfInterest)
| AddLinkInv (newLinkName => name,
linkPropValues => PropertyValuelist,
targetInterfaceld => Interfaceld)
| ... (¥ other invocation signatures x)
endtype

type TerminationSig is
ExportOfferTer (offerId => ServiceOfferId)
| ImportOfferTer (detailsOfServiceOffers => ServiceOfferDetailList)
| AddLinkTer (linkId => LinkId)
| ... (*x other termination signatures *)
endtype

Notice that an invocation signature states the input parameters of the respective operation whereas a termination signa-
ture states the output parameters.

Every trader or client has an interface identifier. These identifiers are used in invocations and terminations to
distinguish one of others. Therefore, an invocation (termination) contains the identifier of the invoked trader and
the identifier of the originator client. The type of values interchanged in invocations and terminations is defined in
E-LOTOS by the following declaration:

179

type Invocation is
(interfaceId => Interfaceldentifier,
originatorId => Interfaceldentifier,
invocation => InvocationSig)

endtype

type Termination is
(interfaceId => Interfaceldentifier,
originatorId => Interfaceldentifier,
termination => TerminationSig)
endtype

A.3.3.2 Computational Behaviour of the trader

At the most abstract level, the trader object is a parallel composition of three process8srtheeInterface and
ManagementInterface processes provide functionality for service operations and management operations, respec-
tively. The procesStateProc represents the trader state.

process Trader [inv: Invocation, ter: Termination]
(interfaceld: InterfaceIdentifier,
properties : Properties,
offerSpace : ServiceOfferSpace,
linkSpace : linkOfferSpace) is
hide sa:stateAccess in
(ServicelInterface [inv, ter, sa] (interfaceld)
11
ManagementInterface [inv, ter, sal] (interfaceId)
)
| [sal |
StateProc [sa] (properties, offerSpace, linkSpace)
endhide
endproc (*Trader *)

Service operations only write in the trader service offer space while management operations only write in the trader
link space and/or change trader properties. Therefore, beside an operations can eventually access both the service offer
space and the link space of the trader, service operations and management operations can be performed in parallel
without destroy the consistency of the trader state.

The procesStateProc encapsulates three elements which conform the trader state: a set of trader properties, the
service offer space and the link space. Service and management operations use the trader state through the and the link
spacea port which is hided within the trader.

In order to illustrate how the operation’s behaviour are defined we show the definition@fthéceInterface
process. In this process, all service operations are offered to clients in parallel. However, the availability of operations
is constrained in such way that accessing operations (as import offer) and modifying operations (as export offer) can not
be overlapped in time. Availability of operations is defined in a constraint oriented style by composing the processes
representing operations with tbederingConstraints process.

process ServiceInterface [inv: Invocation,
ter: Termination,
sa: stateAccessCh]
(interfaceld: Interfaceldentifier) is

180

(ImportOffer [inv, ter, sal (interfaceld)
[11

exportOffer [inv, ter, sal (interfaceld)

11
(* other service operations *)
)
| [inv, ter]l|
OrderingConstraints [inv, ter]
endproc (*Servicelnterface *)

The most significant and complex service operation is the importation of an offer. The behaviour of the operation
is given below by th&mport0ffer process definition.
Informally, for each invocation themport0ffer process performs the following activities:

receive the invocation,

access the state to get the offer database, trader links and trader properties,

match the offers against arguments and propagate the import invocation to interoperate with 'neighbor’ traders,

¢ When some trader findgood matcheshey are submitted in the termination.

process ImportOffer [inv: Invocation, ter: Termination,
sa: stateAccess]
(id: Interfaceld) is
inv (!'id, 7origld,
Import0fferInv (7sd, PmatchingC, 7preferenceC,
?ordering, 7spO0fInt, ZopOfInt)) ;
sa Read(7traderProp, Toffers, 7links) ;
trap
exception X (offers: ServiceOfferDetaillist) is
ter ('id, l!origId, ImportOfferTer(offers))
endexn
exit is
ter (!id, 'origId, ImportOfferTer(emptyOffers))
endexit
in
. (* match local offers x*)
11
(* interoperate with other traders *)
endtrap
[11
Import0ffer [inv, ter, sa] (id)
endproc

The above definition is a good example to illustrate the use of the trap constructor. We use this constructor to
express that, when several trader are interoperating in an import operation, the matched offers returned to the original
importer are those of the "first’ trader which had successful in the matching activity.

181

A.3.4 The complete specification
A.3.4.1 Type Declarations

type List is
Nil
| Cons (any, List)
endtype

type Name is
String
endtype

type Interfaceld is
Integer
endtype

type InterfaceldlList is
List (* of Interfaceld *)
endtype

type GraphEdgeSpec is
(1inkId => LinkId,
edgeName => Name,

linkPropertyValues => PropertyValuelist

toNodeLocation => Interfaceld)
endtype

type OfferPartitionSubgraph is
List (* of GraphEdgeSpec *)
endtype

type PropertyName is
ServicePropertyName (Name),
| OfferPropertyName (Name),
| LinkPropertyName (Name),
| TraderPropertyName (Name),
endtype

type Order is

ASCENDING

| DESCENDING
endtype

type OrderRequirementlList is
(orderDirection => OrderType,
propertyName => PropertyName)
endtype

type LiteralPropertyValue is

182

BoolVal (Bool)
IntVal (Integer)
NameVal (Name)
RefVal (Interfaceld)

endtype

type LiteralOrProperty is
Literal (LiteralPropertyValue)

| Property (PropertyName)

endtype

type Rule is

TRUE

Exist (propertyName)
LiteralOrProperty EQ
LiteralOrProperty LT
LiteralOrProperty LE
LiteralOrProperty GT
LiteralOrProperty GE
LiteralOrProperty NE
NOT (Rule)

Rule AND Rule

Rule OR Rule

endtype

type Rulelist

List (* of Rule *)

endtype

type PropertyValue is

(name => PropertyName,
value => LiteralPropertyValue)
endtype

type PropertyNamelList is

LiteralOrProperty,
LiteralOrProperty,
LiteralOrProperty,
LiteralOrProperty,
LiteralOrProperty,
LiteralOrProperty,

List (* of PropertyName *)
endtype

type PropertiesOfInterest is

ALL

| Interesting (PropertyNameList)
endtype

type PropertyValuelist is
List (* of PropertyValue *)
endtype

type ServiceDescription is

integer

endtype

183

type QualificationCode is
Full_succes
| Selection_preference_not_obtained
| Property_of_interest_not_avalilable
| Offer_property_of_interest_not_avalilable
endtype

type Qualifier is
List (* of QualificationCode *)
endtype

type ServiceOfferDetail is
(interfaceld => Interfaceld,
servicePropertyValues => PropertyValuelist,
service0fferPropertyValues => PropertyValuelist,
offerQualificationList => Qualifier)

endtype

type ServiceOfferDetaillist is
List (* of ServiceOfferDetail x)
endtype

type ServiceOfferId is
integer
endtype

type ServiceOfferIdList is
List (* of ServiceOfferId *)
endtype

type ServiceOfferDescription is
(serviceOfferId => ServiceOfferld,
serviceDescription => ServiceDescription,
Interfaceld => Interfaceld,
servicePropertyValues => PropertyValuelist,
service0fferPropertyValues => PropertyValueList)
endtype

type ServiceOfferSpace is
List (* of ServiceOfferDescription x)
endtype

type LinkId is
Integer
endtype

type LinkIdList is

List (% of LinkId *)
endtype

184

type InvocationSig is

ExportOfferInv (serviceDescription => Servicedescription,
servicePropValues => PropertyValuelist,
offerPropValues => PropertyValuelist,
servicelnterfaceld => Interfaceld)

WithdrawOfferInv (offerId => ServiceOfferId)

ModifyOfferInv (offerId => ServiceOfferId,

servicePropValues => PropertyValuelist,
offerPropValues => PropertyValuelList)

ImportOfferInv (serviceDescription => ServiceDescription,
matchingCriteria => Rule,
preferenceCriteria => Rule,
orderingRequirementList => OrderRequirementList,
servicePropertiesOfInterest => PropertiesOfInterest,
offerPropertiesOfInterest => PropertiesOfInterest)

QueryOfferPartitionSubgraphInv

DescribeOfferInv (serviceOfferIdList => ServiceOfferIdList,

servicePropertiesOfInterest => PropertiesOflInterest,
offerPropertiesOfInterest => PropertiesOfInterest)

AddLinkInv (newLinkName => name,

linkPropValues => PropertyValuelist,
targetInterfaceld => Interfaceld)

RemoveLinkInv (linkId => LinkId)

endtype

type TerminationSig is

ExportOfferTer (offerId => ServiceOfferId)
WithdrawOfferTer
ModifyOfferTer
ImportOfferTer (detailsOfServiceOffers => ServiceOfferDetaillList)
Query0fferPartitionSubgraphTer

(offerPartitionSubgraph => 0fferPartitionSubgraph)
DescribeOfferTer (detailsOfServiceOffers => ServiceOfferDetailList)
AddLinkTer (1linkId => LinkId)
RemoveLinkTer
Error (err => TraderErrorExceptions)

endtype

type Invocation is

(interfaceld => Interfaceld,

originatorId => Interfaceld,
invocation => InvocationSig)

entype

type Termination is

(interfaceld => Interfaceld,

originatorId => Interfaceld,
termination => TerminationSig)

185

endtype
type stateAccess is (stateAcc) endtypechan

type statelcc is
Read (properties => PropertyValuelist,
offerSpace => ServiceOfferSpace,
linkSpace => O0fferPartitionSubgraph)
ReadProperties (properties => PropertyValueList)
ReadOffers (offerSpace => ServiceOfferSpace)
ReadLinks (linkSpace => O0fferPartitionSubgraph)
Write (properties => PropertyValuelist,
offerSpace => ServicelfferSpace,
linkSpace => OfferPartitionSubgraph)
| WriteProperties (properties => PropertyValueList)
| WriteOffers (offerSpace => ServiceOfferSpace)
I
I

WritelLinks (linkSpace => O0fferPartitionSubgraph)
NewServiceOfferId (serviceOfferId => ServiceOfferId)
| NewLinkId (1linkId => LinkId)
endtype

type TraderErrorExceptions is
SystemSpecificException (reason => string)
| UndefinedProperty (pName => PropertyName)
| BadOfferIdentity (offerId => ServiceOfferId)
| InvalidArgumentSyntax
endtype

A.3.4.2 Function Declarations

(k ————————— List general functions --—--—-------- *)

function append (xs, ys: List) : List is
case xs is
Nil -> ys
Cons(?x, xxs?) -> Cons(x,append(xxs,ys))
endcase
endfunc

function IsIn (x: any, xs: List) : Boolean
case Xxs
Nil -> false
Cons(?y, ys?) -> x = y orelse IsIn(x,ys)
endcase
endfunc

function delete (x: any, xs: List) : Boolean
case xs is
Nil -> Nil
Cons (!'x, ?ys) -> ys

186

Cons (7y, ?ys) -> Cons (y, delete(x,ys))
endcase
endfunc

function 1t (1pl, 1p2: LiteralOrProperty) : Boolean
raises [err: (TraderErrorExceptions)] is

case (1pl,1p2)

(IntVal(?i), Intval(?j)) ->1i < j

(NameVal(?n), Nameval(?m)) -> n < m

otherwise -> raise err (InvalidArgumentSyntax)
endcase
endfunc

function le (1pl, 1p2: LiteralOrProperty) : Boolean
raises [err: (TraderErrorExceptions)] is
1t(1pl,1p2) [err] orelse (1pl = 1p2)
endfunc

function gt (1lpl, 1p2: LiteralOrProperty) : Boolean
raises [err: (TraderErrorExceptions)] is
not le(lpl,1p2) [err]
endfunc

function ge (1lpl, 1p2: LiteralOrProperty) : Boolean
raises [err: (TraderErrorExceptions)] is
not 1t(1lpl,1p2) [err]
endfunc

function ne (lpl, 1p2: LiteralOrProperty) : Boolean is
not (lpl = 1p2)
endfunc

function value0f (1lp: LiteralOrProperty, props: PropertyValueList)
: LiteralPropertyValue
raises [err: (TraderErrorExceptions)]
case lp is
Property (7pName) -> propValueOf (pName, props) [err]
Literal (7v) -> v
endcase
endfunc

187

function neighbours (1: OfferPartitionSubgraph) : InterfaceIldList is
case 1

Nil -> Nil

Cons((71id, ?nm, ?1Props, 7id), 7tl) -> Cons(id,tl)
endcase
endfunc
(k === PropertyValuelList functions ——------—--—- *)

function existProperty (pName: PropertyName,
props: PropertyValuelList) : Boolean
case props is
Nil ->
false
Cons ((name => !pName, etc), any:PropertyValuelList) ->
true
Cons (any:PropertyValue, 7tl) ->
existProperty (nm, tl)
endcase
endfunc

function propValueOf (pName: PropertyName, props: PropertyValuelList)
: LiteralPropertyValue
raises [err: (TraderErrorExceptions)]
case props is
Nil ->
raise err (UndefinedProperty(pName))
Cons ((!pName, ?v), any:PropertyValuelList) ->
v
Cons (any:PropertyValue, 7tl) ->
propValueQf (pName, tl) [err]
endcaspe
endfunc

function existAllProperties (pns: PropertyNameList, pVals: PropertyValueList)
: Boolean is
case pns is
Nil ->
true
Cons(?pn, 7xs) —->
existProperty (pn, pVals) andalso existAllProperties (xs, pVals)
endcase
endfunc

function filterProps (pns: PropertyNamelList, pVals: PropertyValueList)
: PropertyValueList
case pVals is
Nil ->
Nil

188

Cons((?pn,?v), 7pvs) ->
if IsIn (pn, pns)
then
Cons((pn,v), FilterProps(pns,pvs))
else
filterProps(pns,pvs)
endif
endcase
endfunc

function interestingProps (intr: PropertiesOfInterest,
pVals: PropertyValuelList)

: PropertyValuelist
case intr is
ALL -> pVals
Interesting (7pns) -> filterProps(pns, pVals)
endcase
endfunc
(¢ ————————— QualificationCode functions —————---———--—- *)

function insQualification (q: QualificationCode, gs: Qualifier)
: Qualifier is
case gs is
Nil -> Comns (q, Nil)
?rs -> if q = Full_succes

then rs
else Cons (q,rs)
endif
endcase
endfunc
(k === Matching criteria function ------------- *)

function conforms (criteria: Rule,
sPropVal, oPropVal, traderProp: PropertyValuelList)
: Boolean
raises [err: (TraderErrorExceptions)] is
var
props : PropertyValueList := append (sPropVal, append(oPropVal,traderProp))
in
case criteria is
TRUE -> True
Exist (?propertyName) ->
case propertyName is
?nm, linkPropertyName (any:Name) ->
raise err (SystemSpecificException ("bad use of link property
name in rule"))

189

?nm ->
existProperty (nm, sPropVal)
endcase
71p1l EQ 71p2 ->
valueOf (1pl, props) [err] = valueOf (1p2, props) [err]
?1pl LT ?71p2 ->
1t (valueO0f(1pl, props) [err], valueOf(1p2, props) [err]) [err]
?1pl LE ?71p2 ->
le (value0f(lpl, props) [err], valueOf (1p2, props) [err]) [err]
?lpl GT ?71p2 ->
gt (valueOf (1pl, props) [err], value0f(1lp2, props) [err]) [err]
?1pl GE 71p2 ->
ge (valueOf(lpl, props) [err], valueOf (1p2, props) [err]) [err]
71pt NE ?1p2 ->
not (valueOf(lpl, props) [err] = valueOf (1p2, props)[err])
NOT ?r ->
not conforms (r, sPropVal, oPropVal, traderProp) [err]
?rl AND ?r2 ->
conforms (rl, sPropVal, oPropVal, traderProp) [err] andalso
conforms (r2, sPropVal, oPropVal, traderProp) [err]
?rl OR 7r2 ->
conforms (rl, sPropVal, oPropVal, traderProp) [err] orelse
conforms (r2, sPropVal, oPropVal, traderProp) [err]
endcase
endvar
endfunc

(k === ServiceOfferSpace functions ------——--——- *)

function matchOffers (sd: ServiceDescription,
matchingC, preferenceC: Rule,
traderProp: PropertyValuelist,
sp0fInt, opO0fInt: PropertiesOflInterest,
offers: ServiceOfferSpace)
: ServiceOfferDetaillist
raises [err: (TraderErrorExceptions)] is
case offers is
Nil -> Nil
Cons ((70Id, !sd, 7interfId, ?sPropVal, 7oPropVal), 7tl) ->
var
t1lMtchs : ServiceOfferDetaillist := matchOffers(sd, matchingC,
preferenceC, traderProp,
sp0fInt, opO0fInt, tl) [err]
in
if conforms (matchingC, sPropVal, oPropVal, traderProp) [err]
then
local
var ss,os : PropertyValuelist,
sq, 0oq, pq : QualificationCode,

190

qq: Qualifier
in
?ss := InterestingProps (spOfInt, sPropVal);
?sq := if existAllProperties (spOfInt, sPropVal)
then Full_succes
else Property_of_interest_not_avalilable
endif;
7os := InterestingProps (opOfInt, oPropVal);
70q := if existAllProperties (opOfInt, oPropVal)
then Full_succes
else Offer_property_of_interest_not_avalilable
endif;
?pq := if conforms (preferenceC, sPropVal, oPropVal, traderProp)
[err]
then Full_succes
else Selection_preference_not_obtained
endif;
7qq :=
insQualification(sq,insQualification(oq,insQualification(qq,Nil)));
Cons((interfId, ss, os, qq),tlMtchs)
endvar
else tlMtchs
endif
endvar
Cons (any:ServiceOfferDescription, 7tl) ->
matchOffers (sd,matchingC,preferenceC,traderProp,sp0fInt,op0fInt,tl)
[err]
endcase
endfunc

function getOfferDetails (oId: ServiceOfferId,
offers: ServiceOfferSpace,
out sDes: ServiceDescription
out interflId: Interfaceld,
out sProps, oProps: PropertiesOfInterest)
: ServiceOfferDetaillist
raises [err: (TraderErrorExceptions)] is
case offers is
Nil ->
raise err (BadOfferIdentity(oId))
Cons (('oId, ?sd, 7id, 7sPropVal, 7oPropVal) , 7tl) ->
7?sDes := sd ;
7interfId := id;
?sProps := sPropVal;
?oProps := oPropVal
Cons (any:ServiceOfferDescription, 7tl) ->
get0fferDetails (oId, tl, 7sDes, 7interfld, 7sProps, 7oProps) [err]
endcase
endfunc

191

function existOffer (old: ServiceOfferId, offers: ServiceOfferSpace)
: Boolean is
case offers is
Nil ->
false
Cons((?7id, 7sd, ?7id, 7sProps, 7oProps), 7tl) ->
(id = 0id) orelse existOffer (oId, tl)
endcase
endfunc

function delOffer (oId: ServiceOfferId, offers: ServiceOfferSpace)

: ServiceOfferSpace
case offers is
Nil -> Nil
Cons((!oId, 7sd, ?7id, ?sProps, 7oProps), 7tl) ->
tl

Cons(7od, 7ods) —>
Cons(od,del0ffer(old,tl))
endcase
endfunc

function deleteOffer (oId: ServiceOfferId, offers: ServiceOfferSpace)
: ServiceOfferSpace
raises [err: (TraderErrorExceptions)] is
if existOffer(oId, offers)
then raise err (BadOfferIdentity(oId))
else del0ffer(oId, offers)
endif
endfunc

function describe (offerIds: ServiceOfferIdList,
sp0fInt, opOfInt: PropertiesOflInterest,
offers: ServiceOfferSpace) : ServiceOfferDetaillist
raises [err: (TraderErrorExceptions)] is
case offerIds is
Nil ->
Nil
Cons (7o0id, 7oids) ->
var interfId: Interfaceld,
sProps, oProps : PropertyValulelist
ss,os : PropertyValuelist,
sq, oq : QualificationCode,
qq: Qualifier
in
getOfferDetails (oid, offers, any:ServiceDescription,
?interfId, 7sProps, 7oProps) [err];
InterestingProps (sp0fInt, sProps);
if existAllProperties (spOfInt, sProps)
then Full_succes
else Property_of_interest_not_avalilable

7ss
7sq :

192

endif;
7os := InterestingProps (opOfInt, oProps);
7oq := if existAllProperties (opOfInt, oProps)

then
else

Full_succes
Offer_property_of_interest_not_avalilable

endif;
?7qq := insQualification(oq,insQualification(sq,Nil));
Cons((interfld, ss, os, qq),
describe (offerIds, spOfInt, opOfInt, sds) [err])

endvar
endcase
endfunc

(* ———————- ServiceOfferDetaillist ordering functions -------------

function IsOrdered

var

(ordering: OrderRequirementList,
d, dl1: ServiceOfferDetail) : Boolean
raises [err: (TraderErrorExceptions)] is

vs: PropertyValuelList := append(d.servicePropertyValues,
d.serviceOfferPropertyValues),

vls: PropertyValuelist := append(dl.servicePropertyValues,
dl.serviceOfferPropertyValues)

in
case ordering is
Nil -> true
Cons ((ASCENDI
var 1, 11: L
in
7?1 := prop
7?11 := pro
1 < 11 ore
endvar

NG, ?7pName), 7tl) ->
iteralPropertyValue

ValueQf (pname, vs) [err];
pValue0Of (pname, vis) [err];
lse (1 = 11 andalso IsOrdered (tl, d, d1))

Cons ((DESCENDING, ?pName), 7tl) ->

var 1, 11: L
in
7?1 := prop
7?11 := pro
1 > 11 ore
endvar
endcase
endloc
endfunc

function partition

iteralPropertyValue

ValueQf (pname, vs) [err];
pValueOf (pname, vls) [err];
lse (1 = 11 andalso IsOrdered (tl, d, d1))

(in ordering: OrderRequirementList,

in d: ServiceOfferDetail,

in ds: ServiceOfferDetaillList

out less, gtr: ServiceOfferDetaillist)
raises [err: (TraderErrorExceptions)] is

193

loop (out less, gtr: ServiceOfferDetaillist,
in 1,g, rest: ServiceOfferDetaillist)
?1 := Nil; ?g := Nil; 7?rest := ds;
case rest is
Nil -> break (less=>1, gtr=>g)
Cons (7d1, ?dls) [IsOrdered (ordering, d, d1) [err]] ->
?1 := Cons(dl,l); 7g := g; Trest:= dls
Cons (7d1l, ?dls) [not IsOrdered (ordering, d, d1) [err]] ->
7?1 :=1; ?g := Cons(dl,g); Trest := dls
endloop
endfunc

function sort (ordering: OrderRequirementList,
offers: ServiceOfferDetaillist) : ServiceOfferDetaillist
raises [err: (TraderErrorExceptions)] is
case offers is
Nil ->
Nil
Cons(?7d, ds) —>
var less, gtr: ServiceOfferDetaillList
in
partition (ordering, d, ds, 7less, 7gtr) [err];
append(sort(ordering,less), Cons(d,sort(ordering, gtr)))
endvar
endcase
endfunc

A.3.4.3 Process Declaration

(¥ —————————- Trader Process ————————————- *)

process Trader [inv: Invocation, ter: Termination]
(interfaceld: Interfaceld,
properties : PropertyValuelist,
offerSpace : ServiceOfferSpace,
linkSpace : O0OfferPartitionSubgraph) is
hide sa:stateAccess in
(ServicelInterface [inv, ter, sa] (interfaceld)
11
ManagementInterface [inv, ter, sal] (interfaceId)
)
| [sal |
StateProc [sa] (properties, offerSpace, linkSpace)
endhide
endproc (*Trader *)

process ServiceInterface [inv: Invocation,
ter: Termination,
sa: stateAccess]

(interfaceld: Interfaceld) is

194

(ImportOffer [inv, ter, sal (interfaceld)
[11
QueryOfferPartitionSubgraph [inv, ter, sa] (interfaceld)
11
describeOffer [inv, ter, sa] (interfaceId)
[11
exportOffer [inv, ter, sal (interfaceld)
[11
withdrawOffer [inv, ter, sa] (interfaceld)
11
modify0ffer [inv, ter, sal] (interfaceId)

)

| [inv, ter]l|
ServiceOperationsOrderingConstraints [inv, ter]
endproc (*Servicelnterface *)

process ServicelperationsOrderingConstraints
[inv: Invocation, ter: Termination] is

loop

var id, origld: Interfaceld

in
inv (?7id, Porigld, ExportOfferInv (etc)) ;
ter (!'id, !origIld, ExportOfferTer (etc))
(]
inv (?7id, ?origlId, WithdrawOfferInv (etc)) ;
ter (!'id, 'origId, WithdrawOfferTer (etc))
(1
inv (7id, Porigld, ModifyOfferInv (etc)) ;
ter ('id, !origIld, ModifyOfferTer (etc))

endvar

(1

hide nr:() in
import0fferConstraint [inv, ter, nr]
11
query0fferPartitionSubgraphConstraint [inv, ter, nr]
11
describeOfferConstraint [inv, ter, nr]
endhide
endloop
endproc (*ServiceOperationsOrderingConstraints*)

process importOfferConstraint [inv: Invocation,
ter: Termination, nr: ()] : () is

var id, origlId: Interfaceld
in

inv (7id, PorigId, ImportOfferInv (etc)) ;

ter (!'id, lorigld, ImportOfferTer (etc))
endvar
1

nr

195

11
import0fferConstraint [inv, ter, nr]
endproc (*importO0fferConstraintx)

process query0fferPartitionSubgraphConstraint
[inv: Invocation, ter: Termination, nr: ()] : () is
var id, origlId: Interfaceld
in
inv (7id, 7origld, QueryOfferPartitionSubgraphInv (etc)) ;
ter (!'id, lorigIld, QueryOfferPartitionSubgraphTer (etc))
endvar
L]
nr
11
query0fferPartitionSubgraphConstraint [inv, ter, nr]
endproc (*queryOfferPartitionSubgraphConstraint#)

process describeOfferConstraint [inv: Invocation,
ter: Termination, nr: ()] : () is
var id, origld: Interfaceld
in
inv (7id, 7origld, DescribeOfferInv (etc)) ;
ter (!'id, !origId, DescribelfferTer (etc))
endvar
(]
nr
11
describeOfferConstraint [inv, ter, nrl
endproc (*describeOfferConstraint *)

process ImportOffer [inv: Invocation, ter: Termination, sa: stateAccess]
(id: Interfaceld) is
inv (!'id, 7origld,
Import0fferInv (?sd, 7matchingC, 7preferenceC,
?ordering, 7sp0fInt, 7op0fInt)) ;
sa (Read(?7traderProp, 7offers, 7links)) ;
trap
exception X (offers: ServiceOfferDetaillList) is
ter (!id, !origId, !ImportOfferTer(offers))
endexn
exception err (e: TraderErrorExceptions) is
ter (!'id, l!origId, !Error(e))
endexn
exit is
ter (!id, 'origId, !ImportOfferTer(emptyOffers))
endexn
in
var matches: ServiceOfferDetaillist :=
sort (ordering,
matchOffers(sd,matchingC, preferenceC, traderProp,

196

sp0fInt, op0fInt, offers) [err])
in
if matches <> emptyOffers
then raise X (matches)
else exit
endif
endvar
11
var neighs: InterfaceIdList := neighbours (1links)
in
PropagateImport [inv, ter]
(id, sd, matchingC, preferenceC, ordering,
spInterest, opInterest, neighs)
[x]
endvar
endtrap
11
Import0ffer [inv, ter, sa] (id)
endproc (*ImportOfferx)

process PropagateImport [inv: Invocation, ter: Termination]
(id: Interfaceld,
sd: ServiceDescription,
matchingC, preferenceC: Rule,
ordering: OrderRequirementList,
spInterest: PropertiesOfInterest,
opInterest: PropertiesOflInterest,
neighs: InterfaceIdlList)
raises [X: (ServiceOfferDetaillList)] : () is
if neighs = Nil
then exit

else
var x: Interfaceld
in
?x := any Interfaceld [isIn(x,neighs)] ;
(var matches: ServiceOfferDetailList
in
inv (!x, 'id, !'ImportOfferInv (sd, matchingC, preferenceC,
ordering, spIlnterest, opInterest))
ter (!x, 'id, ImportOfferTer (7matches)) ;
if matches <> emptyOffers
then raise X (matches) endif
endvar
11
PropagateImport [inv, ter]
(id, sd, matchingC, preferenceC, ordering,
spInterest, opInterest, delete (x, neighs))
[X]
)

197

endvar
endproc (*PropagateImport*)

process QueryOfferPartitionSubgraph
[inv: Invocation, ter: Termination, sa: stateAccess]
(id: Interfaceld) is
inv (!id, 7origld, QueryOfferPartitionSubgraphInv) ;
sa (ReadLinks(7subg)) ;
ter (!id, 'origlId, !QueryOfferPartitionSubgraphTer (subg))
endproc

process describeOffer [inv: Invocation, ter: Termination, sa: stateAccess]
(id: Interfaceld) is
inv (!'id, ?origld,
DescribeQfferInv (7offerIds, 7spIlnterest, 7TopInterest) ;
sa (ReadOffers(7offers)) ;
ter ('id, 'origld,
DescribeOfferTer (!describe(offerIds, spOfInt, opOfInt, offers)))
endproc

process exportOffer [inv: Invocation, ter: Termination, sa: stateAccess]
(id: Interfaceld) is

inv ('id, 7origld, ExportOfferInv (7sd, ?sProps, 7oProps, 7interfId)) ;
sa (NewServiceOfferId(7oId)) ;
sa (ReadOffers (7offers)) ;
sa (!'WriteOffers(Cons((oId, sd, interfId, sProps, oProps), offers))) ;
ter (!'id, lorigId, !'ExportOfferTer (oId))

endproc

process withdrawOffer [inv: Invocation, ter: Termination, sa: stateAccess]
(id: Interfaceld) is
inv (!'id, Porigld, WithdrawOfferInv (7oId)) ;
sa (ReadOffers(7offers)) ;
sa (!'WriteOffers(deleteDffer(old,offers))) ;
ter ('id, !origld, WithdrawOfferTer)
endproc

process modifyOffer [inv: Invocation, ter: Termination, sa: stateAccess]
(id: Interfaceld) is
inv (!'id, 7origld, ModifyOfferInv (7old,?sProps,?oProps))
sa (ReadOffers(7offers)) ;
getOfferDetails (!oId, !offers, 7intrfId, 7sd, etc);
sa (WriteOffers(!Cons((oId, sd, intrfId, sProps, oProps),
deletelffer(old,offers))));
ter (!'id, '!origId, ModifyOrderTer)
endproc

process StateProc [s: stateAccess]

(ps: PropertyValuelList, sos: ServiceOfferSpace,
ls: OfferPartitionSubgraph) is

198

loop
var props: PropertyValuelist := ps,
offs: ServiceOfferSpace := sos,
Ins: OfferPartitionSubgraph := 1s,
in
(s (Read(!props, 'offs, !lmns))
[1 s (ReadProperties(!props))
[1 s (ReadOffers(!offs))
[l s (ReadLinks(!1lns))
); 7props := props; 7Toffs := offs; 7lns := lns
(1
s (Write(7props, 7offs, 7lns))
1
s (WriteProperties(7props)) ;
7o0ffs := offs; 7lns := 1lns
(1
s (WriteOffers(7offs)) ;
?props := props; 7lns := lns
1
s (WriteLinks(?71lns)) ;
7props := props; 7offs := offs
endvar
endloop
11
var offerIds: ServiceOfferIdList,
linkIds: LinkIdList

init
7offerIds := Nil; 7?linkIds := Nil
in
loop
var old: ServiceOfferId
in
s (NewServiceOfferId(7oId)) [not IsIn (oId, offerslIds)] ;
?offerIds := Cons(olId, offerIds)
endvar
]
var 1nId: LinkId
in
s (NewLinkId(?1nId)) [not IsIn (1nId, linkIds)] ;
?1inkIds := Cons(oId, linkIds)
endvar
endloop
endvar
endproc

process ManagementInterface [inv: Invocation, ter: Termination, sa: stateAccess]
(id:interfacelId) is
(AddLink [inv, ter, sa] (interfaceld)
11

RemovelLink [inv, ter, sal (interfaceld)

199

)
| [inv, ter]l|
ManagementOperationsOrderingConstraints [inv, ter]
endproc

process AddLink [inv: Invocation, ter: Termination, sa: stateAccess]
(id:interfaceld) is
inv ('id, 7origld, AddLinkInv (?nm, ?1Props, 7targetId)) ;
sa (ReadLinks(?1lns)) ;
sa (NewLinkId(?1lid)) ;
sa (!WriteLinks(Cons((1lid,nm,lProps,targetId), 1lns))) ;
ter ('id, !origIld, !'AddLinkTer(1lid) ;
endproc

process RemovelLink [inv: Invocation, ter: Termination, sa: stateAccess]
(id:interfaceId) is
inv ('id, 7origId, RemoveLinkInv (71id))
sa (ReadLinks(?1lns));
sa (!WriteLinks(deleteLink(1lid,1lns))) ;
ter (!'id, 'origId, RemoveLinkTer)
endproc

200

Appendix B

Guidelines for LOTOS to E-LOTOS
translation

B.1 Introduction

This appendix is devoted for those LOTOS users that want to update to E-LOTOS and for those interested in seeing the
differences and improvements introduced in the language.

E-LOTOS has been designed with the intention of being upward compatible with LOTOS. However, this does not
imply that E-LOTOS tools should be able to process LOTOS specification. It rather means that the main concepts of
LOTOS (behaviour based on process algebras and data based on algebraic semantics) are the core of E-LOTOS. It is
recommended to start with a (brief) looking at Appendix A.

In this appendix we will not describe the new features of E-LOTOS. Section B.1.2 describes how to translate
from basic LOTOS to (basic) E-LOTOS. Section B.1.3 describe how data types from LOTOS are supported and can
be translate to E-LOTOS data types. Section B.1.4 describes the translation of a LOTOS specification with data and
behaviour to E-LOTOS.

B.1.1 Specification and process definition

The first change a LOTOS user will notice is that a specification is just a small part of a E-LOTOS description. The
introduction of modules in E-LOTOS caused this change. A specification in E-LOTOS is an optional sequence of
module declaration and a specification. So, a LOTOS specification is just a E-LOTOS one without modules.

In E-LOTOS, the functionality of processes and specification is not fixed on the definition.

Processes cannot be nested. In factwhere clause of LOTOS has been removed. So, the name space inside a
module is flat, so name overriding is not allowed. The translation from LOTOS is straightforward: raise the nested
processes (and everywhere iwhere clause) to the top level definition. Maybe some name solving would be needed.

Process instantiation and recursion It is very usual to specify some system that evolutes through some states or
phases, modeled as LOTOS processes, commonly all of them with the same signature (same gates and parameters).
For example, a specification of some chip, with a gatepymestruction and a number of parameters (registers, state
variable, etc.). In LOTOS this should be a tedious piece of work in which all gates and variables are repeated every
instantiation, without really changing but a little data. In E-LOTOS, you may abbreviate the instantiation of a process
by just writing the specific changes in gates and/or parameters.

For example, the famous VendingMachine (taken from [6]):

201

(+LOTOSx) (+E — LOTOS)

processVending [coin,candylcandyd : noexit:= processVending[coin,candylcandydis
coin; coin;
(candyl; VendingLcoin,candylcandy2 (candyZ Vendingl...]
[Icandy2 Vendinglcoin,candylcandy2 [Tcandy2 Vending[...]
))
endproc endproc

You may abbreviate just part of the gate list, by stating explicit instantiation, as in the following example:

processSingleBuffer[inp, outp] is
inp; outp; SingleBuffer...]
endproc

processDoubleBuffer[inp, outpl is
hide middlein
SingleBuffer[outp=-middle, ...]
| Lmiddlel |
SingleBuffer[inp=-middle, ...]
endhide
endproc

B.1.2 Basic LOTOS

Enabling and exit In E-LOTOS, enabling operator¥) has been joined with action prefix] in just one operator,
sequential composition (). So, LOTOS expressions with enabling operator is easyly translated into E-LOTOS, taking
care of keeping precedence and remowari from the left part of the expression:

a; b; exit>>c; stop = a;b;c; stop
a; b; (exit>>c; stop) = a; b; c; stop

Thusmexit becomes obsolete, and it is removed from E-LOTOS.

Operator asociativity In E-LOTOS, all operators have the same precedence, but action pséefixvhich has the

higher precedence. Asociativity is left-handed, as in LOTOS. However, it is not possible to mix different operators in
the same expression without explicitaly specify its asociativity. So, the following expression would cause a syntactical
errorin E-LOTOS:

Bi[>Bx|1IlBs

The precedence on LOTOS was few intuitive: in this case, this behaviour is paréBd BsBy) ||| Bs. This
expression can be translated into E-LOTOS as:

(B1 [>By) |11 Bs or disBy [>Byenddis| || Bs

There are two ways to express precedence in E-LOTOS: via parenthesis or via specific begin-end keywords for
each behaviour binary operator. So, we have:

202

dis enddis for disabling (>)
fullsync endfullsync for full synchronization (1)

conc endconc for partial synchronization|((G1,...,Gp] |)
sel endsel for selection (1)

suspend endsuspend for disabling (>)

inter endinter for interleaving (| |)

The asociativity with the same operator is keep, so the following expressions are equivalent both in LOTOS and in
E-LOTOS:

BiopB2opBs = Bjop (B2 opBg)
also equivalent to:

op-begin-keyword Bop B> op B3 op-end-keyword

B.1.3 Data Types

Data types suffered a depth revision in E-LOTOS, gaining advantage with the feedback coming from practical appli-
cation of LOTOS in industry. This revision includes more user friendly data types, predefined ones, partial functions,
and more intuitive semantics. For a LOTOS user, the main change is in equations: E-LOTOS do not define dynamic
semantics for equations. Tools can treat equations as type chekcked comments.

Constructors and functions E-LOTOS makes difference between constructors and functions. Therefore, LOTOS
opnswill be splitted as in the following example:

(xLOTOSx) (xE— LOTOSx)
type Booleanis interface Booleanis
sorts bool type boolis
opns true, false
true, false: -> bool endtype
_and.: bool, bool-> bool function infix and(a: bool,b:bool) : bool
endtype endint

Interfaces and implementations In E-LOTOS, data type implementations may come from an external module
(which may be a E-LOTOS specification or any other kind of implementation). Boolean would be splitted in E-LOTOS

203

in the following way:

interface Booleanis
type boolis
true, false
endtype
function infix and(a: bool,b:bool : bool
egns
forall x, y : bool
ofsort bool
X and true= x;
X and false= false;
endint

module Booleanis
type boolis
true, false
endtype
function infix and(x: bool,y:bool) : bool
case(x,y) in
(true, true) -> true
| (any:bool, any: bool) -> false
endcase
endfunc
endmod

Extensions and combinations of type specificationsTo specify data types with a large number of operations, or to
enrich existing data types, there is a language constructor to combine existing specifications or to extend them. An
exampleis:

(xLOTOSk) (xE — LOTOSk)
type NaturalNumbers boolean interface NaturalNumbemports Booleanis
endtype endint

module NaturalNumbeimports Booleanis
endmod

A larger example The following is a possible type definition for natural numbers:

204

(xLOTOSx)
type NaturalNumberss boolean
sorts nat
opns
0: -> nat
succ nat-> nat
+: nat,nat-> nat
<: nat,nat-> bool
eqns
forall m, n: nat
ofsort nat
m+0=m;
m + sucgn) = succ(m+n) ;
ofsort bool
0< 0 =false;
0 < sucgn) = true;
sucgm) < 0 = false;
sucgm) < sucgn) =m< n;
endtype

(xE— LOTOSx)
interface NaturalNumberémports booleans
type natis
0 | sucdn:nabd
endtype
function infix <(m:nat,n:nad :nat
eqns
forall m, n : nat
ofsort nat
m+0=m;
m + sucgn) = succ(m+n) ;
ofsort bool
0< 0="false;
0 < sucdgn) = true;
sucgm) < 0 = false;
sucgm) < sucgn) =m< n;
endint

module NaturalNumbersmports Booleanis
type natis
Succ(n: nab
endtype

function infix + (m: nat, n: naf) : natis
casenin
0->m
| Succ(nl: nad -> Succ(m) +nl
endcase
endfunc
endmod

E-LOTOS has predefined types, so you do not really need to translate basic types as Booleans, Natural, and others

(see Chapter 7). However, NaturalNumber is a good example for showing the differences between LOTOS and E-
LOTOS data types.

The main difference in the example is thigfinitionmay be separated frormplementationThis allows providing
external implementation of data types.

Parameterized types A parameterized type in LOTOS can be seen as a template for building new types, or as a
partial specification with general features of a data type. These specifications will be fullfiled later, obtaining complete
data type specifications. The usual applications are general containers, as “queues”, “stacks”, etc. In LOTOS, this is
done viaformal sorts, operations and equations.

In E-LOTOS, instead oformal types, we usgenericmodules. Genericity is used for constructing specifications
and for code reuse. The above example would be specified in E-LOTOS as follows:

205

(+LOTOSx) (+E — LOTOS)

type Queueis genericQueue(Eq: EqType is
formalsorts element type M is
formalopns e0: -> element nil | congE,M)
sortsqueue endtype
opns endgen

create -> queue
add: elemenf queue-> nat
first: queue-> element

eqns
endtype
and thus can be actualized by any other type, for example a queue of natural numbers:
(xLOTOSx) (xE— LOTOSx)
type NatQueuds module ListNatis
QueueactualizedbyNaturalNumbersising GenericList(Naturalrenaming (typesnat: =E))
sortnamesnatfor element renaming (typesListNat: =List)
opnnames0 for e0 endmod
endtype

However, alist constructor is available in E-LOTOS as predefined type, so a list of natural number could be as
simple as:

E-LOTOS
type NatQueuss list of Natendtype

Renaming Renaming of data type specifications is useful when some required semantics is already captured in a
existing data type. It is also very common to apply renaming for rapid prototyping, where existing data type definition
is close to the goal and lesser details are left for further refination. Renaming is applied for sorts and operations. With
different syntax, the same construction exists in E-LOTOS, and it applies to every component of a module (so, it is
extended to rename values, processes, etc.).

(xLOTOSk) (xE — LOTOSk)
type Connectioris module Connectioris
Queueenamedby Queuerenaming (
sortnames typesqueue: = channel
channefor queue opnselement: = message
messagéor element add:=send
opnnames first :=receive
sendfor add)
receivefor first endmod
endtype

B.1.4 FullLOTOS

Write-many variables In E-LOTOS we have write-many variables. As in LOTOS there were just write-once vari-
ables, this would not suppose a problem, as tipically in LOTOS variable definition overrides previous declared ones.

206

Accept Acceptconstruction is not need in E-LOTOS, as sequential composition (*;") is used. Values are automati-
cally passed from one behaviour to the next one.

Let Let construction translation is straightforward: in E-LOTOS is cailad the only difference is thagndvar is
needed in E-LOTOS.

Succesful termination with value offers In LOTOS, exit is used to specify the succestul termination of a process,
possibly with a list of values. There are two typical applications: generation of values as a result of some processing or
passing values from a behaviour to another. Both cases are implicit in E-LOTOS: the first one is usually modelled via
out parameters of a process. The second one is simply the default semantics of E-LOT&®¢ptabove).

207

Bibliography

[1] ODP Trading Function. Draft Rec. X9tr — ISO/IEC DIS 13235, June 1995.
[2] Open Distributed Processing — Reference Model — Part 2: Foundations. ISO/IEC 10746-2, 1995.
[3] Open Distributed Processing — Reference Model — Part 3: Architecture. ISO/IEC 10746-3, 1995.

[4] 1SO 8807.LOTOS—A formal description technique based on the temporal ordering of observational behaviour
1989.

[5] R.N. Bol and J.F. Groote. The meaning of negative premises in transition system specificaoiomsl of the
ACM, 43(5):863-914, September 1996. An extended abstract appeared in J. Leach Albert, B. Monien, and M.
Rodriguez Artalejo, editors, Procceding of 18th ICALP, Madrid, pages 481-494, 1991.

[6] T. Bolognesi and Ed Brinksma. Introduction tho the ISO specification language LOT08\puter Networks
and ISDN System44, 1987.

[7] Jim Davies, Dave Jackson, and Steve Schneider. Broadcast communication for real-time processes. In J. Vytopil,
editor,Proc. Formal Techniques in Real-Time and Fault-Tolerant systpagges 149—-170. Springer-Verlag, 1992.
LNCS 571.

[8] H. Ehrig and B. Mahr. Fundamentals of algebraic specificatuil. Euro. Assoc. Theoret. Comp. $6i, 1985.

[9] Hubert Garavel and Radu Mateescu. French-Romanian proposal for capture of requirements and expression of
properties in E-LOTOS modules. Rapport SPECTRE 96-04, VERIMAG, Grenoble, May 1996. Input docu-
ment (KC4) to the ISO/IEC JTC1/SC21/WG7 Meeting on Enhancements to LOTOS (1.21.20.2.3), Kansas City,
Missouri, USA, May, 12-21, 1996.

[10] Hubert Garavel and Mihaela Sighireanu. French-Romanian integrated proposal for the user language of E-
LOTOS. Rapport SPECTRE 96-05, VERIMAG, Grenoble, May 1996. Input document (KC3) to the ISO/IEC
JTC1/SC21/WG7 Meeting on Enhancements to LOTOS (1.21.20.2.3), Kansas City, Missouri, USA, May, 12-21,
1996.

[11] C. A. R. Hoare.Communicating Sequential ProcessBEsentice-Hall, 1985.

[12] Alan Jeffrey. Semantics for a fragment of LOTOS with functional data and abstract datatyBesidad Working
Draft on Enhancements to LOTOS (yBO/IEC JTC1/SC21/WG7 N1053, chapter Annexe A. 1995.

[13] Alan Jeffrey. A core date and behaviour language for E-LOTOS. Input document (KC1) to the ISO/IEC
JTC1/SC21/WG7/E-LOTOS meeting in Kansas City, May 1996.

[14] Alan Jeffrey, Hubert Garavel, Guy Leduc, Charles Pecheur, and Mihaela Sighireanu. Towards a proposal for
datatypes in E-LOTOS. Annex A of ISO/IEC JTC1/SC21 N10108 Second Working Draft on Enhancements to
LOTOS. Output document of the edition meeting, Ottawa (Canada), July, 20—26, 1995, October 1995.

208

[15] Alan Jeffrey and Guy Leduc. E-LOTOS core language. Chapter 3 of [22], 1996.

[16] Luc Léonard and Guy Leduc. An introduction to ET-LOTOS for the description of time-sensitive sy§tems.
puter Networks and ISDN Systerd9(3):271-292, 1997.

[17] Giovanny Lucero and Juan Quemada. An E-LOTOS specification of the ODP Trader. Input document (GR1) to
the ISO/IEC JTC1/SC21/WG7/E-LOTOS meeting in Grenoble, December 1996.

[18] Robin Milner. Communication and Concurrencirentice-Hall, 1989.

[19] Harold B. Munster. LOTOS specification of the MAA standard, with an evaluation of LOTOS. NPL Report DITC
191/91, National Physical Laboratory, Teddington, Middlesex, UK, September 1991.

[20] Charles Pecheur. A proposal for data types for E-LOTOS. Technical report, Universitygs, lOctober 1994.
Annex H of ISO/IEC JTC1/SC21/WG1 N1349 Working Draft on Enhancements to LOTOS.

[21] Juan Quemada, editor. Revised working draft on enhancements to LOTOS (v2). ISO/IEC JTC1/SC21/WG7
N10108 Project 1.21.20.2.3. Output document of the Ottawa meeting, January 1996.

[22] Juan Quemada, editor. Revised working draft on enhancements to lotos (v4). ISO/IEC JTC1/SC21/WG1 N1173
Project 1.21.20.2.3. Output document of the Kansas City meeting, September 1996.

[23] Mihaela Sighireanu and Hubert Garavel. On the definition of modular E-LOTOS. Input document (GR2) to
the ISO/IEC JTC1/SC21/WG7 Meeting on Enhancements to LOTOS (1.21.20.2.3), Grenoble, France, December
9-11, 1996, December 1996.

[24] C. Verhoef. A congruence theorem for structured operational semantics with predicates and negative premises.
Nord. J. Computation2(2):274-302, 1995. Also appeareddroceedings CSL'9Bwansea 1993.

209

