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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in
liaison with 1ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.

Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 15437 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information
technology, Subcommittee SC 7, Software engineering.

Annexes A and B of this International Standard are for information only.
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Introduction

This International Standard contains the definition of the revised version of the LOTOS standard (1SO8807)
known as E-LOTOS. The definition of E-LOTOS was based on the initial LOTOS goals enriched with feedback
coming from the application of LOTQOS to system design in industrial environments, as well as with the goal
of supporting the ODP framework (Open Distributed Processing).

The semantics of the language is formed of a behavioural process algebra part which generalizes various
LOTOS operators, and of a functional data definition part which is executable and more user friendly. The
number of enhancements is high and all of them are very intertwined. A list is given now which tries to
highlight from the user point of view the new features from which an E-LOTOS user should benefit when
using the language. The most notable differences are:

e Modularity: E-LOTOS includes the following modularization facilities: module and interface definitions;
export, import and visibility control; and generic modules. The modules can contain definitions of types,
functions and/or processes.

e Data typing. E-LOTOS includes the following facilities for data definitions: predefined types, union
types, recursive types, records, extensible records and record subtyping. The predefined data types and
schemes are pervasive, i.e. they do not have to be declared before use in a module. As a consequence,
they are directly part of the semantics model. At the semantic level, functions have been defined
as a particular kind of processes which are deterministic and do not perform any visible event except
termination and exception signaling.

A two level approach has been devised for backward compatibility with LOTOS. The first level is declar-
ative. The second level provides executable definitions of the data types which should satisfy the
declarative definition of level one. With this scheme, backwards compatibility with LOTOS is achieved
by having declarative specifications at level one, either in ACT ONE or in an enhanced version of ACT
ONE. Functional level two data definitions should satisfy level one specifications.

e Time: E-LOTOS models events as atomic and instantaneous occurrences. The specifier can define the
time at which actions or behaviours may occur. For example, time restrictions can be added to action
denotations restricting the occurrence to a given set of time instants or wait statements can be used to
delay the occurrence of a behaviour in time.

e Sequential composition: a new operator " ; " is introduced which substitutes the operators existing in
LOTOS for sequential composition, action prefix and exit/enabling (>> ) pair. For example a;B or
B1;B2. In LOTOS the >> operator always generates an internal action when the enabling is performed.
In E-LOTOS, internal actions are generated only when necessary. This produces some minor differences
with the semantics in LOTQOS of some operators.

e Unification of processes and functions at the semantic level. A function is a process which performs only
a termination action upon termination.

e Introduction of write-many variables. Write many variables are included in E-LOTOS, with a safe use
assured by static semantic means. For example: assignment (write) must be performed before usage
(read); no dangerous use of shared variables is made by parallel behaviours; ....

e Introduction in E-LOTOS of output variables in processes and functions as the means to pass values
in sequential composition. This substitutes exit statements with value passing coupled with accept
statements. The existence of input and output variables in processes and functions provides a unified
approach for value communication among sequentially composed behaviours which is much more read-
able and concise. It is in line with notations used in ODP, like IDL (Interface Definition Language). To

© ISO/IEC 2001 — All rights reserved FINAL DRAET / PROJET EINAL
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illustrate the new approach to how sequential composition and value passing are performed let us see
an example which includes variable assignment, processes and functions.

X =2;

phasell...] (x, ?7resuld ; (* a process *)
compute(result, 7resl, 7res? ; (* a function *)
(Iphase2[...] (x, resD ||| rphase2[...] (X, res?d)

e A more general parallel operator has been introduced in E-LOTOS which has the actual LOTQOS parallel
operator as a particular case. This operator is n-ary and supports the synchronization of J processes
among K composed processes where J < K. Therefore synchronization patterns of 2 among N can
be modeled in E-LOTOS. The new operator is also more readable because it clearly identifies the
synchronizing gates for each behaviour composed.

e The Suspend/Resume operator which generalizes disabling. The new operator generalizes the LOTOS
disabling operator by allowing a disabled behaviour to be resumed by a specific action of the disabling
behaviour.

e Introduction of exceptions and exception handling in the behavioural and data parts with a uniform
approach. Exception mechanisms permit new ways of structuring and are demanded by ODP.

e Explicit renaming operator for observable actions or exceptions. The renaming operator allows not only
to change the name of the events occurring but to add and remove fields from the structure of events,
or to merge and to split gates.

e Typed gates and partial synchronization. Gates must be explicitly typed in E-LOTOS. The use of
the record subtyping relation permits partial synchronization of gates as well as provides backward
compatibility with standard LOTOS untyped gates.

The introduction of enhancements has been performed trying to minimize the growth in the complexity of
the language. Rather than introducing new operators, the enhancements have been introduced by generalizing
existing operators. Only new statements and/or operators have been introduced when absolutely necessary.
E-LOTOS is, as LOTQOS, a language which permits a rich variety of specification styles which may be used
to model different aspects of the design process. The styles existing in LOTOS, constraint oriented, resource
oriented, state oriented, EFSM oriented, monolithic, ... can be also used in E-LOTOS. In addition the existence
of exceptions, partial synchronization, event renaming, and other new constructs open new ways of specifying.

Xl FINAL DRAET / PROJET EINAL © ISO/IEC 2001 — All rights reserved
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| nfammatiiom texdimutngy — Enhancements od IMITOXS(E-L OTOYS)

1 Scope

This International Standard defines the syntax and semantics of the enhanced LOTOS language (ISO 8807),
named E-LOTOS. E-LOTOS is used for the formal description of the behavioural aspects of distributed and
concurrent systems in general and in the area of open distributed processing in particular.

2 Conformance

A formal specification written in E-LOTOS conforms to the requirements of this International Standard if and
only if it is derivable according to the syntactic rules defined in clause 5 and the semantics is unambiguously
derivable from the semantic definition in clause 7.

3 Normative reference

The following normative document contains provisions which, through reference in this text, constitute pro-
visions of this International Standard. For dated references, subsequent amendments to, or revisions of, any
of these publications do not apply. However, parties to agreements based on this International Standard are
encouraged to investigate the possibility of applying the most recent edition of the normative document
indicated below. For undated references, the latest edition of the normative document referred to applies.
Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 8807, Information processing systems — Open Systems Interconnection — LOTOS — A formal description
technique based on the temporal ordering of observational behaviour.

4 Terms, definitions and notation

This clause describes the concrete syntax for E-LOTOS. Here we use a notation similar to Extended Backus-
Naur format which is summarized in the following table:

(© ISO/IEC 2001 — All rights reserved 1
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| Symbol I meaning
| aternative definition
D,K,V,SRT... || terminal and non-terminal symbols
text E-LOTOS keywords
= definition
* repetition of the preceding syntactic unit (zero or more times)
O grouping syntactic units
I optional (may or may not occur)

It is worth noting that the metalinguistic ‘()’ and ‘[’ must not be confused with the E-LOTOS symbols ‘[,
T, (C, *)', and ‘|". In the syntax, these E-LOTOS symbols appear between single quotes. Other symbols (: ,
->, etc.) will appear without quotes to keep the International Standard readable.

Syntax for predefined types are described in clause 10.

5 E-LOTOS grammar

5.1 Lexical Structure

This clause describes the lexical units (tokens) of E-LOTOS.

5.1.1 Character set

Characters are divided into several classes denoted by the nonterminals below:

<character> ::= <letter> | <digit> | <special-character> | <blank-character>
<letter> ::= "a" | np" | nen | ngn | nat | ngn | ngu I npn | nyn

| Ilj n | Ilkll | |I1l| I llmll | llnll | Iloll | |IPI| I llqll | llrll

| IISII | Iltll | |Iul| I IIVII | llwll | IIXII | |Iyl| I IIZII
<dlglt> ca= oM | nqn | non I ngn I ngn | ngn | ngn I rdl I ngn | ngn
<normal-character> ::= <letter> | <digit>

<special-character> ::=

ngn I u%n | ngn | Ny | nyn I n_n | non | n/u | ngn | n=n
| Il>l| | |I©ll | ll\ll | n-=n | n~n | |I{ll | ll}ll
<blank-character> ::= SP | HT | VT | FF | LF | NL | CR
<character> ::= <letter> | <digit> | <special-character> | <blank-character>

Formally, no distinction is made between different versions of the same character, such as capitalized, bold,
italic, etc.

2 (© ISO/IEC 2001 — All rights reserved
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5.1.2 Comments and separators
Let <any-string-of-text> represent any string of characters not containing the substring “x)". Then,

comments are defined as:

<comment> ::= "(*" <any-string-of-text> "x¥)"

Comments are no part of E-LOTOS description. Comments may be inserted anywhere between two other
lexical units or left out, except when they play the role of separators. Basically, a comment may be substituted
by a SP.

A separator is defined as:

<separator> ::= <blank-character> | <comment>

Zero or more separators may occur between any two consecutive tokens, before the first token, or after
the last token of the E-LOTOS text.

There shall be at least one token separator between any pair of consecutive tokens if the concatenation of
their texts changes their meaning.

5.1.3 Identifiers

All E-LOTOS objects are designated by identifiers. An identifier begins with a letter, possibly followed by any
number of digits, letters and underscore “_" symbol, and ends with a digit or a letter.

<identifier> ::= <letter> { [ "_" ] <normal-character> }

All characters in an identifier are significant, and there is no limit to their length.

Special identifiers are defined in order to allow an intuitive notation for mathematical operators, such as
“+", “/", etc. They are built from special characters, normal characters and digits.

<special-identifier> ::=
<special-character> { <special-character> }
| <digit> { [ "_" ] <normal-character> }

5.1.4 Reserved words

The reserved words for the language are:

(© ISO/IEC 2001 — All rights reserved 3
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and andalso any as behavior
behaviour block break by case
choice conc dis do else
elsif endcase endch endconc enddis
endeqgns endexit endexn endfor endfunc
endfullsync  endgen endhide endif endint
endinter endloop endmod endpar endproc
endren endsel endspec endsuspend endtrap
endtype endval endvar endwhile egns
etc exception exceptions exit external
for forall fullsync function gate
gates generic hide i if
imports in infix inter interface
is loop module none null
ofsort opns orelse out par
process procs raise raises rename
renames renaming sel signal
stop suspend then trap type
types value values var wait
while
The reserved lexical tokens for the language are:
¢ ) { oo, .
;o I ?7 01 =
= <> = [ ] ->
# >
5.1.5 Identifiers classes
The terminals of the language syntax are:
| identifier domain || meaning | abbreviation |
Con constructor identifier C
Const constant identifier K
Exc exception identifier X
Fun function identifier F
Gat gate identifier G
Genld generics identifiers gen-id
Intld interface identifiers int-id
Modld module identifiers mod-id
Proc process identifier Mn
Spec specification identifier >
Typ type identifier S
Var variable identifier \%

5.1.6 Non-terminals classes

The non-terminals for the language are:

(© ISO/IEC 2001 — All rights reserved
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| symbol domain || meaning | abbreviation |
APL actual parameter list APL
Behav behaviour expression B
BehavTerm behaviour term BT
BehavAtom behaviour atom BA
BMatch behaviour match BM
Decl declaration D
EMatch expression match EM
EqnDecList equations declaration list eqn-dec-list
EqnDec simple equations declaration eqn-dec
Exp expression E
ExpAtom expression atom EA
FPL formal parameter list FPL
GPL gate parameter list GPL
InParList in parameter list IPL
InPar in parameter IP
IntBody interface body i-body
IntExp interface expressions int-exp
LocVar local variables Lv
ModBody module body m-body
ModExp module expressions mod-exp
ModPar module formal parameters MP
Pat pattern P
RecModExp record module expressions RME
Reninst module renaming/instantiation reninst
RPat record pattern RP
RTyExp record type expression RT
RVal record value expression RN
RVar record of variables RV
SCon special constant K
Spec specification spec
TopDec top-level declarations top-dec
TyExp type expression T
Val value expression N
XPL exception parameter list XPL

5.2 Syntax of the language

5.2.1 Specification

spec = [top-dec] specification (specl)
specification X [imports mod-exp(, mod-exp)*] is
[gatesG[:T](,G[: T])*] [exceptionsX[:T](,X[:T])*]
(behaviour B) | (valueE )
endspec

The default gate list is [], the default gate type is (etc), the default exception list is [1 and the default
exception type is ().

(© ISO/IEC 2001 — All rights reserved 5
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5.2.2 Top-level declaration

top-dec ::= module mod-id [: int-exp] module  (top-decl)
[imports mod-exp(, mod-exp)*| is m-body endmod

| module mod-id : int-exp is external endmod external module  (top-dec2)

| genericgen-id > (° MP )’ [: int-exp] generic module  (top-dec3)
[imports mod-exp(, mod-exp)*| is m-body endgen

| interface int-id interface  (top-dec4)

[imports int-exp(, int-exp)*] is int-exp endint
| top-dec top-dec sequential top declaration (top-dec5)

5.2.3 Module body

m-body = D block declaration  (m-body1)
|  mod-exp module expression (m-body?2)

5.2.4 Module expression
mod-exp = mod-id [: int-exp] [renaming ’> (* reninst )’ ] module aliasing  (mod-expl)
| gen-id > [RME] )’ [: int-exp] actualization (mod-exp2)
[renaming * (* reninst *)° ]
| gen-id > (° reninst )’ renaming/instantiation  (mod-exp3)

5.2.5 Module formal parameters

MP = mod-id : int-exp single (MP1)
| MP, MP disjoint union (MP2)

5.2.6 Interface expressions

int-exp = int-id interfaceid  (int-expl)
| [’ int-id renaming ’> (’ reninst )’ ’]1’ simple renaming  (int-exp2)
| [’ i-body [renaming ’> (* reninst >)* ] *]1’ explicit body  (int-exp3)

5.2.7 Record module expression

RME := mod-id => mod-exp single (RME1L)
| RME, RME disjoint union (RMEZ2)
6 (© ISO/IEC 2001 — All rights reserved
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5.2.8 Interface body

i-body =
\
\
|
\

type S abstract data type (i-bodyl)
type SrenamesT endtype type synonym (i-body2)
type SisC[> (> RT *)’ ] (°|” C[ >’ RT ?)’ ])* endtype constructed type (i-body3)
type Sis > (° RT ’)’ endtype named record type declaration (i-body4)
processi [’ [’ G[:T](,G[:T)* °1’ ] process (i-body5)

[7C FPL ) ]

[raises’ [> X[: T](,X[: T])* *17]
function F [’ (> FPL ?)’ ]

function  (i-body6)
[:T]
[raises’ [> X[: T](,X[: T])* *1°]
function F infix > [(injout)]V:T, [(injout)]V:T )’ infix function  (i-body7)

[+ T]
[raises’ [ X[: T](,X[: T])* *1°]

| valueV : S
| eqnsegn-dec-list endeqns
| i-body i-body

5.2.9 Formal parameter list

FPL == V:T

| InV:T

| outV:T

| FPL,FPL

5.2.10 Renaming/Instantiation

reninst = typesS:=5(,S:= 9"
| opns(C:=C|F :
| procsml :=MN(,M :=M)*
| valuesV :=V(,V :=V)*
|

reninst , reninst

5.2.11 Equations declaration
eqn-dec-list = [forall RT]

eqn—dec (egn—deg*
| egn-dec-list eqn-dec-list

(© ISO/IEC 2001 — All rights reserved
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constant value (i-body8)
equations  (i-body9)
sequential (i-body10)

singletor{fpl1)

input singletorffpl2)
output singleto(fpl3)
disjoint union(fpl4)

types  (reninstl)

F)*  constructors and functions (reninst2)
processes (reninst3)

value  (reninst4)

renaming/instantiation tuple (reninstb)

equations declaration (egn-dec-listl)

sequential (eqn-dec-list2)
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5.2.12 Simple equations declaration

eqn-dec

= ofsort T [forall RT | E simple equations declaration (egn-decl)

5.2.13 Declarations

D

type SrenamesT endtype type synonym(D1)
type SisC[> (" RT *)’] (* |’ C[> " RT ?)’])* endtype type declaration (D2)
type Sis > (° RT ?)’ endtype named records type declaratiofD3)
processi [ [’ G[: T](,G[:T)* *1’ ] process with in/out parametergD4)
[ ) (7 FPL ;) ) ]
[raises’ [> X[: T](LX[T])* °1° ]
is B
endproc
function F [ > (C FPL )’ | [:T]
[raises’ [’ X[: T](,X[: T])* *17 ]
is E
endfunc
function F infix > [(injJout)]V:T, [(injout)]V:T *)’ infix function (D6)
[:T]
[raises’ [’ X[: T](,X[: T])* 1’ ]

function with in/out parameters(D5)

isE
endfunc
valueV : Sis E endval constant value declaration(D7)

DD sequential declaration(D8)

5.2.14 Expressions

E

EA expression atomE1)
EA; E sequential composition{E2)

5.2.15 Expression Atoms

EA

P :=EA assignment (EA1)

trap trap (EA2)
(exceptionX [ (* IPL *)’] is E endexn)*
[exit [P] is E endexif

in E

endtrap

var V:T[:=E|(,V:T[:=E])* in
E

endvar

variable declaration (EA3)

(© ISO/IEC 2001 — All rights reserved
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rename
(signal X [> (> IPL )] is X [E])*

in E

endren

loop E endloop

loop X [:T]in
E

endloop

while E do
E
endwhile

for E while E by E do
E
endfor

caseE is EM endcase
case’ (> E(,E)* ?)’ is EM endcase

if E then E
(elsif E then E)*
[elseE]

endif

F{>CAPL?)’ | [’[> XPL’]’ ]
(EAP) F (EAP) [’ [’ XPL’]" ]
raise X [’ E ?)?]

break [X] [’ E ?)’]

N

EA andalsoEA

EA orelseEA

EA=EA

EA<> EA

EA.V

EA: T

(O E )

5.2.16 Behaviour expressions

B

BT

DisB
SyncB
ConcB
SelB
SuspendB
InterB
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renaming (EA4)

iteration (EAD)
breakable iteration (EA6)

while iteration (EA7)

for iteration (EA8)

case (EA9)
case with tuplegEA10)
if-then-else(EA11)

function instantiation(EA12)
infix function instantiation(EA13)
raising exception(EA14)
breaking iteration (EA15)

value (EA16)
conjunction(EA17)

disjunction (EA18)

equality (EA19)

inequality (EA20)

select field(EA21)

explicit typing (EA22)
parenthesized expressiditA23)

behaviour term (B1)
disabling (B2)
synchronization(B3)
concurrency (B4)
choice (B5)
suspend/resum(@6)
interleaving (B7)
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5.2.17 Disabling behaviour expression

DisB := BT [> BT
| BT [> DisB

5.2.18 Synchronization behaviour expression

SyncB = BT || BT
| BT Il SyncB

5.2.19 Concurrency behaviour expression

ConcB := BT |[[G(,G)*]]1I BT
| BT I[[G(,G)*]1] ConcB

5.2.20 Selection behaviour expression

SelB = BT []1 BT
| BT [J SelB

5.2.21 Suspend/Resume behaviour expression

SuspendB ::= BT [X> BT
| BT [X> SuspendB

5.2.22 Interleaving behaviour expression

InterB = BT ||| BT
| BT Il InterB

5.2.23 Behaviour term

BT := BA
| BA; BT

10

singleton (DisB1)
disjoint union (DisB2)

synchronization (SyncB1)
synchronization (SyncB2)

concurrency (ConcB1)
concurrency (ConcB2)

choice (SelB1)
choice (SelB2)

suspend/resume  (SuspendB1)
suspend/resume (SuspendB2)

interleaving  (InterB1)
interleaving  (InterB2)

behaviour atom (BT1)
sequential composition (BT2)
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5.2.24 Behaviour atom

BA = G[P|[eP][’[’ E ]’ ] action (BA1)
| i internal action (BA2)
| null successful termination (BA3)
| stop inaction (BA4)
| block time block (BA5)
| wait >’ E ?)’ delay (BAG6)
| P:=EA assignment (BA7)
| P:=anyT[’[’ E ’]1’] nondeterministic assignment(BA8)
| dis DisB enddis bracketed disabled expression(BA9)
| fullsync SyncBendfullsync bracketed synchornization expressigBA10)
| concConcBendconc bracketed concurrency expressiofBA11)
| selSelBendsel bracketed choice expressio(BA12)
| suspendSuspendBndsuspend bracketed suspend/resume expressi@A13)
| inter InterB endinter bracketed interleaving expressio(BA14)
| choiceP []1 B endch choice over values(BA15)
| trap trap (BA16)

(exception X[’ (* IPL *)’] is B endexn)*
[exit [P] is B endexif
in B
endtrap
| par [G#n(,G#n)*] in general parallel (BA17)
[ [6(,G)*] )1” -> B(I1 * [ [G(,G)*] *1* -> B)*
endpar
| par Pin N ||| B endpar parallel over values (BA18)
| varV:T[:=E](,V:T[:=E])" in variable declaration (BA19)
B
endvar
| hide G[: T](,G[: T])* in gate hiding (BA20)
B
endhide
| rename renaming (BA21)
( (gate G[(IPL)] is G [P]) | (signal X[(IPL)] is X [E]) )*
in B
endren
| [ [GPY 1 process instantiation(BA22)
>(> [APL] ?)?
[2[” XPL]’ ]
| loop B endloop iteration (BA23)
| loop X [:T]in breakable iteration (BA24)
B
endloop
| while E do while iteration (BA25)
B
endwhile
(© ISO/IEC 2001 — All rights reserved 11
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| for E while E by E do for iteration (BA26)
B
endfor
| caseE is case (BA27)
BM
endcase
| case’(’ E(,E)* *)’is case with tuples(BA28)
BM
endcase
| if EthenB if-then-else (BA29)
(elsif E then B)*
[elseB]
endif
| signalX [ E *)’] signalling (BA30)
| raiseX [?(’ E ?)’] raising exception (BA31)
| break [X] [?(’ E ?)] breaking iteration (BA32)
| > B?)’ parenthesized behaviou(BA33)

T == S type identifier (T1)
| none empty type (T2)
| any universal type (T3)

RT = V=T(V=T)"[,et] named (RT1)
| etc universal record (RT2)
| T(T)* positional (RT3)

5.2.27 Value expressions

N = K primitive constant (N1)
| V variables (N2)
| > RN?)’ record values (N3)
| CIN] constructor application (N4)
12 (© ISO/IEC 2001 — All rights reserved
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5.2.28 Record value expressions

RN = V =>N(V =>N)* named (RN1)

| N(N)* positional

5.2.29 Patterns

(RN2)

P = 2CRP’)”’ records (P1)
| any:T wildcard (P2)
| 7V variable (P3)
| 'EA expression (P4)
| CI[P] constructor application (P5)
| P:T explicit typing (P6)

5.2.30 Gate parameter list

GPL = G=G(,G=>G)"[, ...] explicit instantiation
| explicit instantiation
| G(,G)* positional instantiation

Note that these rules require that “..." occurs at most once in a terminal position.

5.2.31 Actual parameter list

APL = V =>(EIP) (,V=>(EIP)*[, ...] explicit instantiation
| ... explicit instantiation
| (E|P)(,(EIP))* positional instantiation

Note that these rules require that “..." occurs at most once in a terminal position.

5.2.32 Exception parameter list

XPL = X=>X(LX=>X)*[, ...] explicit instantiation
| ... explicit instantiation
| X(,X)* positional instantiation

Note that these rules require that “..." occurs at most once in a terminal position.

(© ISO/IEC 2001 — All rights reserved

FINAL DRAFT / PROJET FINAL

(GPL1)
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(GPL3)

(APL1)
(APL2)
(APL3)

(XPL1)
(XPL2)
(XPL3)
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5.2.33 Record patterns

RP = V =>P(,V=>P)",etd named (RP1)
| etc wildcard  (RP2)
| P(,P) positional (RP3)

5.2.34 Behaviour pattern matching

BM == P[P[’E’]’]->B single match (BM1)
| BM |’ BM multiple match (BM2)

5.2.35 Expression pattern matching

EM = PP[D’E’]’]—>E single match (EM1)
| EM’|> EM multiple match (EM2)

5.2.36 In parameter list

IPL == IP (,IP)* disjoint union (IPL1)

5.2.37 In parameter

P = V=[P:]T singleton (IP1)
| etc wildcard (IP2)
| PaslP record match (IP3)
| [P:]T tuple (IP4)
| >C IPL )’ parenthesized parameterglP5)

with the restriction that etc can occur at most once.

6 E-LOTOS abstract syntax

6.1 Overview

In this clause, the translation from concrete syntax into abstract syntax is defined. This includes the syntactic
sugar rules definition. Note that although abstract syntax is represented by text, the semantics will deal with
an abstract syntax tree. In particular, brackets are used to represent such tree textually.

14 (© ISO/IEC 2001 — All rights reserved
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6.1.1 Syntactic sugar

In the grammars, non-primitive constructs (which are defined in terms of syntactic sugar for primitives) are
marked with a ‘x’. The terms added to the syntax are marked with a ‘+'. These grammars omit any
end-keywords from the concrete grammar. For clarity, the whole rules are included.

Many of the constructs in the base language are defined as syntactic sugar, for example if-statements are
defined as syntactic sugar for casestatement.

In addition, we define the following non-terminals as syntactic sugar:

| symbol domain || meaning | abbreviation | sugar for |

APL parameter list APL E1|P1,...,En|Pn
Exp expression E B
ExpAtom expression atom EA B

EMatch expression match EM BM

FPL formal parameter list FPL Vi:T1,...,Vh:Th
GPL gate parameter list GPL Gy,...,Gp
RExp record expression RE B

RV record of variables RV Vi,...,Vq
XPL exception parameter list XPL X1y Xn

Syntax sugar context Syntax sugar for process instantiation needs information from the proper process
declaration. This information is used for:

e transforming explicit instantiation of gates, exceptions and values into positional instantiation

e solving the abbreviated parameters lists (“..." as -partial- instantiation list).

e change out parameters in local var. definition with value capture (via trap).

In other words, process instantiation in abstract syntax has only positional input parameters.

The context keeps position information of out parameter taken from process declarations and is used
in process instantiations, and the formal gate, formal parameter, and exception lists. It is composed by
judgements as S 1= Pos

S = [=Pos positional information(S1)
| M= gateg[GCy,...,Gnl) formal gate list (S2)
| M= params([Vy,...,Vpl) formal parameter list (S3)
| M= exceptiong [X1,...,Xm]) formal exception list(S4)
| S,$ disjoint union (S5)

Intuitively, PoSis a set of indexes, and it stores the positions of out parameters.

6.1.2 Abstract syntax

The following constructions are defined:

e after (N): where N is a number.
o start(N): where N is a number.

e exit(RN): successful behaviour end with returning value.

- rights reserve
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Abstract syntax is a superset of the syntax defined by the grammar in Clause 5. However, to keep definitions
shorter, it usually omits the closing reserved word (endproc, endvar, .. .).

Some syntactic categories are extended in abstract syntax. So, we allow record types RT, record value
expressions RN, and record patterns RP to be empty. See Subclauses 6.2.10, 6.2.11, and 6.2.15 respectively.

RT is considered a T in abstract syntax, see Subclause 6.2.9, although it is not allowed to express anonymous
record types in E-LOTOS text, this rule ease the semantics definition.

6.2 Concrete to abstract syntactic translation

In this clause, we revisit only those categories that need translation. Each subclause is divided in an “Overview”
subclause that includes the syntactic category, with marks for clauses that changes from concrete to abstract
syntax (‘x' for removed clauses, '+’ for added clauses). Then, the translation for each clause is given. Besides,
we include those category that modifies the syntax sugar context, need for translating out parameters.

Some categories are translated in several steps, as they may be defined as a translation into concrete syntax
which will need further translation.

6.2.1 Interface body
6.2.1.1 Overview

Concrete syntax

i-body = typeS abstract data type (i-body1l)
| type SrenamesT endtype type synonym (i-body?2)
| typeSisC[>C RT’)’ ] (1’ C[’(C RT )’ ])* endtype constructed type (i-body3)
| type Sis’(’ RT ’)’ endtype named records type declaration (i-body4)
*| processM [’ [’ [G:T|(,G[:T])*] °1° ] process (i-body5)
["C FPL ) |
[raises’ [> X[: T](,X[: T])* *17]
*| function F [>C FPL )’ ] function  (i-body6)
: T
{raise}s’ U XETIGXET)D* °17)
* | function F infix > [(injout)]V:T, [(injout)]V:T >)° infix function  (i-body7)
: T
%raisel" D XETIGXET)D* °17)
x| valueV : S constant value (i-body8)
| eqnseqgn-dec-list endeqns equations  (i-body9)
| i-body i-body sequential (i-body10)
+| processM [ [’ [G[:T](,G[:T])* *1° ] process with return value (i-body11)
[PCOVITLV:T)* )]
: T

[raises’ [’ X[ T](,X[T])* °1°]

function declarations are synonymous with the equivalent processdeclaration. value declarations are
synonymous with the equivalent function declarations.

The last category is added to join functions and processes in the abstract syntax in just one category, a
process with a return value and just in parameters.

16 (© ISO/IEC 2001 — All rights reserved
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6.2.1.2 Process declaration

Concrete syntax

processf [’ [’ Gy[: Ta],...,Gn[: Tn] *17 ]
[7C FPL )’ |
raises [Xa[: 7], ..., Xml: T ]1]
isB
endproc

The default gate list is [, the default gate type is (etc), the default in pararameter is (), the default result
type is (), the default exception list is [] and the default exception type is ().

Context

SEM={j|outV;:T €FPL}

SFMN=gateg[Gy,...,Gn])

S+ M= params([Vy,...,Vpl)

S F M= exceptiong [Xq,...,Xm])
with FPL = [infout] V1 : Ty,...,[infout] Vp: Ty

Syntax sugar

[:(; FPL’)’] def [

processf [’ [’ Gi[:Ta],...,Gn[: Tn] 1" ] processf | :Ej |G%
raises [X1[: T{], ... , Xm[: TA]1]

[raises [X1[: T{'], ..., Xm[: T])1]
where (ordered with ascendant indexes):

I = {Vi:T | [in] Vi : T € FPL} and

OT="’>C{Ti|outVi: Ty e FPL}’)’. If there is no out parameters, noneis the return type.

6.2.1.3 Function declaration

Concrete syntax
function F [ > FPL )" ]
[:T]
raises’ [ X[: T|(,X[: T])* *1°]

The default parameter list is (), the default result type is (), the default exception list is [1 and the default
exception type is ().

Syntax sugar
function F [ (> FPL ) ] [:T] def ( processkF [’ (> FPL?)’ ] [:T]
raises’ [? Xu[: Ta], ..., Xn[: Ta] 217 ) raises’ [’ Xq[: Ta], ..., Xn[: Tn] 1°

- rights reserve
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6.2.1.4 Infix function declaration
Concrete syntax

function F infix > (> [(injout)]V:T, [(injout)]V:T *)°’

[:T]
[raises’ [* X[: T](,X[: T])* *1’]

The default exception list is [] and the default exception type is ().

Syntax sugar

function F infix [ > (° FP,FP, ?)? | [:T] \ ar [ processF [’ (> FPr, FP> )’ | [:T]
raises’ [> Xq[: Ta], ..., Xn[: Tn] ?1° o raises’ [’ Xa[: Ta), ..., Xa[: Tn) ’1°

where FR = [in|out]V; : T;.

6.2.1.5 Constant value
Concrete syntax

valueV : S

Syntax sugar

valueV:S £ function V():S

6.2.2 Formal parameter list
6.2.2.1 Overview

Concrete syntax

FPL = V:T singleton (FPL1)
x| inV:T input singleton (FPL2)
x| outV:T output singleton (FPL3)

| FPL,FPL disjoint union (FPL4)

This category has disappeared, see Subclause 6.2.1.2, and it is rewritten as a list of in typed parameters.
out parameters are dealt with as local variable declaration with value capturing via trap.
6.2.3 Declarations
6.2.3.1 Overview

Concrete syntax

D := type SrenamesT endtype type synonym(D1)
| typeSisC[’(’ RT *)’] (°|’ C[’(° RT *)’])* endtype type declaration (D2)
| type Sis’(’ RT ’)’ endtype named records type declaratiorfD3)
*=| processl [°[’ [G:T|(,G[:T])*] °1’ ] process with infout parametergD4)
[ b) (7 FPL ;) b) ]
[raises [X[: T](, X[: T])*1]
is B
endproc
18 (© ISO/IEC 2001 — All rights reserved
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x| function F [ (> FPL*)’ ] [:T]
raises > [ X[: T](, X[ T])* >1” ]
is E
endfunc
x| function F infix > ( [(injout)]V:T, [(injout)V:T *)°
[:T]
[raises’ [’ X[: T](,X[: T])* *1"]
is E
endfunc
x| valueV : Sis E endval
| DD
+| processn [’[’ [G[: T](,G[:T])*] °1" ]
[PCVITLV:T)* )]
: T

[raises’ [ X[: T](,X[: T])

Syntax sugar

value constants are syntax sugar of functions with arguments ().

6.2.3.2 Process declaration

Concrete syntax

processi [ [’ Gi[: Ta],...,Gn[: Tn] *1" ]
[2C FPL?)’ ]
raises [Xa[: 7], ..., Xml: T ]1]
isB
endproc

The default gate list is [1, the default gate type is (etc), the default in

ISO/IEC 15437:2001(E)

function with in/out parameters(D5)

infix function (D6)

constant value declaration(D7)
sequential declaration(D8)
process with return value(D9)

The function declarations are synonymous with the equivalent processdeclaration. Also,

pararameter is (), the default result

type is none, the default exception list is [] and the default exception type is ().

Context

SEM={j|outV;:T €FPL}

SFN=gateg[Gy,...,Gnl)

S+ M= params([Vy,...,Vpl)

S F N = exceptiong [X1,...,Xm])
where FPL = [inout] V1 : Tj,..., [injout] Vp, : T

(© ISO/IEC 2001 — All rights reserved
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Syntax sugar

processf [ [’ Gi[: Ty],...,Gn[: T *17 ]

e
process [ [’ Gi[: Ta],...,Gn[: Tn] ’1° ] : OT
[C FPL?) ] [raises [Xq[: '], ..., Xm[: Tyl1]
raises [X1[: /], ..., Xn[: TZ1] | & is
isB var Oin
endproc B ; exit(RV)
endvar
endproc

where (every tuple is ordered with ascendant indexes):

I = (M, Ty Vi ) with Vi, s Ty Ve T b = {Vi o T | fin] Vi Ty € FPLY,

O={Vi:T |outVi: T € FPL},

OT =" (’{T; | out Vi : T € FPL} )’ (if there is no out parameters, noneis the return type), and
RV={V, |outV;: T € FPL}.

6.2.3.3 Function declaration

Concrete syntax

function F [ > (> FPL *)* ] [:T]
[raises’ [’ X[: T](,X[: T])* 1’ ]
is E

endfunc

The default parameter list is (), the default exception list is [] and the default exception type is ().

Syntax sugar

function F [ > (C FPL *) ] [:T] processF [>(’ FPL *)’ | [:T]
raises’ [7 Xai[: Ta],..., Xa[: Tn] ’1° def raises’ [’ Xa[: Ta],..., Xa[: Tn] ’1°
is E o is E

endfunc endproc

6.2.3.4 Infix function declaration
Concrete syntax

function F infix > [infout]Vy: Ty, [infout]Vz>: Ty ?)°
[: T
[raises’ [ X[: T](,X[: T])* *1°]
isE
endfunc

The default exception list is [1 and the default exception type is ().

Syntax sugar

function F infix > CFP,FP, ?)° [:T] processF > CFP,FP ) [:T]
raises’ [ Xq[: Ta],..., Xa[: Tn] *1° def raises’ [ Xq[: Ta,..., Xa[: Tn] *1”°
is E o is E

endfunc endproc

where FR = [in|out]V; : T;.
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6.2.3.5 Constant value declarations
Concrete syntax

valueV : Sis E endval

Syntax sugar

valueV:Sis E endval & function V():Sis E endfunc

6.2.4 Expressions
6.2.4.1 Overview

Concrete syntax

E = EA
| EA; E

Syntax sugar See notes on syntax sugar for clause 6.2.5.

6.2.5 Expression atoms
6.2.5.1 Overview

Concrete syntax

EA 1= P:=EA
| trap
(exceptionX [> (* IPL *)’] is E endexn*
[exit [P] is E endexit]
in E
endtrap
| varV:T[:=E](,V:T[:=E])* in
E
endvar
| rename
(signal X[> (> IPL *)’] is X [E])*
in E
endren
= | loop E endloop
x| loop X [:T] in
E
endloop

*| while E do
E
endwhile

*| for E while E by E do
E
endfor

(© ISO/IEC 2001 — All rights reserved
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expression aton(E1)
sequential compositioE2)

assignment (EA1)
trap (EA2)

variable declaration (EA3)

renaming (EA4)

iteration (EA5)
breakable iteration (EA6)

while iteration (EA7)

for iteration (EA8)
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*| caseE is EM endcase case (EA9)
| case’(’ E(,E)* )’ is EM endcase case with tupledEA10)
*| if EthenE if-then-else(EA11)
(elsif E then E)*
[elseE]
endif
x| F[>C[APL] ) ][°[> XPL’]"] function instantiation(EA12)
x| (EAP)F (EAP) [ ’[’> XPL ]’ ] infix function instantiation(EA13)
x| raiseX [?C E ?)’] raising exception(EA14)
*| break [X] [’ E *)’] breaking iteration (EA15)
x| N value (EA16)
*=| EAandalsoEA conjunction(EA17)
x| EAorelseEA disjunction (EA18)
x| EA=EA equality (EA19)
x| EA<>EA inequality (EA20)
x| EA.V select field(EA21)
x| EA:T explicit typing (EA22)
| *C E’) parenthesized expressiqEA23)

Syntax sugar Some of these clauses are syntax sugar, some of them with an explicit translation as described
in following subclauses and some with the same translation that applies for behaviours. The rest are particular
cases of behaviours only capable of performing termination (&) or exception (X) transitions, and not internal
(i), gate (G) or delay (g) transitions.

We translate each expression of type T into a behaviour of type exit(T). Expressions are deterministic.

Most of the translations are straightforward, since they are the same as the behaviour parts. We only
give the non-trivial translations here. Note that infix function instantiations are firstly translated into prefix
function instantiations, then considered as behaviour.

6.2.5.2 Infix function instantiation

Concrete syntax
(EAIP) F (EAP) [ > [ XPL 1" |
The default exception list is [].
Syntax sugar
(APLF AR 2 [* XPL*1*)= (F * (" AR, AR ?)* > [ XPL ’]?)
where AR = EA/|R.

6.2.5.3 Value

Concrete syntax

N
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Syntax sugar

def

N = exit($1=>N)

6.2.5.4 Conjunction
Concrete syntax

EA andalsoEA

Syntax sugar

def

EA; andalsoEA, = if EA; then EA elsefalse

6.2.5.5 Disjunction

Concrete syntax

EA orelseEA

Syntax sugar

EA; orelseEA, & if EA; then true elseEA,

6.2.5.6 Equality

Concrete syntax

EA=EA

Syntax sugar

EAL = EA d:efcasdEAl,EAz) is(7x,?7y) — casexis 'y — true | any — false

6.2.5.7 Inequality
Concrete syntax

EA<> EA

Syntax sugar

def

EA; <> EA, = if EA; = EA then falseelsetrue

6.2.5.8 Field select

Concrete syntax

EA.V

Syntax sugar

EA .V & caseEAis (V= 7x,etc) — x
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6.2.5.9 Explicit typing
Concrete syntax

EA: T

Syntax sugar

EA: T caseEA:T is 7x — X

6.2.6 Behaviour expressions

Syntax

B = BT

DisB
SyncB
ConcB
SelB
SuspendB
InterB

behaviour term (B1)
disabling (B2)
synchronization(B3)
concurrency (B4)
choice (B5)
suspend/resum(86)
interleaving (B7)

Syntax sugar Note that this category is introduced to priorize operators, and it is just the union of other
categories. Those categories that need syntactic translation are included in the next sections. The rest will be

revisited in the semantic Clause 9.

6.2.7 Interleaving behaviour expression

Concrete syntax

InterB x,::= BT ||| BT
x| BT Il InterB

Syntax sugar

def

Bil11B2,=B11[11By

6.2.8 Behaviour atom
6.2.8.1 Overview

Concrete syntax

BA = x G[P][eP][’[’ E *]1"]
+| GPeP [’ E ] start(N)
| i
| null
| stop

24

interleaving (InterB1)
interleaving (InterB2)

action (BA1l)

action (BA2)

internal action (BA3)
successful termination (BA4)
inaction (BA5)
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| block time block (BAG6)
| wait >’ E )’ delay (BA7)
| P:=EA assignment (BA8)
| P:=anyT[’[’ E ’]1’] nondeterministic assignment(BA9)
= | dis DisB enddis bracketed disabled expressio(BA10)
*| fullsync SyncBendfullsync bracketed synchornization expressiqBAll)
*| concConcBendconc bracketed concurrency expressiofBA12)
*| selSelBendsel bracketed choice expressio(BA13)
* | suspendSuspendBndsuspend bracketed suspend/resume expressi@A14)
*| inter InterB endinter bracketed interleaving expressio(BA15)
*| choiceP []1 B endch choice over values(BA16)
+| choiceP after(N)[1 B choice over values(BA17)
| trap trap (BA18)

(exceptionX[> (’ IPL ?)’] is B endexn*
[exit [P] is B endexif

in B
endtrap
| par [G#n(,G#n)*| in general parallel (BA19)
GG 1 > B(1 [ [G(,6)7] 1’ —> B)*
endpar
| par Pin N ||| B endpar parallel over values (BA20)
| varV:T[:=E](,V:T[:=E])* in variable declaration (BA21)
B
endvar
| hide G[: T](,G[: T])* in gate hiding (BA22)
B
endhide
| rename renaming (BA23)
( (gate G[(IPL)] is G [P]) | (signal X[(IPL)] is X [E]) )*
in B
endren
x| N >0 [GPY 1’ process instantiation(BA24)
) (; [APL] :):
[ ) [) XPL ;] ) ]
*| loop B endloop iteration (BA25)
*| loop X [:T]in breakable iteration (BA26)
B
endloop
*| while E do while iteration (BA27)
B
endwhile
% | for E while E by E do for iteration (BA28)
B
endfor
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| caseE is case (BA29)
BM
endcase
| case’(’ E(,E)* ?)’ is case with tuples(BA30)
BM
endcase
x| if EthenB if-then-else (BA31)
(elsif E then B)*
[elseB]
endif
| signalX [ E *)’] signalling (BA32)
*| raiseX [’ E ?)’] raising exception (BA33)
x| break X] [?C E *)’] breaking iteration (BA34)
x| CB?’)’ parenthesized behaviou(BA35)
+| exit(RN) Succesful termination with return valuéBA36)

Note that some clause are just syntax sugar, with straightforward translation.

6.2.8.2 Action

Concrete syntax
GIP|[eP] [’[’ E 1]
Default values are (), @any:time, and [tru€] respectively.

Abstract syntax

def

(G[P][eP] [’ [’ E *1’ ]) = (G P@P E start(0))

6.2.8.3 Bracketed disabled expression

Concrete syntax

dis DisB enddis

Abstract syntax
(dis DisB enddis) £ (* (* DisB *)?)

All the bracketed behaviour expressions (conc...endcong sel...endse) will be translated in the same way.

6.2.8.4 Choice over values

Concrete syntax

choiceP [] B endch

Abstract syntax

(choiceP [1 B endch) & (choiceP after (0) [1 B)
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6.2.8.5 Process instantiation with abbreviated parameter lists

Concrete syntax

n :[7 [GPL] 7]) :(; [APL] ;);[:[7 XPL:];]

Syntax sugar

SHFMN=gateg[Gy,...,Gnl)
S+ M= params( [V1,...,Vp])
S F N = exceptiong [X1,...,Xm])
def

(M [>GPLI>C> APL’)’ [XPL1)=(M [g1,...,0n1 > C ep,....e0 *)’ [X,...,Xml)

where

GPL= [Gk1=>G|/(1, ey ka=>G{<p7 .1 Ge {Gl, ceey Gn}

[ G iffG=>G € GPL

9= G; otherwise

APL= [Vj1=>(E|P)’jl,...,Vjs=>(E|P)’js,...] Vji € {V1,....Vp}
E iffVi=>E € APL

ep=<¢ P iffVi=>P € APL
Vi otherwise

XPL= [X1=>X,. ... Xq=>Xg,--.1 X € {Xq,..., Xp}

[ Xiff X => X e XPL

X = Xi otherwise

This syntactic sugar is applied only when there is explicit instantiation (via “=>" and/or “..."). Explicit

instantiation may exist only for gates, parameters or exception or any combination of them: the appropriate
translation will be applied.
6.2.8.6 Process instantiation with in/out parameters
Concrete syntax
Mn :[} [G(,G)*] J]) )(; [APL] J)z [ 7[7 X(,X)* z]; ]
The default gate and exception lists are the empty list [1. Before solving in/out parameters, dot notation for
abbreviated parameters lists should have been solved (see Subclause 6.2.8.5).
Syntax sugar

S FIM=Pos
(M>[>G’1° > C AP, ..., AR, *)° [7(])"“(

trap exit 7x is (RP) :=x
in M [G] (RE) [X]

where

RP= (AR,,...,AR,) with iy <i> <...<lix and {i1,...,ix} = Pos

RE= (APj,...,AP}) with j1 < jo<...<ji and {j1,...,ji} = {1,...,n} — Pos
and patterns P should be irrefutable.

Note that this translation is only defined whenever RP is indeed a Record Pattern and RE is indeed a
Record Expression. Otherwise, the original behaviour is declared to be syntactically incorrect.

- rights reserve
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6.2.8.7 Iteration

Concrete syntax
loop B endloop

There is a default exception, named inner.

Syntax sugar The final (semantic) loop is written in italic to avoid confusion.

trap
exceptioninneris exit

loop in
B «f loop
endloop B

endloop
endtrap
6.2.8.8 Breakable iteration

Concrete syntax

loop X [: T] in B endloop

Syntax sugar The final (semantic) loop is written in italic to avoid confusion.

trap
exception X is exit

loop X in in
B «f loop
endloop B

endloop
endtrap

trap
exceptionX (?x:T) is exit (x)

loop X :T in in
B «f loop
endloop B

endloop
endtrap
6.2.8.9 while iteration
Concrete syntax
while E do B endwhile
Syntax sugar
loop
if E then
while E do B
B & else
endwhile break
endif
endloop

28
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6.2.8.10 for iteration

Concrete syntax
for E while E by E do B endfor

Syntax sugar

E1;
loop
if Ex then
for E; while E; by E3 do B;
B &f Es
endfor else
break
endif
endloop
6.2.8.11 Case
Concrete syntax
caseE is case’ (’ E(,E)* ?)’ is
BM BM
endcase endcase

To ensure that the match is exhaustive, a final any:any -> raise Match clause is added.

Syntax sugar The final (semantic) case is written in italic to avoid infinite recursion.

. case E is
caseE is
BM def BM
any -> raise Matc
K > Match
endcase
endcase

case’ (? E(,E)* DENT case > (C E(,E)* ?)7 is

BM def BM
endcase N ’|» any -> raise Match
endcase

6.2.8.12 If-then-else

Concrete syntax
if E then B [elseB] endif

The default elseclause is exit.

Syntax sugar

if E then B; elseBy endif & caseE : bool is true -> B; | false-> B, endcase

6.2.8.13 if-then-elsif-else
Concrete syntax
if E then B (elsif E then B)* [elseB] endif

The default elseclause is exit.
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Syntax sugar

if E; then By
if E1 then B; else
elsif Ex then By | aer if E, then By
[elseBg3] - [elseBg3]
endif endif
endif

6.2.8.14 Raising exception
Concrete syntax

raise X [ (> E ?)’]
The default expression is ().

Syntax sugar
def

raise X [’ (° E ?)’] =signal X [ (° E ?)’]; block

6.2.8.15 Breaking iteration
Concrete syntax
break [X] [* (> E ?)?]

The default exception name is inner and the default expression is ().

Syntax sugar
break X & raise X
break X > (’ E )’ HraiseX > (" E ?)°
break & raise inner

break > (> E *)° ' raise inner > (* E 7)°

6.2.8.16 Successful termination

A new behaviour term is added in the abstract syntax, just to allow process definition and other terms to
return values. Note that this category belongs to the abstract syntax, so the user is not allowed to use it: it
may appear just as a result of a syntactic translation or in the semantics.

abstract syntax
exit [(RN)]

The default termination value is ().

6.2.9 Type expressions

Concrete syntax

T == S type identifier (T1)
| none empty type (T2)
| any universal type (T3)
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Abstract syntax

T = S type identifier (T1)
| none empty type (T2)
| any universal type (T3)

+| *CRT?)? records (T4)

6.2.10 Record type expressions
6.2.10.1 Overview

Concrete syntax

RT = V=T(V=T)"[,et] named (RT1)
| etc universal record (RT2)
x| T(T)” positional  (RT3)

Abstract syntax

RT = V=T(V=T)"],etd named (RT1)
| etc universal record (RT2)
+ | empty record (RT3)

6.2.10.2 Positional
Concrete syntax

TGLT)

Syntax sugar

(Te,..., ) & ($1=>Ty, ..., $n=>Ty)

6.2.11 Record value expressions
6.2.11.1 Overview
Concrete syntax

RN = V=>N(,V=>N)* named (RN1)
x| N(,N)* positional (RN2)

Abstract syntax

RN = V=>N(,V=>N)* named (RN1)
+ | empty record (RN2)
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6.2.11.2 Positional
Concrete syntax

N(,N)*

Syntax sugar

(N1,...,Nn) & ($1=>Ny, ..., $n=>Np)

6.2.12 Gate parameter list

GPL = G=>G(,G=>G)*[, ...] explicit instantiation (GPL1)
x| ... implicit instantiation (GPL2)
| G(,G)* positional instantiation (GPL3)

See Subclause 6.2.8.5, as syntax sugar for explicit instantiation needs context information (formal parameter
list of the process to be instantiated).

6.2.13 Actual parameter list

APL x:= V =>(E|P) ,V=>(EIP)*[, ...] explicit instantiation (APL1)
x| ... implicit instantiation (APL2)
| (EIP)(,(E|P))* positional instantiation (APL3)

See Subclause 6.2.8.5, as syntax sugar for explicit instantiation needs context information (formal parameter
list of the process to be instantiated).

6.2.14 Exception parameter list

XPL *i:= X =>X(,X=>X)"[, ...] explicit instantiation (XPL1)
x| ... implicit instantiation (XPL2)
| X(,X)* positional instantiation (XPL3)

See Subclause 6.2.8.5, as syntax sugar for explicit instantiation needs context information (formal parameter
list of the process to be instantiated).
6.2.15 Record patterns
6.2.15.1 Overview

Concrete syntax

RP = V=>P(,V=>P)" [,etd named (RP1)
| etc wildcard (RP2)
*| P(,P)* positional (RP3)
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6.2.15.2 Positional
Concrete syntax

P(,P)*

Syntax sugar

def

(P1,...,Pn) = ($1=>Py,...,$n=>F,)

6.2.16 In parameter list

Concrete syntax

IP (,IP)*

Syntax sugar

def

IPL,...,IPa & $1=>IPy,....$n => IP,

6.2.17 In parameter
6.2.17.1 Overview

Concrete syntax

IP *i= V=I[P:|T

x| etc

x| PaslP
x| [P:]T

x| 2CIP )

with the restriction that etc can occur at most once.
Each parameter list is translated to a typed record pattern

6.2.17.2 Singleton parameter list
Concrete syntax
V=[P:|T

The default pattern is any.

Syntax sugar

(V=P:T)E sargvas (V=P) : (V=T)
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named (RP1)
wildcard (RP2)
record match (RP3)
empty record (RP4)

singleton(IP1)

wildcard (IP2)

record match(IP3)

tuple (IP4)

parenthesized paramete(t5)

of the form $argvasRP : RT
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6.2.17.3 Wildcard
Concrete syntax

etc

Syntax sugar

etc™ $argvas etc: etc

6.2.17.4 Record match
Concrete syntax

PaslIP

Syntax sugar

def

P as$argvasRP : RT = $argvasP asRP : RT

6.2.17.5 Tuple parameter list
Concrete syntax

[P:]T
The default pattern is any.

Syntax sugar

def

(P:T)=($1=P:T)

6.2.17.6 Parenthesized parameters
Concrete syntax

)() |PL )))

Syntax sugar

' IPL *)* = ($1=IPL)

7 E-LOTOS semantics

7.1 Overview
This clause describes the semantic objects and rules used for describing the E-LOTOS static and dynamic
semantics.

At the semantics level, there exist some constructions which are not available in the grammar: they are
defined just to ease the (static and dynamic) semantics definition. The following are defined:
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e after: used to define the semantics of time evolution, see Subclause 9.2.16. Used as abstract syntax.

e start: local clock in semantics of actions, see Subclause 9.2.7. It records how long an action has been
offered. Used as abstract syntax.

e exit: successful behaviour end with return value. Used as abstract syntax. lts semantics definition is in
Subclause 9.2.10.

Besides, the following apply:
pi=alo ax=G|X|i
We assume the following types declared:

type boolis true | false
type List is Nil | congany, List)

7.2 Static Semantics

7.2.1 Static semantic objects for Base

The context for the static semantics gives the bindings for any free identifiers, and is given by the grammar:

C = V=T initialized variable (C1)
| V=7T typed variable (C2)
| S=type type (C3)
| S=T type equivalence(C4)
| TCT subtype (C5)
| C=(RT—-S constructor (C6)
| M= [(gate(RT))*] (RT) [(exn(RT))*] — exit(T) process identifer (C7)
| M= [(gate(RT))*]1 (RT) [(exn(RT))*] — guarded(T) process identifer (C8)
| G=-gate(RT) gate (C9)
| X=exn(RT) exception(C10)
| trivial (C11)
| C.C disjoint union(C12)

where each identifier only has one binding.
The operations which we use on contexts are the “"
over-riding), and “—" (subtraction).
We shall write (1 ® (2 to denote the matching union on context. It is well defined only if the common
names of (1 and C, have the same bindings in both contexts. Its formal definition is:
f(a) if a¢ Dom(g)
(fog)@ =4 g(@ if agDom()
f(a) if g(a) = f(a)
We shall write C1; (> for context over-riding (with all the bindings of (%, and any bindings from (i not
overridden by (2).
We shall write C —{V1,...,Vn} for subtracting variables from the context (if V1 =Ty,...,Vh="T, and
Vi1=7T1,...,V1=7T, belongs to C, then they are removed).
In order to avoid many parentheses, “®" has higher precedence than “;", and “;".
The semantics for modules uses renaming on contexts. Since renaming is a particular case of substitution,
we write C[0] (‘B[o]) for the contexts that are obtained by applying the substitution ¢ in C (‘B).
Note that the grammar for record types overlaps with that of contexts. Whenever RT does not contain
any occurrences of etc, we shall allow RT to range over contexts (for example in the type rule for sequential
composition in Subclause 9.2.6).

W

(disjunct union), “®" (matching union), “;" (context
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7.2.2 Judgements on static semantics for Base

In this subclause, we describe judgements that define the static semantics for the base language.

Behaviours The static semantics is given by a series of judgements, such as
ChHB=exit(RT)?!

meaning “in context C, behaviour B has result type (RT)" or
CF B=-guarded(RT)

meaning “in context C, behaviour B has result type (RT) and cannot exit initially”.
Besides, the following rules apply:

C F B=exit(RT)
CHRTLCRT
CFHB=exit(RT)

C + B=-guarded(RT)
CHRTCRT
C FB=guarded(RT")

CF B=guarded(RT)
CF B=exit(RT)

Type expressions Subtyping is a preorder:

CFTCT

CFTCT  CcrT'CT”
CFTCT’

We write T=T for TC T and T’ C T. We will write:
CHFT1UT, =T CFTINTL=T

whenever (up to =) Ty and T, have a least upper bound (respectively greatest lower bound) T.

Record type expressions The following judgements are used in the definition of the static semantics for
record type expressions:

C+ RT=record
CFRTLCRT

Subtyping is a preorder:

CHFRTCRT

CFRTCRT  CHRTCRT
CFRTCRT

We write RT=RT for RTC RT' and RT' C RT.

lexit is overloaded. The context in which it appears will indicate if we refer to it as a behaviour or as the result of a judgements.
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Value expressions The following judgements are used in the definition of the static semantics for value
expressions:

CEN=T

CEN=T
CHFTCT
CEN=T’

Record value expressions The following judgements are used in the definition of the static semantics for
record value expressions:

CFRN=RT

CHRN=RT
CHRTCRT
CFRN=RT

Patterns The following judgement is used in the definition of the static semantics for patterns:
CH(P=T)=QRD
This judgement means that in context C it is possible to match the type of P with T, by means of the
bindings expressed in (RT).
Record of variables
CF (RV=RT)= (RT)

CH (RV=RT)= (RT)
CHRT =RT’
CF (RV=RT)= (RT

Behaviour pattern-matching
CH (BM=T)=exit(RT)

CF (BM=T)=-guarded(RT)

General axioms

C,IFJ

This axiom means that any binding J from a context C,J may be infered.

7.2.3 Extended identifiers

The extended identifier e-id of an occurrence of an identifier id, is an extension of an identifier with the scope
information of that identifier. The extended identifier e-id of an identifier id belonging to the following classes:
Typ, Con, Fun, and Procld is a pair < scp, id >. The scope scp of the identifier id is the name of the module,
generic module, interface, or specification where it was defined or declared.

In the definition of semantics objects for the base language, all identifiers from classes Typ, Con and Procld
are extended identifiers.
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7.2.4 Static semantic objects for Modules

For modules we define one context. We use ‘B for contexts produced by top-level declarations. It is defined
by the following grammar:

B = mod-id=C module (B1)
| gen-id= (mod-id=C)* — C generics (B2)
| int-id=C interface (B3)
| empty (B4)
| B, B disjoint union (B5)

We also use a matching union operation on contexts.

7.2.5 Judgements on static semantics for Modules

In this subclause, we describe judgements that define the static semantics for the module language.

Specification

F spec = ok

Top-level declaration

Bt top-dec =B

Module body
B,Ct m-body,id = ('
The context C represents the set of imported objects which may be used by m-body. The source of the
objects defined by m-body is id. These objects are given by ('.
Module expression
B, C - mod-exp,id = C'

A module expression need both the bindings of module language (for aliasing, and actualization) and the
bindings of the base language (for instantiation).

The identifier id is the name of the source module (or generic module) for the objects created by the
expression. A module expression creates always objects except when it is an aliasing (i.e. a module identifier).

Module formal parameters

B MP= B

Interface expressions
Bt int-exp,id = C

The identifier id is the source of the objects newly declared by int-exp.

Interface body
CF i-body,id = ('
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Record module expression
B+ (RME= (mod-id = C)),id = @

Its static semantics need informations about the formal parameters list to be instantiated and returns the
realization resulted from the substitution of the actual parameters with the formal ones.

Declarations

CHD,id=C

7.2.6 Cycle freedom

In our semantic definition we assume no cycle of modules names; that is, there is no sequence

mod-idy — -+ — mod-idy = mod-idy (k> 0)

”

of modules names, where the “ — " relation is the use relation of the “imports” construct.

7.2.7 Context morphism

Let (1 and (&, be two contexts (for example the bindings of two modules). A context morphism g: C1— (2 is
a 3-uple of functions

def

g = <gr:Ga.T-0Tag . C—-GCog: G.N—-GIN, >

such that:
&c(Ci= RD -9 & Co= (gr(RT) —gr (S
on(M1= [(gate(RT))*1 (RT) [(exn(RT))*] — exit(T))

def

= M= [(gate(gr (RT)))*1(gr(RT)) [(exn(gr (RT)))*1 — exit(gr(T))
on(My= [(gate(RT))*1 (RT) [(exn(RT))*1 — guarded(T))

def

= My= [(gate(gr (RT)))*1(gr(RT)) [(exn(gr (RT)))*1 — guarded(gr(T))
where G, M, T; are extended identifiers.

A context morphism maps a context to another context. The arguments and the results of bindings should
be consistently mapped, i.e. the arguments/result type of the binding of an operation, should be equal to the
image of the arguments/result type of that operation.

7.2.8 Realization

A realization is a special context morphism @ which is an identity on simple identifiers. For example, for the
type context,

Or (< scp,S>=type) & < sepy,S> =type
The realization changes only the scope of identifiers, i.e. their definition module, interface, or generic
module name.

7.2.9 Interface Instantiation

Intuitively, a module is an instance of an interface if the former provides definitions of all objects declared in
the second one, and only for these objects.

Formally, a module binding (1 is an instance of an interface binding (&, written & < (3, if there exists a
realization morphism @ such that @(&) = (1.
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7.2.10 Interface Matching

Intuitively, in matching a module to an interface, the module will be allowed to define more components than
those declared by the interface. In this case, the module will be a superset of an instance of the interface.
Formally, a module binding (1 matches an interface binding (&, written (1 = (> if exists a module binding
C' such that & < ' C (1.
NOTE: This relation is a combination of interface instantiation and module enrichment. The module enrichment
is, in our case, the set inclusion.

7.2.11 Renaming/Instantiation

Overview A renaming is a list of mappings from old names to new names. These mappings may be used
either as a renaming to completely new names, or like an actualization of some formal objects with new
(actual) objects.

The judgments for reninst considered as a renaming have the form:

C & reninst,id =g

where C is the context of the renamed names, id is the source name of the new objects created by the
renaming, and g is the morphism built from reninst.
The judgments for reninst considered as an actualization have the form:

Ct reninst/C' =g

where (C is the context of the actual parameters, (' is the context of the formal parameters, and g is the
morphism built from reninst.
Note that g is an identity for all identifiers which are not in the support of g.

Renaming Rules

CkSi=type
CF (S = S),id= (S —<id, S >)

The identifier S may be a long or a short identifier, and it shall be defined in C. The identifier & shall be
short. The resulting morphism maps the context of S; on a new context where $ is declared having the source
id. The resulting morphism gives only the mapping for type names.

CHCi= (RT) =S
CF(Cy := C),id= (CL—< id,C; >)

The identifier C; may be a long or a short identifier, and it shall be defined in C. The identifier C, shall be
short. The resulting morphism maps the extended identifier C; on a new extended identifier Cy is declared
having the source id. The resulting morphism gives only the mapping for constructor names. The whole
morphism is obtained using the type morphism.

CrHNy= [(gate(RT))*]1 (RT) [(exn(RT))*] — exit(T)
CH(My = My),id= (N1 —<id,MNy >)

CFNy= [(gate(RT))*1 (RT) [(exn(RT))*] — guarded(T)
CHMy = MNy),id= (N —<id,My >)

The identifier M1 may be a long or a short identifier, and it shall be defined in C. The identifier M5 shall
be a short identifier. The resulting morphism maps the extended identifier 1 on a new extended identifier
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MMy is declared having the source id. The resulting morphism gives only the mapping for process names. The
whole morphism is obtained using the type morphism.

C - reninst1,id = Q1
CF reninsta,id = Qo
Ct (reninst1, reninstz), id = 01,02

[01 and gy are disjoint and g1, 02 is injective]

The morphisms generated by each renaming list shall be disjoint, i.e. the renaming list shall rename
different identifiers. Also, the resulting morphism shall be injective, i.e. it shall map two different contexts in
two different contexts.

Let C be the renamed context, reninst the renaming list, and id the identifier of the source module or
interface. The resulting morphism g is defined as follows:

g:C—9(O)

where:
or (< sre, S > =type) =<id,S > =type if (S := ) € reninst
=<src,§ > =type otherwise
gc(<src,Cr>=(RT) —§ =<id,Co>=(gr(RT)) —gr(§ if (Ci := Cp) € reninst
=< src,Cy > = (gr(RT)) —gr(S) otherwise
on (< sre,My > = [(gate(RT) )*]1 (RT) [(exn(RT"))*] — exit(T))
=< id,My > = [(gate(gr (RT)))*] (gr (RT')) [(exn(gr (RT")))*]
—exit(gr(T))
if (M1 := My) € reninst
=< src,My > = [(gate(gr (RT)))*1 (gr (RT')) [(exn(gr (RT")))*]

—exit(gr(T))
otherwise
All the requirements expressed by the rules shall be satisfied, i.e.:
Req.1 The morphism g shall be injective in each class of identifiers.
Req.2 The renaming list reninst shall rename different identifiers, i.e. all is of id := id’ shall be distinct.

Req.3 The context g(C) shall be well formed, i.e. an extended identifier shall be bound only once.

Actualization Rules

CHS=type chYcc
(T (& = 905 obpes oS ae 0 ¢

This rule deals with the elaboration of the actualization of types. The identifiers § and & may be long or
short identifiers. The former shall be declared in the formal context C’, and the second in the actual context
C. In the mapping, the extended identifiers are used. The remainder of formal elements given by (', shall
have a realization in the actual context C (implicit instantiation). The realization @ may match the morphism
given by the explicit instantiation.

Cl—Czé(V1/=>T:L/,...,V,4=>Tr4)—>82 [(P(C/)CC]
Cl—(Cl 1= Cz)/C/7C1$(V1=>T17...,Vn=>Tn)—>S]_ -
:>(C1’_>C27T1'_)Tj{a7Tn'_)Trqasl'_)SZ)
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This rule deals with the elaboration of the actualization of a formal constructor. The resulting morphism must
maps the constructor names and result types.

CFNMy= [GLy] (FPLy) [XLo] — exit(Ty)

- (GLléGLz)égl

- (FPLy=FPLy) = 0»

|—(XL1=>XL2):>93 Ne
o W)l

CH(My := |_|2)/C/,|_|1:> [GL1] (FPLy) [XL1] — exit(Ty)

=>M1—=MN2,0100000Q)

FO=0=1{}

F ((gateTi) = (gateTr)) = (T1 — Ta)
FGL=GlL=g¢g

FGL =Gl =g
FGLy,GL, = GLy, GL, = go d

I ((V1$T1)2>(V1=>T2))$ (T]_ — Tz)
FFPL = FPLy=g
FFPL = FPL,=>¢
FFPLy,FPL, = FPLy,FPL,=>g0d

F((exnTy) = (exnTp))= (Ty— Ta)
FXLi=XL=g9

F XL =XL,=d

F XLy, XL = XL, XL, =god

where
GL ¥ gateT(,gateT)*

def

FPLEV=T(V=T)

XL EexnT(,exnT)*
This rule deals with the elaboration of the actualization of a process. The identifiers 1 and N2 may be long or
short identifiers. The former shall be declared in the formal context ', and the second in the actual context C.
The matching of the parameter list gives three type morphisms, which shall match in the common elements.
The resulting morphism maps the processes names and the types names. The realization @ correspond to the
implicit actualization.

Ct reninst1/C1= 1

Ct reninsta/ Co= Qo is total
CF (reninsty, reninst2)/C1, (=010 02 Gog s totalon 1, G

In the elaboration of the sequencing of actualizations, the morphisms generated by each renaming list shall
match in the common elements. Also, the resulting morphism shall be total on the formal parameter contexts.
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Let C’ be the formal context, C the actualizing context, and reninst the actualizing list. The resulting
morphism g is defined as follows:

9:C'—=C

It shall be total in (', i.e. for all obj € C' the value g(obj) is defined in C. The morphism is defined by the
following rules:
gr(< src’,S > =type) =<src,S > =>type if (S 1= ) € reninst
and CF<src,S > =type
=<src,S > =type if (S 1= ) & reninst
and CF<src, S > =type
= undefined otherwise
gc(< src!,C1 > =(RT) —»8) =<src,Co > =(gr(RT)) —0gr(S
if (C1 := Cp) € reninst
and CH<src,Co > = (gr(RT)) — o7 (S)
=< src,C1 > = (gr(RT)) — g1 (S
if (C1 := Cp) & reninst
and CF<src,C1 > =(gr(RT)) —gr (S
= undefined otherwise
gn(< src’,M1 > =[(gate(RT) )*]1 (RT) [(exn(RT"))*] — exit(T))
=< src,My > = [(gate(gr (RT)) )*1 (gr (RT)) [(exn(gr (RT")))*]
—exit(gr(T))
if (M1 := My) € reninst
and Ck<src,lMy > =
[(gate(gr (RT)))*1 (gr (RT)) [(exn(gr (RT”)))*]
—exit(gr(T))
otherwise

7.3 Untimed dynamic semantics

7.3.1 Untimed dynamic semantic objects for Base

The untimed dynamic semantics? is given by a series of judgements, such as

B Y g

meaning “in environment ‘E, behaviour B terminates with result (RN)". The environment gives the bindings
for free identifers, and is given by the grammar:

E = S=T type equivalence(E1)
| C=({RD—-S constructor (£2)
| N=ALGRM)*1(RP:RT) [(X(RT))*] —B process identifer (£3)
| trivial (E4)
| E,E disjoint union (‘E5)

Note that environments have to carry type information. This is because LOTQOS relies on run-time typing
for much of its semantics, for example the semantics of the nondeterministic expression any T depends on the
type rules for T.

The semantics for expressions with free variables uses substitution to replace free variables with values.
The grammar for substitutions is given by:

2We will use the term “dynamic semantics” for untimed dynamic semantics.
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o = V=N singleton (o1)
| trivial (02)
| o,0 disjoint union (03)

where each variable is only bound once. We write B[o] for B with all free variables replaced by values given
by 0 with the usual a-conversion to avoid binding free variables. See Subclause 7.5 for the complete definition
of substitution operator.

Note that the grammar for substitutions is the same as the grammar for record values RN, so we will use
them interchangeably (for example in the dynamic semantics of sequential composition in Subclause 9.2.6).

7.3.2 Judgements on untimed dynamic semantics for Base

In this subclause, we describe judgements that define the untimed dynamic semantics for the base language.
Behaviours The untimed dynamic semantics is given by judgements of the form:
RN
'Y g

Type expressions
EFTCT

In each case, the judgements are the same as for the static semantics, so we omit them.

Record type expressions
LFRTCRT

In each case, the judgements are the same as for the static semantics, so we omit them.

Value expressions

EFN=T

EFN=T
EFTCT
EFN=T'

In each case, the judgements are the same as for the static semantics, so we omit them.

Record value expressions

E+RN=RT

E+RN=RT
Z+RTCRT
£+ RN=RT

In each case, the judgements are the same as for the static semantics, so we omit them.
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Patterns
EF(P=N)= (RN)

E (P=N)=fail

The first judgement means that in environment Z, it is possible to match the value of P with N, by means of
the value bindings of (RN). The second one means that it is not possible such matching.

Variable binding

EE(V=7T)

This judgment is introduced in local variable declarations. This means that the variable V is restricted to
(sub)type T.
Record of variables

£+ (RV=RT)= (RT)

In each case, the judgements are the same as for the static semantics, so we omit them.

Behaviour pattern-matching
E (BM=N) = fail

£+ (BM=N)"P B

7.3.3 Dynamic semantic objects for Modules

The semantic objects for the Modules dynamic semantics are given by the grammars below. The dynamic
basis is given by the dynamic environment of the base language, which is the result of top level declarations,
and the environment of modules, generic modules, and interfaces.

D = mod-id=-1 module (D1)
| gen-id=(mod-id=1)*—E generics (D2)
| int-id =1 interface (93)
| E environment (D4)
| empty (D5)
| D,D disjoint union (D6)

Module and interfaces evaluated to signatures (or interfaces) I, which are a “view” of the module (inter-
face). It contains all the extended identifiers of the module (interface). The binding of a generic module is
a functor from a record of module binding to a base language environment. The objects of the environment
‘E are uses the identifiers declared in the interface list |*. Signatures are collection of type, constructor and
process extended identifiers. They are defined by the grammar below:
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type (ex-id)11)
constructor (ex-id)12)
process (ex-id)13)
disjoint union (14)

To extract a signature | from a dynamic environment ‘E the operation Sig is used defined as follows:

Sig(E) £ Dom(E)

Another further operation “|” is required to cut down an environment ‘E to a given signature |, representing
the effect of an explicit interface ascription. It is equivalent to the restriction of a function domain (here £

domain).

A signature is also a projection of the static context C; it is obtained by omitting variable, gate, and
exception context, and replacing each type, constructor and process context by its domain. Thus in an
implementation signatures would naturally be obtained from the static elaboration. We choose to give separate
rules here for obtaining them since it is important to maintain separation between static and dynamic semantics,

for reason of presentation.

After the top-level evaluation, the basis D contains the complete dynamic environment of the specifica-
tion. This environment includes all complete specified (non-generic) type, constructor and process definitions,
including the objects locally defined by a module.

7.3.4 Judgements on untimed dynamic semantics for Modules

In this subclause, we describe judgements that define the dynamic semantics for the modules language.

Specification

(RN)
F spec B

Top-level declaration

D top-dec = D'

Module body

D+ m-body,id=F'

Module expression

D+ mod-exp, id = E'

Module formal parameters

D-MP= 2

Interface expressions

DI int-exp, id = |
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Interface body

Dt i-body, id =1

Record module expression

Dt (RME= (mod-id =T)),id = @

Declarations

EFD=F

7.3.5 Environment morphism

The context morphism of the static semantics is adapted to the dynamic semantics environments. Let E; and

‘E> be two environments. An environment morphism g: 1 — ‘Ep is a 3-uple of functions

def

g = <01:E1.S—E.Sogc:EFaC—-ECon: E.NM—E.11,>

such that:

def

gc(C1= (RT) —9) Co= (gr(RT)) =S

on (M =ALGRM)*T(RP:RT) ¥ My=AL(G(gr(RT)))*]1 (RP:gr(RT))
[(X(RT)*]1—B) [(X(gr(RT))*] —g(B)

where G, M, T; are extended identifiers. Note that g is in this case a substitution.

A signature realization is a special context morphism @ which is an identity on simple identifiers. The
realization changes only the scope of identifiers, i.e. their definition module, interface, or generic module

name.

7.3.6 Signature Instantiation

A signature |1 is an instance of another signature |2, noted I < |1, if exists a realization morphism @ such that

o(l2) =11.

7.3.7 Renaming/Instantiation

Overview

E +- reninst,id =g
| - reninst,id =g
E |- reninst/l =g

The definition is given by the static semantics rules.
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7.4 Timed dynamic semantics

RN
B H(RN@d)

We shall write ‘E B’ when either:

° Z}—B“ﬂ)B’ and d=0, or

e ZFBE®R B and £+ B "V B

Requirements on the time domain:

1. The only closed normal forms of type time are the special constants ranged over by d.
2. The time domain is a commutative cancellative monoid + with unit 0.

3. The order given by d; < d, iff 3d.d;+d =d; is a total order.

Since time is a commutative cancellative monoid, it satisfies the properties:

di+dy=dp+d; ifdi+d=dy+dthendi=dy di+(dp+0d3)=(di+0dz)+d3 d+0=d=0+d

7.4.1 Judgements on timed dynamic semantics

In this subclause, we describe judgements that define the timed dynamic semantics.

Behaviours The timed dynamic semantics is given by judgements of the form:
£FBY2 B

Behaviour pattern-matching

£+ (BM=N)"E¥ B

7.5 Write-many variables: the value substitution operator

The static semantics assures that variables are used in a safe way: they always get a value (write) before usage
(read). Besides, variables may be reasigned as long as they exist. However, it is highly desirable to avoid
dangerous use of shared variables by parallel behaviours, as communication should be explicit.

When a variable receives a value, a "binding” is produced between its identifier and the value. The static
semantics checks that a binding exists when a variable is used (this assures that it is a variable and that it has
a value).

Dynamic semantics passes bindings from a behaviour to the resulting one when some action or exception
takes place. Subsequent bindings are permitted, overriding existing ones. This is achieved via the value
substitution operator B[RN], which applies bindings RN to a behaviour B. This operator is defined as syntactic
substitution of values (see Subclause 7.3.1) with the following exceptions:

Sequential composition
(B1 ; B2) [RN| & By[RN| ; By[RN]

with RN = RN— RN, being RN’ = av(B;) are the bindings from B°.
The following behaviour makes the following binding (Xx=2,y = 2).

X :=1; ?X =X+ 1; ?y:=X

3|t is easy and cumbersome to define it. In fact, it is part of the information produced by the static semantics checking.
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In the following example, there are two possibilities:

?X :=0;
(arx; ...
11
?X =X + 1; b'x; ...

)

we may see — al0 — b1 — ... or maybe — bll — al0 — ... as there is no “implicit” communication among
behaviours. The static semantics requires that each branch produces disjoint bindings.

Branching operator We consider as “branching” operators those composed by several subbehaviours and
this composition may evolves as any of them: selection, disabling, suspend/resume, trap, and case are “branch-
ing" operators. Note that these are semantics operators, if-then-elseis syntax sugar of case

The subtituting operator should not perform a blind subtitution of values, as some branch may change any
of the bound variable and the new value need to be propagated. Therefore, the subtituting operator introduces
the assignments of bound variable before the subbehaviours, leaving the real subtitution to the sequential (;
) composition (see above). These assignments are called “"dummy” asignments, and it is just a conceptual
mechanism to carry bound variables?.

def

(Bl[]Bz)[RN] = RN;Bl[]RN;Bz

Let us see an example:

?X :=1;

(?x :=x+1; a
(]

b

)s

ry:=

Firstly, X is bound, with RN= (x=1), which the sequential composition transfers to the selection operator
(note that it should stop the subtitution, as y := X should not be affected yet. Therefore, the after subtitution

IS:

(?x :=1; ?x :=x+1; a

]
?x:=1; b
)s

7y =X

Now, if the upper branch is selected, the resulting binding is (Xx=2), and if the lower branch is selected,
the resulting binding is (x=1).
In general, we have:

def

(B1 op B)[RN|

with ope {[1, [>, [X>}.
The following example shows how substitution works with branching operators:

RN; B; op RN B,

(Br [> Bo)[RN] = By[RN| [> By [RN]

4Tools (as simulator, compilers) may avoid easily these “dummy” asignments.
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bindings in By do not affect By, in the line of forgetting bindings when a behaviour is interrupted.

7x :=0; ((?x :=x+1; a; c;...) [> (b; ?x := x + 10))

If we see the sequence —a—b— > the binding is (x = 10).

For trap and caseit is more cumbersome:
(trap trap
exception Xy (IPL1) is B1[RN;] endexn

exception Xy (IPLy) is By endexn
exception X, (IPLy) is B, endexn &f  exceptionX,(IPL,) is By[RN;] endexn
exit P is Be endexn exit P is B¢[RN;| endexn
in in
B B[RN]
endtrap

endtrap)[RN|

where RN' = RN— RN’ and RN’ are the bindings produced by IPL; (by P for the successful termination).
Intuitively, we try some behaviour B. If the exception X is raised, the partial bindings produced by B are

forgotten. Behaviour Bj is launched with [RN], without implicit communication between B and the exception

managers.
caseexpr[RN] is

(caseexpr is
BM1[RN]

BM1

BMh, BMn[RN]

endcasg[RN| endcase
where (P[E]->B)[RN] = P[RNJ[E[RN]]1->B[RN] and RN are the bindings in RN except those related with

variables bound by P.

Variable declaration
def RN]

(var LV in B) [RN] = var LVIRN in B|

where RN = RN — RV.

Loop
(loop B endloop) [RN| & B[RN| ; loop B [RN] endloop

3(RN")
R

where RN = RN — RN’ when B
B may produce some bindings, propagated through the ;" (see above). We could take some advantage
here as "untouched” variables may be substituted directly (this is the reason of introducing [RN] inside the

second unfolding of the loop).

loop
a!' x;
X:=X+1;
if x= 10 then break endif

endloop
; CIX
(© ISO/IEC 2001 — All rights reserved
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This behaviour will offer all —al2 —al3—...—al8—al9—cll— >.

We could get the value via trapping the result:

trap
exceptionresult (?y:int) is 7x:= y;endexn
in
loop
alx;
?X:=X+1;
if x=10 then break result (x) endif
endloop
endtrap;
c!X;

8 The E-LOTOS modules

8.1 Specification

ISO/IEC 15437:2001(E)

An E-LOTOS specification is a sequence of top level declarations followed by a block which declares a behaviour
or an expression as entry point. The result of a such specification is the evaluation of this entry point, after

the elaboration of the top-level declarations.

8.1.1 Specification

[top-dec]

specification X [imports mod-exp(, mod-exp)*] is
[gatesG:T(,G:T)*] [exceptionsX:T(,X:T)*]
(behaviour B) | (valueE )

The import, gate and exceptions clauses are empty by default.

Static semantics

- top-dec = B

B+ mod-expq,sp-id= (1 --

Cla cety Cp7
Gi=gate(Ty) --- Gp=gate(Ty),
X1=-exn(T{) --- Xp=exn(T,) F B= exit(RT)

- Bt mod-expy, sp-id = Cp

F (top-dec

specification sp-id

imports mod-expy, ..
:Tm

gatesG;:T1,...,Gn

exceptionsXy: Ty, ...

behaviour B ) = ok

(© ISO/IEC 2001 — All rights reserved
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Dynamic semantic

F top-dec = D
D+ mod-expy,sp-id = Ey -+ D mod-expy, sp-id = Ep
T, .. LB B
F (top-dec
specificationsp-id
imports mod-exp, ... , mod-exp, is
gatesGy: Ty, ... ,Gm: Ty

exceptionsXy: T/, ..., Xn: T}

behaviour B) "% B/

8.2 Top-level declaration

A top-level declaration is a sequence (maybe empty) of module declarations, generic module declarations and
interface declarations.

8.2.1 Module not constrained by an interface
Abstract syntax
module mod-id [imports mod-exp(, mod-exp)*] is m-body

The default import clause is empty.

Static semantics

B+ mod-expy, mod-id = (1 --- BF mod-expy,, mod-id = Cn
B,C1®...® Cnt m-body, mod-id = C
B+ (module mod-id imports mod-exp, ..., mod-expy, IS m-body)
= (mod-id=C,C1®...® Gn)

with side condition [C and (1 ®...® Gy have disjoint fields]

The module body is checked in the context of objects imported by the importation clause. The module
name is carried on to assign the source part of the extended identifier of the objects declared by m-body. The
imported contexts are composed using the matching operator “®" in order to allow the diamond importation
scheme (to import several time the same object). However, the objects declared by the module body shall
be disjoint from the imported ones. For this reason is used the disjunct composition operator “,” between
contexts. The interface of the module is given by the imported objects and the (new) declared objects.

Dynamic semantics

Dt mod-expy, mod-id = ‘E1 --- D F mod-exp,,, mod-id = En
DOELO®...® Emt m-body, mod-id = E
D+ (module mod-id imports mod-expy, ..., mod-expy, IS m-body)
= (mod-id = Sig(E, E1® ... © Em)), E, FE1©® ... ©® Em

The evaluation of a module declaration returns a basis composed from the environment of all imported
and locally declared objects, and the binding of the module identifier to the signature of the environment.
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8.2.2 Module constrained by an interface
Abstract syntax
module mod-id : int-exp [imports mod-exp(, mod-exp)*] is m-body

The default import clause is empty.

Static semantics
B+ int-exp, mod-id = C’
B = mod-expy, mod-id = (1 --- ‘B mod-expp,, mod-id = Cn
B,C1O...0 CnF m-body, mod-id = C
B+ (module mod-id : int-exp
imports mod-exp , ... , mod-expy, iS m-body) = (mod-id = C")

with side condition [C,(1®...0 CGn2 C" > (]
The final interface of the module is those matched by the context generated by int-exp. The scope of the
new objects declared by int-exp is (by default) the module name mod-id.

Dynamic semantics

Dt int-exp, mod-id = |
D+ mod-exp1, mod-id = E; --- Dt mod-expy,, mod-id = En
DOELO®...® Emt m-body, mod-id = E
D+ (module mod-id : int-exp imports mod-expy, ..., mod-expyy, IS m-body)
= (mod-id=1"),E, 1 ®...0 En

with side condition [SIQ(E, E1©®... O Em) 21" > ]
The final signature of the module is those matched by the signature generated by int-exp.

8.2.3 Generic module not constrained by an interface
Abstract syntax
generic gen-id > (> MP )’ [imports mod-exp(, mod-exp)*] is m-body

The default import clause is empty.

Static semantics

B+ MP = mod-id= C
B,CH mod-expq,gen-id= (1 --- B, CH mod-expy,, gen-id = Cn
B,COCLO...® Gk m-body, gen-id = C
B (generic gen-id (MP)
imports mod-expq, ... , mod-expy,

is m-body) = (gen-id = (mod-id = C) — (C,COCL®...® Gn))

with side condition [C and C® (1 ®...® Gy have disjoint fields]

The generic module parameters gives a list of bindings (formal) module identifiers, declared objects.
Informally, the objects of C are the generic (or formal) objects of the module. These generic objects may
be used in the imported module expressions in order to allow partial instantiation of generic modules and/or
generic modules parameterized by generic modules . The module body is checked in the context of generic and
imported objects. The context declared by the module body must be disjoint from those of parameters and
of importation objects. The target context (also called the complete specification) is formed by the objects
defined by the module body, the parameters, and the imported objects.
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Dynamic semantics

D+ MP= (mod-id =T)
D, I+ mod-expq,gen-id = E; --- D, I+ mod-expy,, gen-id = Em
DOEG F1O...0 Ent m-body, gen-id = ‘E
Dt (genericgen-id (MP) imports mod-expy, ..., mod-expyy, is m-body)
= (gen-id = (mod-id =T’

Y (E,EOFLO...0 En))

with side condition [£ and E® F1 O ... ® Ey are disjoint]

No environment is elaborated from a generic module declaration. That means that only complete instan-
tiated objects will be included by the basis D at the end of evaluation. The differences with the static rule
is the use of the "“®" operator instead of the “," operator. The reason is that now, the basis D contains
environments bindings which may be the same with the imported environments.

8.2.4 Generic module constrained by an interface
Abstract syntax
generic gen-id > (> MP ?)° : int-exp [imports mod-exp(, mod-exp)*] is m-body

The default import clause is empty.

Static semantics
Bt int-exp=C'
B+ MP = mod-id = C
B, ChH mod-expq,gen-id= (1 --- ‘B, ChH mod-expp,, gen-id = Cn
B,COCLO...® (bt m-body = C

B (generic gen-id (MP) : int-exp
imports mod-expy, ... , mod-expy,
is m-body) = (gen-id = (mod-id = C) — C")

with side conditions [C and C® (1O ... ® G are disjoint] and [C,COQLO...0 Cn 2D C" > (']
The final interface of the module (including the formal parameters) is C” which instantiate the interface
given by int-exp, and shall match the complete specification of the generic module.

Dynamic semantics

Dt int-exp, gen-id = |
D+ MP= (mod-id =T)
D, Tk mod-expq,gen-id=E; --- D, Er mod-expy, gen-id = Em
DOEGEL®...® Ent m-body, gen-id = E
D+ (genericgen-id (MP) : int-exp imports mod-expy, ..., mod-exp, iIs m-body)
= (gen-id = (mod-id =1) — (E,E®F1®...0 En) | ')

with side conditions [£ and E©® E1 © ... ® En are disjoint] and [SIQ(E, EO F1 O ... Ey) 21/ > 1]

8.2.5 Interface declaration
Abstract syntax
interface int-id [imports int-exp(, int-exp)*] IS int-exp

The default import clause is empty.
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Static semantics

B int-expq, int-id = (1 -+ B int-expyy, int-id = Cm
C1®...0 Cnt i-body,int-id = C
Bt (interface int-id imports int-expy, ... ,int-expy, is i-body) = (int-id= C,C1 ®...® Cn)

with side condition [C and (1 ®...® Gy have disjoint fields]

The interface body is checked in the context of objects imported by the importation clause. The objects
imported may satisfy the “diamond” rule, but the objects declared by the interface body shall be disjoint from
the imported ones.

Dynamic semantics

Dt int-expq, int-id =11 --- D int-expy, int-id = Iy
11O...0Imt i-body, int-id = |
DI (interface int-id imports int-expy, . . ., int-expy, IS i-body)
= (int-id =1,110...01ny)

with side condition [l and 11 ®...® Iy are disjoint]

8.2.6 Sequential top declaration

Abstract syntax

top-dec top-dec

Static semantics

BI- top-dec; =B B, B | top-dec,= B"
B top-dec, top-dec, = B, B”

The elaboration of the sequencing phrase works on a description ordered by the “dependency” relation . This
ordered specification may be obtained in a first step of static analysis. The order is well founded (non-cyclic)
according to cycle-freedom hypothesis. The module bindings generated by each top level declaration shall be
disjoint, i.e. each module, generic module, or interface name shall be bound once.

Dynamic semantics

DF top-decy=D1 DG D1t top-decy =D,
D top-decq top-dec, = D1 O Dy

The evaluation of the sequencing phrase takes advantage from the static semantics check: the application
of the “®" operator is safe because in the static semantics is checks the double declaration of a module,
interface, or generic module identifier. We need to apply it in order to consider multiple importations of
dynamic objects.

8.3 Module body

The module body defines the content of the module. It can be an explicit (generative) declaration, or an
instantiation of a module expression.
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8.3.1 Block declaration

Abstract syntax
D

Static semantics
CHD,id=(C
B,C+D,id=C'

Dynamic semantics

EFD,id=E
D, EFD,id= T

8.3.2 Module Expression

Abstract syntax

mod-exp

Static semantics

B, C+ mod-exp, id = '
B, C+ mod-exp, id = '

The resulting context is given by the module expression check.

Dynamic semantics

D+ mod-exp, id = E
Dt mod-exp,id=E

8.4 Module expression

Module expressions can be an aliasing to an (already declared) module or an instantiation of a given generic
module, probably renaming some identifiers and constraining to a given interface.

8.4.1 Module aliasing not constrained by an interface
Abstract syntax
mod-id | renaming * (* reninst *)° |
The default renaming is > ()’ .
Static semantics

B+ mod-id=-C' (C'Freninstid=g
B, C+ mod-id renaming > (* reninst *)’,id = g(()

The objects declared by mod-id give the binding of the module expression. The aliasing does not change
the source of objects declared in the module.

The morphism generated by the renaming is formed (see reninst rules for renaming). The resulting binding
is renamed according to the renaming morphism g. Note that the objects which are modified by the renaming,
change their source to id.
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Dynamic semantics

D+ mod-id =1 D || Freninstid =g
D+ mod-id renaming * (* reninst ), id =g(D | 1)

The module shall be already declared in the basis. By consequence, all its objects are in D. The environment
is obtained by the projection of the basis on the module signature.

8.4.2 Module aliasing constrained by an interface
Abstract syntax
mod-id : int-exp [ renaming ’> (’ reninst’)’ |

The default renaming is > () .

Static semantics

Bt mod-id= 1

Bt int-exp, id = &

Gz reninst id =g CiD > C
B,C+ mod-id : int-exp renaming ’ (’ reninst ’)’,id = g((3) G26G2zal

The context elaborated by the module expression shall match the interface expression context. The new
objects declared by the module expression or by the interface expression have as source name the identifier id.

Dynamic semantics
D F mod-id =1

Dt int-exp,id=1" (D] 1) | 1"+ reninstid=g [SigD | 1) 21" > 1]
D+ mod-id : int-exp renaming * (* reninst’)’ id=g((D 1) | 1") -

The module expression mod-id is evaluated to an environment which signature shall contain a signature |”

matching the signature resulting from the evaluation of interface expression int-exp. This constraint overlaps
the static semantics constraint. The resulting environment is obtained by projection of the mod-id environment
on the signature 1”.

8.4.3 Generic module actualization not constrained by an interface
Abstract syntax
gen-id > ( RME *)’ [renaming ’ (* reninst ’)’ ]

The default renaming is > ()’ .

Static semantics

Bt gen-id = (mod-id= C) — C,C’
B+ (RME= (mod-id = C)), id = @
©(C, C'[id /gen-id]) - reninst id =g
B,C+ gen-id > (> RME *) renaming ’ (* reninst *)*,id = g(®(C, C'[id / gen-id]))

The second premise checks that the actual module parameters are compatible with the formal ones, and
returns the context of the actual parameters. We need the formal parameters names (mod-id) in order to
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handle (statically) the tuples of actual parameters. The realization @ gives the correspondence between formal
module names and actual module names. This morphism is used to actualize all the formal parameters used
with the actual ones, and also to modify the occurrences of the formal parameters used by the objects defined
in the generic module. The morphism is only a source names substitution because the objects declared by the
actual modules must have the same name as the objects declared by the formal modules (see RME rules). At
the realization @ is added the substitution id/gen-id in order to create new objects (the actualized ones) from
the objects defined by the generic module.

Dynamic semantics

Dt gen-id = (mod-id =1) — E

D+ (RME= (mod-id = 1)) = @
@(‘E[id / gen-id]) \- reninst id = g

D+ gen-id > (> RME *)’ renaming > (’ reninst *)’, id = g(@(E[id / gen-id]))

8.4.4 Generic module actualization constrained by an interface
Abstract syntax
gen-id > (> RME ’)’ : int-exp [renaming’ (° reninst’) ]

The default renaming is > ()’ .

Static semantics

Bt gen-id = (mod-id= C) — C,C1
B+ (RME= (mod-id = C)) =@
Bt int-exp, id = &
Gz reninst id =g
B,CF gen-id > (> RME *)’ : int-exp renaming * (* reninst’)’id = g((3)

with side condition [¢(C, C1[id/gen-id]) 2 G3 > (]

Dynamic semantics

Dt gen-id = (mod-id =1) — E
D+ (RME= (mod-id = 1)) = @
D+ int-exp, id = |
Q(E[id/gen-id] | I) - reninst id =g
Dt gen-id > (> RME *)’ : int-exp renaming * (* reninst’)’,id = g(@(E[id/gen-id] | 1"))

with side condition [Sig(E[id/gen-id]) 21" > 1]

8.4.5 Generic module renaming/instantiation

Abstract syntax
gen-id ’ (° reninst ’)’

The default renaming is > () .
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Static semantics
Bt gen-id = (mod-id= C) — C,C’
CFreninst/C=g
B,C+ gen-id’ (’ reninst ), id = g(C) ©9(C'[id /gen-id])

This rule deals with the elaboration of explicit actualization of a generic module. The context C shall contain
the declaration of all actual parameters. The correspondence between formal and actual parameters is given
by the list reninst, which plays here the role of an actualization. For this reason the form of the inference
rule is changed. The morphism g must be total (see reninst rules for actualization), and is used to actualize
the formal parameters (g(C)), and to actualize the objects using these formal parameters (g(C'[id/gen-id))),
which are defined in the gen-id module. These objects change their source module to id (are new objects).

Dynamic semantics

Dt gen-id = (mod-id = 1) — o, 1

E ren-/ist/r:> g ' -
D, EF (gen-id (ren-list) ), id = (Z | g(1)) @ 9(ZE1[id /gen-id]) [sig(%0) =]

It is similar to the static semantics rule, where instead of formal parameter context is used the signature of the
parameters, and for the environment of these formal parameters is used the projection of the generic module
environment on the interface of parameters.

8.5 Module formal parameters

The formal parameters of a generic module is a list of (formal) module identifier, module interface. It bound
for each module identifier the context declared by its interface.

8.5.1 Single

Abstract syntax

mod-id : int-exp

Static semantics

Bt int-exp, mod-id = C
BF mod-id : int-exp = (mod-id = ()

The elaboration of the interface expressions typing the parameters is made using the formal module name as
scope name for the generative declarations.
Dynamic semantics

Dt int-exp, mod-id = |
Dt mod-id : int-exp = (mod-id =1)

8.5.2 Disjoint union

Abstract syntax

MP , MP
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Static semantics

BEMP = (C BFMP=(

BEMP, MBS C.C [CO®C is well defined]
1 2 5

The side condition asserts that the bindings of formal modules shall matches in the shared objects (i.e., objects
having the same names should be bound to the same profile). In this way, the objects imported by two different
interface expression may be shared like in a “diamond” importation.

Dynamic semantics

DEMPL=D; DFMP= D,
Q)FMP;L . Mpzéﬂ)l,ﬂ)z

The side condition of the static rule is not necessary because signatures does not stock identifier’ bindings.

8.6 Interface expressions

An interface expression is a list of object interfaces. It can be obtained either by alising to an (already declared)
interface, or by renaming of an interface, or by an explicit (generative) declaration (possibly renamed).

8.6.1 Interface identifier

Abstract syntax
int-id
Static semantics

Bl int-id= C
B int-id,id= C

The context generated is the context of the interface identifier.

Dynamic semantics

Dt int-id =1
Dt int-id, id = |

8.6.2 Simple renaming

Abstract syntax

> [ int-id renaming ’> (’ reninst’)’ *]°

Static semantics

Bl int-id=C Ctreninstid=-g
Bt [ int-id renaming ’ (’ reninst’)’ *1’,id=9(C)

The context of the interface int-id is renaming using the renaming morphism g generated from reninst (see
reninst rules for renaming). The source of the renamed objects becomes id.
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Dynamic semantics

Dt int-id=-1 | Freninstid =g
Dt [’ int-id renaming > (’ reninst >)’ *1° id=g(l)

8.6.3 Explicit body

Abstract syntax
[ i-body [renaming > (’ reninst?)°’ ] *1°

The default renaming is > ()’ .

Static semantics

Fi-body,id=C Ct reninstid=-g
B[’ i-body renaming ’> (’ reninst’)’ >1’ id=g(C)

The declarations of i-body must be self contained (in the initial basis objects). The source of these objects is
id. These object are renamed according to the renaming morphism g generated from reninst.
Dynamic semantics

F i-body,id =1 | I reninstid=-g
Dt [’ i-body renaming ’> (* reninst’)’ *]1’ id=g(l)

8.7 Interface body

An interface body is a list of object interfaces. The interfaces of processes are always opaque. The interfaces
for types are either opaque or completely defined.

8.7.1 Type hiding the implementation
Abstract syntax

type S

Static semantics

Chtype Sid= (< id,S> =type)

Dynamic semantics

Dt type S id= < id,S>

8.7.2 Type synonym
Abstract syntax

type SrenamesT
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Static semantics

CHT=type
CF (type SrenamesT),id = (< id,S> =type,S=T)

Dynamic semantics

Dt (type SrenamesT), id= < id,S>

8.7.3 Constructed type

Abstract syntax
type SisC[>C RT )] (I°’C[>C RT )’ ])*

The default constructor argument type is ().

Static semantics
C,<id,S> =typel (RTy) =type --- C,<id,S> =typel (RTy) =type
ChH(type SisC1(RT) | --- | Co(RTY),id =
(<id,S>=type, < id,Cy >=(RT) —S...,<id,Cy>=(RT) — 9

Note that the < id,S> =type is assumed in the context to allow recursive instantiation in B.

Dynamic semantics

Dt (type SisC1(RT) | --- | Ch(RTY),id= < id,S>,< id,Cy >,...,< id,Cy >

8.7.4 Named record type

Abstract syntax
type Sis > ( RT *)?

Static semantics

CH (RT) =type
CH(type Sis > (° RT ?)’),id= (< id,S> =type,S= (RT))

Dynamic semantics

Dt (type Sis >’ RT ?)?),id= < id,S>

8.7.5 Process declaration

Abstract syntax
processIl c]

[0 [GET]GGET]) ] °17 ]
[2C VETIGVETDH D
[:T

IGVETD™ ) ]

[raises’ [> X[: T](,X[: T])* *17]
The default gate list is [1, the default gate type is (etc), the default in parameter list is (), the default result
type is none, the default exception list is []1 and the default exception type is ().
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Static semantics

CHTi=type --- CFTh=type

CFT{=type --- CFTi=type

CHT/=type --- CF-T)=type

CF Te=type

Cr (process [Gy:T1, ... ,Gm:Tm] (Vi:Tf,...,Vp:Tp)

:Te raises [Xq: T/, ..., % :Ty1),id
= (< id,N > = [gate(Ty) , ..., gate(T) T (Vi = T{,...,\Vp=T))
lexn(T{), ...,exn(T)] —exit(Te))

Dynamic semantics

Dt (processM [G1:Ti, ... ,Gm: Tl (V1:>T1/,...,Vp:>T,;)
:Teraises [Xy: T, ..., Xn: 1), id= < id, M >

8.7.6 Equations
Abstract syntax

eqns eqn-dec-list

Static semantics

C F egn-dec-list = ok
C - eqns egn-dec-list = ()

8.7.7 Sequential declaration
Abstract syntax
i-body i-body

Static Semantics

CtFi-bodyq,id=C' C,C'F i-body,,id=C"
C+ (i-body, i-body>),id = C',C"

Dynamic Semantics

D i-bodyy,id=1 D1 i-body,,id=>1"
DF (i-body, i-body,),id=1,1"

8.8 Record module expression

The record module expression is the actual parameters of the generic module instantiation.

8.8.1 Single
Abstract syntax

mod-id => mod-exp
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Static semantics

B+ mod-exp, id = (' .
B+ ((mod-id => mod-exp) = (mod-id = C)),id = @ [C"=@(0)]

It shall match the same module identifier mod-id. The new objects declared by the module expression mod-exp
has as source the identifier id. The context given by the elaboration of the module expression shall be an
instance of the context C. The realization of this instance relation is given by @.

Dynamic semantics

Bt ((mod-id => mod-exp) = (mod-id = 1)), id = @

8.8.2 Disjoint union

Abstract syntax
RME , RME

Static semantics
B+ (RME; = mod-id1 = C),id = @
B+ (RME = mod-ida = '), id = ¢
B+ (RMEL, RME = (mod-id1 = C, mod-idy=> C')), id = ¢.¢f

Each part of the union shall match a different list of formal parameters. The morphisms resulting from
each elaboration are disjoint because the module names of the formal parameters are disjoint. The resulting
morphism is given by their disjoint composition.

Dynamic semantics
D+ (RMEy = mod-idy = T),id = ¢
DF (RME = mod-id2=1"),id = ¢
D+ (RMEy, RME = (mod-id1 =T, mod-id2 = 1)), id = @, ¢

8.8.3 Renaming tuple
Abstract syntax

reninst , reninst

Static semantics

Ctreninst1=C' (' reninsty= C"
C F reninsty , reninst, = C"

8.9 Equation declarations

8.9.1 Equations declaration

Abstract syntax
[forall RT] eqgn—dec(eqn—deg*
The default value of RT is ().
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Static semantics
CF (RT) =type
C,RTF egn-dec; = ok

C,RTF eqn-dec, = ok
CtHforall RT -> egn-decy ... egn-dec,= ok

8.9.2 Sequential

Abstract syntax

eqgn-decs eqn-decs

Static semantics

Ct- egn-decs, = ok
Ct- egn-decs, = ok
C |- eqn-decsq, eqn-decs, = ok

8.10 Simple equation declaration

Abstract syntax
ofsort T [forall RT | E
The default value of RT is ().

Static semantics

CHT=type
CF (RT) =type
C,RTF+ E = exit(bool)
Ctofsort T forall RT -> E= ok

8.11 Declarations

8.11.1 Type synonym

Abstract syntax

type SrenamesT

Static semantics

CFT=type

Ct (type SrenamesT),id = (< id,S> =type,S=T)

Dynamic semantics

E (type SrenamesT)=(S=T)
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8.11.2 Type declaration
Abstract syntax
type SisC[> ° RT >)’] (*1> C[’C RT *)’])*

The default constructor argument type is ().

Static semantics

C,<id,S> =typel (RTy) =type --- C,<id,S> =typel (RTy) =type
Ch (type SisCL(RT) | - | CGy(RTY),id =
(< id,S>=type, < id,C; > =(R%) —S...,<id,Cy>=(RT)) —» 9

Note that the < id,S> =-type is assumed in the context to allow recursive instantiation in B.

Dynamic semantics

EF (type SISCLR) | -+ | Ca(RT)) = (Ci= (RD) —S....,.Co= (R —9)

8.11.3 Named record type

Abstract syntax

type Sis > RT ?)?

Static semantics

CF (RT) =type
Chk(type Sis > (° RT ?)’),id= (< id,S> =type,S= (RT))

Dynamic semantics

EF (type Sis > ( RT ?)?)=(S= (RT))

8.11.4 Process declaration

Abstract syntax

processM [’ [’ [G[: T](,G[: T])*] 17 ]
[2C VETIGVET]] )2
[:T]
[raises [X[: T](, X[: T])*]]
is B

The default gate list is [], the default gate type is (etc), the default in parameter list is (), the default result
type is none, the default exception list is [1 and the default exception type is ().
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Static semantics

CH (M) =type --- CF (Ty) =type
CH (M) =type --- Ck (T =type
CH (M) =type --- Ck (1)) =type
C,G1=gate(T1),...,Gm=0ate(Ty),
Vi=T,... .\ Vp=Ty,
Xp=exn(T{),...,. Xn=exn(Ty),
Proc - B=exit(T)
C+ (processn [Gy:Ti,...,Gm: Tl (vlle’,...,vp:T;,)
: Traises[X1: T, ..., % :T/1is B),id
= (< id,N > =[gate(Ty), ... ,gate(Tym)]
M=T,,.. V=T
lexn(T{), ...,exn(T)] —exit(T))

CH (M) =type --- CF (Ty) =type
CH (T =type --- CF (T)) =type
CH (M) =type --- CF (1)) =type
C,G1=gate(Ty),...,Gn=gate(Ty),
Vi=T,,. V=T,
Xp=exn(T{),.... Xa=exn(Ty),
Proc F B=-guarded(T)
CF (processl [Gy: Ty, ...,Gm: Tl (V1:T1’,...,Vp:T,g)
: Traises [X1: T/, ..., %, T)/] is B), id
= (<id,N > =[gate(T1) , ... ,gate(Ty) ]
V=T, Vp=Tp
[exn(T), ...,exn(T,)] — guarded(T))

where

Proc = (< id,M>= [gate(Ty),...,gate(Ty)]
V=T, V=T
[exn(T)),...,exn(Ty)] —exit(T))

Note that Proc (the process declaration) is assumed in the context to allow recursive instantiation in B.

Dynamic semantics

E+ (processi [G1:Ti,...,Gm: Tml (Vl:Tl’,...,Vp:TF;)
: Traises[X1: T/, ..., % :T/1 is B),id
=(<id,M>=X[G1:Tt,....Gm: Tm] Vi:T{,....\Vp:Tp) X T{, ..., % T/1—B)

8.11.5 Sequential declarations

Abstract syntax

D D

Static semantics

CtDiy,id=C" CFDgid=C"
CF (D1 Dp),id=C",C"
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Dynamic semantics

EFDy,id=E ErFDyid=E"
EF (Dy Dp),id=E',E"

9 The E-LOTOS base language

9.1 Introduction

In this chapter, we give semantics for terms defined by abstract syntax. Each subclause is devoted to a
category, mostly of them divided in four parts:

e Abstract syntax: just a reminder.

e Static semantics: rules defining static semantics.

e Untimed dynamic semantics: rules defining untimed dynamic semantics.
e Timed dynamic semantics: rules for timed dynamic semantics.

If the category is just the join of simpler categories, you will find a number of subclauses for every clause.

9.2 Behaviours

9.2.1 Disabling behaviour expression
Abstract syntax

DisB := BT [>BT singleton (DisB1)
| BT [> DisB disjoint union (DisB2)

Static semantics
C,RT,REL + By =guarded(RT;,RT) C,RT,RT - By= guarded(RT,RT)
C,RT,RT, By [> B,=guarded(RT;,RT,RT)

C,RT,RT By = exit(RT,RT) C,RT,RT - By= guarded(RT,RT)
C,RT;,RL+B; [> By=exit(RT;,RT,RT)

RT; and RT are bindings from the context, and RT are new bindings in the disabling behaviour expressions:
they should be produced by both B; and By. With that, we allow expressions as:

x:= 1;

( al; x:=2; z:= 2; a2
[> bl; z:= 3; b2

);

yi= X;

As the variable X is bound beforehand, there is no need to ensure that both B; and By bind it again.
However, the static semantics checks that z is bound in both sub-behaviours. The same is done in all
branching expressions (selection, case, trap, ...) and it is very cumbersome for the trap operator.
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Untimed dynamic semantics

G(RN)

T+ B B,
E+B; [> B, ©FY S@D B, [> B,
£+ B, 19, B,

£FBy [> B, -5 B, [> B,

£+ By °EY 6(RN) Bl

£ By [> By 1 exit (RN)

EF B X(RN) Bl

T By [> By 1% signal X (RN ; (B} [> By)
G(RN)

B/
G(RN)

By, —
EF-By [> B, —

1}

B,
E+FB; —B,
0

f}—Bl [>Bz—>

B,
E F By~ X(RN) Bz

EFB; [>B; Ii>signalx (RN); B,

Timed dynamic semantics

d d
f}—Bla()Bl 8()
e(d)

E+Bp [>By—

B, %%
B; [> B,

B>

9.2.2 Synchronization behaviour expression

Abstract syntax

BT || BT
| BT || SyncB

SyncB

Static semantics
Ct Bi=exit(RTy) Ct Bo=exit(RT) [RT, and R
CFB1 || Bp=exit(RT,RT,)

CF By = exit(RT)
CFB1 || Bo=guarded(RT;,RT)

C+ By=guarded(RT)
CFB; || Bp=guarded(RT;,RT)

(© ISO/IEC 2001 — All rights reserved
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synchronization (SyncB1)
synchronization (SyncB2)

have disjoint fields]

C By = guarded(RT) [RT; and RT; have disjoint fields]

have disjoint fields]
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Untimed dynamic semantics

TrB,%B,
TFBy 1B 2B |1 B,

I()

£+ By > B,
LBy |1 By ~%By |1 B,

G(RN) G(RN)

B, 2"V 1B, %"V,

EFBy | BZG“‘N) B, Il B,

zrB VB

£+ By |1 By~ signal X (RN);(B] || By)
fFBzX(RN) Bz

T+ By 11 By signal X (RND;(By |1 BY)

(RN S(RNY)

£rB SR B, T® B,
5R R
THB; |1 B TS g || B,
Timed dynamic semantics

£FB 2B, £rB,Y%B,

By |1 B, X% B, 11 B,

£+ By S(RN@D) B, T+ B, ed+d) B, y
<

By || BZS(d+d)eXIt(RN) Il B, “lo<d

£+ B, s<d+d) B’ £+ B, 5(RN@d) B’ g
<

ThBy || st(d+d) B, |1 exit(RN) "<

9.2.3 Concurrency behaviour expression

Abstract syntax

ConcB = BT I[[G(,G)*]1| BT concurrency  (ConcB1)
| BT I[[G(,G)*]11 ConcB concurrency (ConcB2)
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Static semantics

CF Bi=exit(RTy) CF Bx=exit(RTy)

CF Gi=gate(RT)) --- C+ G,= gate(RT,) [RT, and RT,
CFB1 I[Gy,...,Gnl I B, = exit(RT,RT,)

CF By=exit(RT) C + By=-guarded(RT,)

CF Gi=gate(RT)) --- C+ G,= gate(RT;)

CFBy | [Gy,...,Gh] | By=guarded(RT;,RT)

C+ By = guarded(RT) CF By=exit(RT,)
CkGi=gate(RT) --- CF Gp=gate(RTy)

CHB1 | [Gy,...,Gy] | By=guarded(RT;,RT)

Untimed dynamic semantics

£+B 2B
TFB; 11611 B, % B, 1G] B,

o

EFBy — B,
10

By |[G]| B, —>By | [G]] B
G(RN)

EFB; — B] o
£+ By | [G] BZG(RN) B, I[G]I B, {Gge}
Z}_BZG(RN) B, )
T+ By | [G]| Bzeﬂ‘) B I[GlI B, [GgG}
£+ By @R Gi (RN) B, £+ B, @R Gi (RN) B,

LBy |G BZG"RN) B, (G| B,
f}_le(RN) B,

ISO/IEC 15437:2001(E)

have disjoint fields]

[RTy and RT; have disjoint fields]

[RTy and RT; have disjoint fields]

By | [G]] Bzﬁsignaux (RN); (B} 1[G By)

X(RN)

E+ By

B/

£+ By 1 1G] B, ~% signal X (RN);(By 1[G BY)

S(RNp)

3(RNp)

EHB — B/ EHB, — BZ
T+ By | 1G]] BZB(RNlRNZ) ' 11611 B,
Timed dynamic semantics

£FB 2B,  £rB,Y%B,

E+B; [[G1] B, 2% B, [G]] B,

£+ B, S(RN@) B, L+ By e(d+d") B,
ed+d) C[0<d]

E+By I IG]I By exit(RN) | [G] | B,

- B 8(d+d ) B/ I B 5(RN@d) B/ /
e(d+d) [0<d]

E+B1 I[G]] B,

B; I[G] 1 exit(RN)
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9.2.4 Selection behaviour expression
Abstract syntax

SelB = BT []1 BT choice (SelB1)
| BT []1 SelB choice (SelB2)

Static semantics

C,RT,RT + By = guarded(RT;,RT) C,RT,RT - By=guarded(RT,RT)
C,RT,RT By [1 B,= guarded(RT;,RT,RT)

Untimed dynamic semantics
£+ B, “®V B,

£+ By [1 B, 2RV B

£+ B, “X¥ B,

Z+By [ B, °FV B
£+B 1% B
T+By [] B~ B,

£+ B, % B,
E+By [ B, -2 B,

EF B Y B

£+ By [1 B, - signal X (RN) ;B

EF B, RV B,

£+ By [1 B, - signal X (RN);B),

Timed dynamic semantics

-8 %28 B, 2%B,

THB [1 B, 2% B, [ B,

9.2.5 Suspend/Resume behaviour expression

Abstract syntax
B [X>B

Static semantics
C,RT,RT By = exit(RT,RT) C,RT,R; X =exn() + B, = guarded(RT,RT)
C,RT;,RL F By [X> By=exit(RT,RT,RT)

C,RT, R + By = guarded(RT;,RT) C,RT,RE; X=exn() F By =-guarded(RT,,RT)
C,RT,RT By [X> B, = guarded(RT;,RT,RT)
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Untimed dynamic semantics

EFB; G(RN) Bl

EFB1 [X>B, —

GRN B, [X> B

o

E+ By~ B
EFB; [X> Bzﬁs/l [X> B,

£+ By °EY 6(RN) Bl

E By [X> By 1O exit (RN)

g le (RN) Bl

LBy [X> By 1% signal X' (RN) ; (B] [X> By)
G(RN)

EFB — BZ
EFB1y [X>B —

GRY trap exception X() is By [X> By in B,

£+ B, 1% B,
EFB; [X> Bz 10, trap exception X () is By [X> By in B,

X’ (RN)

EFB — B’
EF By [X> By 10, signal X" (RN) ;trap exception X () is By [X> By in B,

X' #X]

Timed dynamic semantics

e(d) s(d)

£+ By B’ EEBy —
e(d)

£+ By [X> B X2 B, [X> B

B>

9.2.6 Sequential composition

Abstract syntax

BA ; BT

Static semantics

CF By=exit(RTy)
C;RT By = exit(RT%)
CFB1 ; By=exit(RT;RT,)

CF By=exit(RTy)
C;RTy F By = guarded(RT,)
CHB; ; By=guarded(RT;;RT)

C - By=-guarded(RT)
C;RTiFBy=exit(RT) [noneyé RTl]
CF B ; Bo=guarded(RT;;RT,)

The side condition of third rule bans constructions such as G!1;stop;G!2;....
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Untimed dynamic semantics

RN
£+ B "V B,
a(RN)

E+B;; BNV B ; By

B, "W B

 F Bo[RNy “T% B,

LBy ; By "% exit(RNY) ; B,

£+ B, "W g,
£+ Bo[RN] °E¥ B,

E+ By ; By "FR™ pioek

Timed dynamic semantics
£+ B, Y2 B,
()
E+B1; BoE2 B ; By
£ By S(RN.@dy) B,
(dp)
E I By[RNy) =2 B,

LBy ; By

exit(RN) ; B

9.2.7 Action

Abstract syntax

G P @P E start(N)

Static semantics

CF G=gate (RT)
Ck(Pr=(RD)= (RT)
CE (P,=time) = (RT)

C:Rh, R I~ E = exit(bool) [RT, and RT have disjoint fields]
CF G P, 6P, E start(0) = guarded(RT;,RT)

Untimed dynamic semantics

£ (PL= (RN)) = (RNy)
E+ (P,=d)= (RN

£ - E[RNy, RNy °9 E/

E+ G P, oP; E start (d) RV exit (RN, RNb)

Timed dynamic semantics

7 o<d
E+G P, P, E start(d) RN P, eP, E start(d+d’) [ ]
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0.2.8 Internal action

Abstract syntax
i

Static semantics

C Fi=guarded()
Untimed dynamic semantics

EFi 19 exitO

Timed dynamic semantics None.

9.2.9 Succesful termination without values

Abstract syntax

null

Static semantics

C Fnull = exit()

Untimed dynamic semantics

£ F null 22 block

Timed dynamic semantics None.

9.2.10 Succesful termination

Abstract syntax
exit [(RN)]

The default termination value is ().
Note that exit solely appears in abstract syntax, as a result of syntactic translation or as used by the
semantics.

Static semantics

CFRN=RT
CF exit(RN) = exit(RT)
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Untimed dynamic semantics

E I~ exit(RN) 8RN plock

Timed dynamic semantics None.

9.2.11 Inaction

Abstract syntax

stop

Static semantics

C F stop=-guarded(none)

Untimed dynamic semantics None.

Timed dynamic semantics

0<d
Er stopﬂ stop[ }

9.2.12 Time block

Abstract syntax

block

Static semantics

C F- block=-guarded (none)

Untimed dynamic semantics None.

Timed dynamic semantics None.

9.2.13 Delay

Abstract syntax

wait > (° E ?)°

Static semantics

CF E=exit(time)
CFwait (E) =exit)
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Untimed dynamic semantics
£-E2QF

£ Fwait (E) 2 block

e EY p/

E + wait (E) xRN \vait (EN

Timed dynamic semantics
£ g

£ - wait (E) &% wait (d')

[0<d]

9.2.14 Assignment
Abstract syntax
P:=EA

The pattern must be irrefutable.

Static semantics
CFEA=exit(T)
CH(P=T)= (R
CFP := EA=exit(RT)

Untimed dynamic semantics

£+ EANRY Ex

EFP :=EA*RY p .o EN

£+ EAXN EN
£+ (P=N)= (RN)

E+P := EAYRY plock

Timed dynamic semantics None.

9.2.15 Nondeterministic Assignment
Abstract syntax
P:=anyT[’[’ E’]’]

The pattern must be irrefutable. The default expression is [true].

Static semantics

CHT=type
CHP=T)=(RD
C;RT I E = exit(bool)
CHEP:=anyT [’ E ]’ = guarded(RT)
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Untimed dynamic semantics

EEN=T

£+ (P=N)= (RN)
£ - E[RN] ™ g/
0

EFP:=anyT [’ E ’]’ —5 exit(RN)

Timed dynamic semantics None.

9.2.16 Choice over values

Abstract syntax

choiceP after(N) [1 B

Static semantics

Ct (P=any)= (RT)
CHN=time
C;RT - B=guarded(RT")
C - choiceP after (N) [1 B= guarded(RT")

Untimed dynamic semantics

EF (N=-any)

£+ (P=N)= (RN)

£+ BRN SRV g

Z - choiceP after (d) [1 B®®Y g
Et+ (N=-any)

£+ (P=N)= (RN)
£+ BRN %Y B
E - choice P after (d) [1 B~ B/

EF (N=-any)
EF (P=N)=(RN)

£+ BRN RN @D g
£ - choiceP after (d) [1 B2 signal X (RN) ;B

Note: This operator is the only place where the timed semantics is used in the untimed semantics, thus
breaking the “classical” stratification [5, 25] used to prove the consistency of the semantics. However, as
shown in [16] for the ET-LOTOS language (that has the same choice over values), another proof technique
can ensure the consistency of the semantics and also that strong bisimulation is a congruence.

Timed dynamic semantics
YN.((EFN=-any and £+ (P=N)=-(RN)) implies B[RN] e(d+d) )

E I choiceP after (d) [] B choice P after(d+d) [1 B

[0<d]

78 (© ISO/IEC 2001 — All rights reserved

FINAL DRAFT / PROJET FINAL



ISO/IEC 15437:2001(E)

9.2.17 Trap

Abstract syntax
trap (exceptionX [(IPL)] is B endexn* [exit [P] is B] in B

The default input parameter list is () and the default exit pattern is ().

Static semantics To abbreviate notation, in these static semantic rules C stands for C',RT," ®...ORT ®
RT ®RT”. RT" are bindings available in the context, i.e., those variables that have a value, and may be
actualized by some of the B;j in the trap operator. RT are new bindings produced in the trap operator, so
all Bj must produces them. The resulting behaviour binds RT” ®... ® RTY" © RTY” ©RT”,RT. With that we
ensure that if new bindings are produced in the trap operator, any of its branches produces the same bindings,
but bound variables may be reasigned freely in any of the subbehaviours.

C'F (RT) =type --- C'+ (RT) =type
C'F(RR=RT)=(RT) --- '+ (RR=RT)= (RT)
C;RT/ - Bi=exit(RT”,RT) --- C;RT; F By=exit(RT,”,RT)
C:X1=exn(RT),..., Xn=exn(RTy) F B= exit(RT” RT)
C+ (trap exception X; (RR:RT) is By
. exception X, (RR,:RT,) is B, in B)
= exit(RT ©... ORT” ©RT ®RT”,RT)

C'+ (RTY) =type --- C'F (RT) =type
C'F((RR=RT)=(RT) --- ' (RR=RT)=(RT)
C;RT + By =guarded(RT",RT) --- C;RT;+ By=guarded(RT;",RT)
C;X1=exn(RT),...,Xp=exn(RT) + B=guarded(RT"”,RT)

CF (trap exception X; (RR:RTy) is By
. exception X, (RR,:RT,) is B, in B)
=guarded(RT" ®...ORTY ©RT" ©RT”,RT)

C'F (RT) =type --- C'+ (RT) =type
C'F(RR=RT)=(RT) --- '+ (RR=RT)= (RT)
C;RT - Bi=exit(RT”,RT) --- C;RT; F By=exit(RT,”,RT)
C:X1=exn(RT),..., Xh=exn(RT,) - B=exit(RT”,RT)
Ck(P=(RT))= (RT")
C;RT"+ B = exit(RT,RT)
CF (trap exception X; (RR:RT) is By
. exception X, (RRy:RT) is By
exit Pis B’ in B)
=exit(RT" ... ORTY ©RT" ©RT”,RT)

C'F (RT) =type --- C'+ (RT) =type
C'F(RR=RT)=(RT) --- (' (RR=RT)= (RT)
C;RT + By =guarded(RT",RT) --- C;RT; + By=-guarded(RT;",RT)
C:X1=exn(RT),..., Xh=exn(RT,) - B=exit(RT”,RT)
Ck(P=(RT))= (RT")
C;RT" + B = guarded(RTy",RT)

CF (trap exception X; (RR:RT) is By
. exception X, (RRy:RT,) is By
exit Pis B’ in B)
=guarded(RT" ®...ORTY ©RT" ©RT",RT)
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C'F (RT) =type --- C'+ (RT) =type
"F(RR=RT)= (RT)) --- C'+(RR=RT)= (RT)
C;RT + By =guarded(RT",RT) --- C;RT;+ By=-guarded(RT;",RT)
C;X1=exn(RT),..., Xn=exn(RTy) + B= guarded(RT” ,RT)
CH(P= (RT))=(RT")
C;RT"+ B = exit(RT",RT)
CF (trap exception X1 (RR:RT) is By
. exception X, (RRy:RT,) is By
exit Pis B’ in B)
=guarded(RT" ©...ORTY ©RT" ©RT",RT)

Untimed dynamic semantics Here X ranges over X and exit (which we consider to be equal to ).

"W

EF (trap X (RP:RT) isBin B) (trap X (RP:RT) isBin B)

oo

£+ MY g
EF((RR) = (RN)) = (RN)
z+ B RN "N B

£+ (trap X (RP:RT) isBin B

)u( N)B

Timed dynamic semantics

£ p

£+ (trap X (RP:RT) isBin B) “® (rap X (RP:RT) isBin B)

£ gH RGP g
£+ ((RR) = (RN))= (RN)
£+ B[RN] %D B!

EF (trap X (RP:RT) isBin B)

s(d+d ) B/

9.2.18 General parallel

Abstract syntax

par [G#n(,G#n)*] in
[ [G(,G)] °1° ->B(I1 * [’ [G(,G)*] 1’ -> B)*

Static semantics

ChkGi=gate(RTy) --- CF Gp= gate(RTy)
CHGi=gate(RT) --- Ct+ Gn= gate(RTn)
CFBi=exit(RT]) --- CF Bm=exit(RTy)
Ck (par Gi#Ny, ... ,Gp#Np :
[Gﬂ — By Np < |{Gj|GpeGj,1<j<my|

RT/...RTy, have disjoint fields
Nt <|{Gj|G1€Gj,1<j<m}

|1 [Gm] — Bm)=exit(RT,,...,RT,)
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CkGi=gate(RT) --- C+ Gp= gate(RTp)
CrGi=gate(RT) --- C+ Gn= gate(RTm)
CF Bi= exit(RT))

F Bj = guarded(RT/
€8 = RT) RT,...RT, have disjoint fields

CF Bm= exit(RT,) N1 < [{Gj[G1€Gj, 1< j<m}|
CF (par Gi#Ny, ... ,Gp#Np :

|1 [Gm] — Bm)= guarded(RT,,...,RT,)
where G; is an abbreviation of Gi1,...,Gin, and CH Gi :>gate(R1|D is an abbreviation for CF G}1:>gate(R7|?1).

..., CF Gin, = gate(RTn,) .
Here, we assume N ranges over natural numbers greater than zero.

Untimed dynamic semantics

P C{1,....m}
VieSEFB — B 2/ =Nj
EF (par Gi#Ny, ... ,Gp#N, Gj €NiexGi
[Gi] — By - |1 [Gml — Bp) Vi¢gzB =8
Gj(RN)
— (par Gl#Nl,...,Gp#Np
[Gi] — B} --- |1[Gm] — B
G¢ {Gy,....Gp}
vierzhB g s={i|GeG,1<i<m}

EF (par Gi#Ng, ... ,Gp#Np . 40

[Gi] — By - 1[Gl — Bp) Vi¢ 2B =B
CRIY (par Gi#Ny, ..., Gp#N,
[G1] — B --- |1[Gm] — B)

_GRN) R
LFB; — Bj [nge,-}
Et (par Gi#Ng, ... ,Gp#Np

I1[G1] — By - I1[Gj] — Bj --- |1[Gm] — Bm)
19, (par Gi#Ny, ... ,Gp#N,
I1[G1] — By - |1[Gj] — B} --- |1 [Gm] — Bm)
z+ B % B
EF (par Gi#Ny, ... ,Gp#Np
I1{G1] — By -+ I1[Gj] — Bj --+ |1[Gm] — Bm)
19, (par Gy#iNy, ..., Gp#N,
I1[G1] — By -+ I1[Gj] — B} -+ |I[Gm] — Bm)
£+ B; " B
Et (par Gi#Ng, ... ,Gp#Np
11[G1] — By -+ |1[Gj] = Bj --- |1[Gm] — Bm)
10, signal X (RN) ; (par G1#Ny, ... ,Gp#N,
I1[G1] — By -+ I1[Gj] — B} --- | I[Gm] — Bm)
(© ISO/IEC 2001 — All rights reserved 81

FINAL DRAFT / PROJET FINAL



ISO/IEC 15437:2001(E)

B BV B . 2B,V By
Et (par Gi#Ny, ..., Gp#Np [G1] — By -+ |1 [Gm] — Bm)
XRY (par Gy#Ny, ..., Gp#Np [Gi] — B] -+ |1[Gm] — Bl

Timed dynamic semantics

£rB Y28 .. By 2% B,

E+ (par Gi#Ny, ... ,Gp#Np [G1] — By --- |1 [Gm] — Bm)
2D (par Gi#Ny, ..., GptN, [Gi] — B --- |1[Gm] — Bl

/ /
2B, g .z My g B, gy

[0<d]
Et+ (par Gi#Ng, ... ,Gp#Np

I1[G1] — By -+~ [1[Gj] = Bj --- |1[Gm] — Bm)
B (par Gi#NL, ..., Gp#N,
I1IG1] — By -+ 11[Gj] — exit(RN) --- || [Gm] — Bm)

9.2.19 Parallel over values

Abstract syntax

par Pin NI || B

Static Semantics
CHN=List CF (P=-any)= (RT) (,RTF B=guarded(none)
Ckpar Pin N ||| B=guarded(none)

CFN=List CF (P=-any)= (RT) (,RTF B=-exit(none
Ckpar Pin N ||| B=exit(hone)

CHFN=List Ct (P=-any)=(RT) (,RT+ B=guarded()
Ckpar Pin N ||| B=-guarded()

CFN=List CF (P=-any)=(RT) C(,RTFB=-exitQ
Ckpar Pin N ||| B=exitO

Untimed dynamic semantics

Etpar Pinnil ||| B 2%, block

T+ (P=N)= (RN) ZFBRN Il (par Pin Ny [1] B)*V g

EFpar Pin cons(N;,No) |11 B“ﬂ) B’

[ here p::=G|i|d]

Z+ (P=Ny)= (RN) Z-BRN Il (par Pin N |11 B)*®¥ @

EFpar Pin cons(N;,Np) ||| B 1O, signal X (RN) ;B
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Timed dynamic semantics

£+ par Pin nil 111 BZ2 block

Er (P=N)=(RN) ZFBRN IIl (par Pin N, |11 B) 22 g
Et+ par Pin cons(N,No) |11 BED g

0.2.20 Variable declaration

Abstract syntax

var Vi:Th[:=Eq],...,Vh: Ta[:=Epn] in B

Static semantics

—{V1,....Vo M, \Vh =T, Tn) = (RT,RT")
CF By=exit(RT)
C;(Vi=7Ty);

: (Va=7Th); RT B= exit(RT,RT") { RT is disjoint with RT,RT" ]
CFvar Vi:Ty[:=Eq],...,Va: Tn[: =Eq] In B=exit(RT) | and RT” CRT,RT”
C—{V1,...\Vo} F (V1,... \Va=Ty,...,Th) = (RT,RT")
Ct By=exit(RT)
C,(V1=7Ty);

: (Va="7T); RT' - B= guarded(RT”,RT) [ RT is disjoint with RT',RT” ]
CFvar Vi:Ta[:=Ey],...,Vn: Tn|: =Ep] in B= guarded(RT) | and RT” CRT'.RT"

where
Bo = (?Vj1,...,?Vjm) := (Ejl, ,Ejm)
{iL... imp = {k | Vk: Tk —Ek}

If there is no variable initialization, By = exit(). (Vi=7T;) informs about the type of Vi, but does not implicate
a value.

Untimed dynamic semantics

S(RN) B’
u(RN)

B, —
EFBRN ' B
Ervar Vi:Ty[:=Eq],...,Vh: Tpa[:=Ex] in B“—> var Vi:Ty,...,Va: T in B

a(RN)

BV

£ rvar RV:RTin B*™ var vi:Ty,... Vu:Thin B
> AV g

£ RN = RT

£+ (RV=RT)= (RT)

ErFvarVi:Tq,...,Va: Thin B —

S3(RN) block
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where
B, = (?le,...,?ij) 1= (Ejl,.. .,Ejm)

{jl,‘..,jm} = {k | VkZTkZ: Ek}
RN =RN—{Vi,...,Va}

Note that the first rule only applies when the variable declaration includes instantiation of at least one
variable. In such case, the appropiate values are substituted in B, and the behaviour evolves in a form without
instantiations.

The second rule only applies when no instantiation is provided in the declaration, or when these instantia-
tions have been substituted in B.

Timed dynamic semantics

£-BX2 B
£(d)

ErFvarVi:Ty,....Vh:Thin B=—var Vi:T1,....V: T, in B

9.2.21 Gate hiding

Abstract syntax
hide G[: T](,G[: T])* in B

The default gate type is (etc).

Static semantics

CHTi=type --- CFT,=type
C;G1=gate(Ty),...,G,= gate(T,) - B=exit(RT)
ChFhide G1:Tq,...,Gn: T,y in B=exit(RT)

CHTi=type --- CFT,=type
C;G1=gate(Ty),...,G,=gate(T,) + B=-guarded(RT)
Crhide G1: Ty, -+ ,Gp: T, in B=guarded(RT)

Untimed dynamic semantics

HCRN)

E+B'— B é
— —

£+ hide G:T in B"®Y hide G:T in B [

B

E+ (RN) = (RT)
. — . 0 L. — .
£+ hide G:T in B —> hide G:T in B

Timed dynamic semantics

£+-B % p

£ + B refusing (G:T,d)
£+ hide G(RT) in B % hide G:T in B’

Gi (RN@d")
—_—

where E - B refusing (G:T,d) if there is no £+ (RN) = (RT) and d’ < d such that £+ B B”

Note that we use negative premise to define the timed dynamic semantics.
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9.2.22 Renaming

Abstract syntax
rename ( (gate G[(IPL)] is G [P]) | (signal X[(IPL)] is X [E]) )" in B

The default gate input parameter list is (etc), the default gate pattern is !$argy, the default exception input
parameter list is (), and the default exception value is $argv
Patterns should be irrefutable.

Static semantics

CH (RT) =type --- CH (RTy) =type
CH((RR=RT)=(RT") --- CF (RRy=RTn) = (RT)
CGRT/FG) Pi=exit O --- C;RTyF G, Pn=exit O
CH (RT)) =type --- C (RTy) =type
CH(RP=RT)=(RT" --- CF(RR,=RT)= (RTY)
C;RT" Fsignal X]{ E;=exit () --- C;RT) F signal X;, E, = exit ()
C;Gi1=gate(RT)®
... ®Gm=gate(RTy)
OX1=exn(RTHO
...OXm=exn(RTy) - B=exit(RT)
CF (rename
gate G1(RR:RT) is G P --- gate Gn(RRy:RTw) is Gy, Pm
signal X1 (RP:RT)) is X{ E; --- signal Xn(RR):RT)) is X, En
in B) = exit(RT)

CH (RTY) =type --- CF (RTy) =type
CH((RR=RT)=(RT") --- CF (RRy=RTn) = (RT)
CRT/FG Pi=exit O --- C;RTyF G, Ph=exit O
CtH (RT)) =type --- CF (RTy) =type
CH(RR=RT)=(RT") --- CH(RR,=RT)= (RT")
C;RT" k- signal X{ Ey=exit () --- C;RT I-signal X;, En=exit ()
C;Gi=gate(RT)®
...©Gm=gate(RTy)
oOX1=exn(RT) e
... ®Xm=exn(RT)) - B=guarded(RT)
C+ (rename
gate G1(RR:RT) is G| P, --- gate Gm(RRn:RTyw) is G, P
signal X1 (RP:RT)) is X{ E; --- signal Xn(RR,:RT,) is X} En
in B) = guarded(RT)

Untimed dynamic semantics

" p

Gi,...,Gm X1, ..,
£+ (rename HRY rename me (G m X, X}

gate G1(RR:RTy) is G P, gate G1(RR:RT) is G P,

gate G (RRy: RTy) is Gf,, P gate Gy (RRy:RTy) is Gf,, P
signal Xy (RP:RT)) is X{ Ez signal X; (RR:RT)) is X{ E1
signal Xm(RRF,:RT) is X, En signal Xm(RP,:RT)) is X}, En

in B) in B)
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- g
£+ (((RR): (RT)) = (RN)) = (RN)
£+ B[RN] Y g

G i € {G1,....Gm,X1,...,
£+ (rename aRND rename & < {G1 m X Xen}]
gate G1(RR:RT) is G| P, gate G1(RR:RT) is G| P
gate G (RRy:RTy) is Gjy, P gate Gm(RRn:RTy) is Gf, Pm
signal X1 (RP:RT,)) is X{ E; signal X1 (RP:RT)) is X{ E;
signal Xn(RP,:RT;) is X}, En signal Xm(RP,:RT;) is X}, En
in B) in B')
where Bi = G| P, in the case of gates and B; = signal X E; in the case of exceptions.
Timed dynamic semantics
£+-B Y p
E I (rename e (rename
gateG1(RR:RT) isG| P --- gateG1(RR:RT) isG| Py ---
gate Gn(RRy: RTy) is Gf,, Py gate Gy, (RRy: RTy) is Gf,, P
signal X, (RP:RT)) is X{ E; --- signal X1 (RP:RT)) is X{ E; ---
signal Xm(RPF,:RT) is X, En signal Xm(RP,:RT) is X}, En
in B) in B)
9.2.23 Process instantiation
Abstract syntax
N [[G(,G)" 1 (LE(,E)"1) [[[X(,X)*]1]
The default gate and exception lists are the empty list [], and the default argument is ().
Static semantics
CHN= [gate(RT), ... ,gate(RTy) 1 (RT) [exn(RT)), ... ,exn(RT;) ] — exit(RT)
CF Gi=gate(RT) --- Ck Gyn=gate(RTy)
CrEi=exit(Ty) ... CFEpy=exit(Ty)
! !
CI—X1:>eXH(RT1) C}_Xn:>exn(R-[;]) . [RT/:Tl,...,Tp}
CFN [Gy,...,Gml (E1,...,Ep) [Xq,..., %] =exit(RT)
CHN= [gate(RT), ...,gate(RTy) 1 (RT) [exn(RT)), ... ,exn(RT;)] — guarded(RT)
CtHGi=gate(RT) --- CF Gn=gate(RTy)
CF (Ey,...,Ep)=exit((RT))
CHXi=exn(RT)) --- CF X,=exn(RT)
CFN [Gy,...,Gml (E1,...,Ep) [Xq,...,X%] = guarded(RT)
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Untimed dynamic semantics

EFMN=AG (RTIRP:RT [X'(RT)] —B
E F (rename
gate G} (RR:RTy) is G| Py ---gate G},,(RRn:RTy) is Gy, Pn
signal X{ (RP:RT)) is X{ E; ---signal X (RR,:RT;) is X{| En
in caseE: (RT) is (RP) LAY
£+-n 61 E X" B

Timed dynamic semantics

EFN=XG (RTI(RP:RT) [X'(RT)] —B
E F ((rename
gate G| (RR:RT) is G; Py ---gate G,(RRy:RTw) is Gy, P
signal X{ (RP,:RT,) is X{ E; ---signal X/, (RR,:RT;) is X, E,
£(d)

in caseE (RT) is (RP) — B)—=—=PB
TN [G] E X1 2% B
9.2.24 |oop iteration
Abstract syntax
loop B
Static semantics
CF B=exit(RT)
C Floop B=guarded(none)
Untimed dynamic semantics
£+ B; loop B"®Y B/
E - loop B"EY g
Timed dynamic semantics
£+ B; loop BE® B
E+loop B— 2D g
9.2.25 Case
Abstract syntax
caseE is BM endcase
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Static semantics

CHE=exit(T)
CH(BM=T)=exit(RT)

CF caseE is BM= exit(RT)

CHE=exit(T)
CH (BM=T)= guarded(RT)

C+ caseE is BM= guarded(RT)

Untimed dynamic semantics

crEXN

£+ BM=N)"EV B

£+ caseE is BM"EY B

X (RN /

E |- caseE is BM "=’ caseE’ is BM

Timed dynamic semantics

XN E

£+ (BM=N) 4B

‘E + caseE is BM ed) B

9.2.26 Case with tuples

Abstract syntax

case’(’ E(,E)* *)’ is

BM

endcase

Static semantics

Ck (Eg,...,Ep) = exit(RT)
CF (BM= (RT))= exit(RT)

CFcase(Ey,...,Ey) is BM= exit(RT")

Ct (Ey,...,Ep) = exit(RT)
Ct (BM= (RT))=guarded(RT')

Ccase(Ey,...,En) is BM= guarded(RT)

Untimed dynamic semantics

88

EFEy,.. E. "2V EL .. E

T+ (BM= (RN))" VB

£+ case(Ey,... Ey) is BMPRY B

+E "N E

E + case(Ey,...,Ey) is BM XN case(Ey,...,E) is BM

[with E/ = E; if i # j]
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3(RN . . .
Note that Eg,...,E, (RN Ef,...,E] corresponds intuitively to parallel evaluation. Anycase, evaluation of

Ej cannot produce bindings, so they may be evaluate in any arbitrary order.

Timed dynamic semantics

3(RN)

EHE,.. B,V EL . E,
L+ (BM= (RN)) %2 B

£ - case(Ey,...,En) is BM S B

9.2.27 Signalling
Abstract syntax
signal X [’ E ?) 7]

The default expression is exit().

Static semantics

CrHE=exit((RT))
CHX=exn(RT)
CFsignal X E=-guarded()

Untimed dynamic semantics

E Fsignal X E"— exit()

eV

E  signal X g X/ RW signal X E/

Timed dynamic semantics None.

9.3 Type expressions

9.3.1 Type identifier

Abstract syntax

S

Static semantics

C,S=typel S=-type

C,S=TES=T
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9.3.2 Empty type

Abstract syntax

none

Static semantics
C F none=-type

CknoneC T

Ctnone= (V=none,RT)

9.3.3 Universal type

Abstract syntax

any

Static semantics
CFany=-type

CHTCany

9.3.4 Record type

Abstract syntax

(RT)

Static semantics

CF RT=record
CF (RT) =type

CHRTCRT
CFH(RT) C (RT)

9.4 Record type expressions

Rules for record type expressions will be given in a compositional way, given first the semantics for items etc
and V =>T and then the semantic for disjoint union (RT,RT).

9.4.1 Singleton record

Abstract syntax

V=T
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Static semantics

CHT=type
CH(V=T)=record

CHTLCT
CFV=T)C(V=T)

9.4.2 Universal record

Abstract syntax

etc

Static semantics
C F etc=record

CHRTC etc

9.4.3 Record disjoint union

Abstract syntax

RT,RT

Static semantics

CFRTy = record CFRT=record [
CHRT,RT,=record

CFRLCRT CFRLLCRT
CFRT,RLLCRT,RT

RT; and RT; have disjoint fields]

CFRT,RG=RB,RL

CF (RT,RR),Rl3=RT, (RL,RT)

CF(,RT=RT

9.4.4 Empty record

Abstract syntax

0

Static semantics

CH ()=record
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9.5 Value expressions

9.5.1 Primitive constants
Abstract syntax

K

Static semantics In this chapter we will not discuss the static semantics of primitives—this is left to the
design of the standard libraries.

9.5.2 Variables

Abstract syntax

\Y,

Static semantics

CN=TFV=T

9.5.3 Record values

Abstract syntax

7(7 RN ));

Static semantics

CFRN=RT
CF (RN) = (RT)

9.5.4 Constructor application
Abstract syntax
C[N]

The default argument is ().

Static semantics
CFC=((RT)—Y9

CHN=(RT)
CFCN=S

9.6 Record value expressions

9.6.1 Singleton record

Abstract syntax

V=N
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Static semantics

CEN=T
CEV=N)=WV=T)

9.6.2 Record disjoint union

Abstract syntax
RN, RN

Static semantics

CERN=RT  CFRNe=RT RN and RNb have disjoint fields]
CFRN, RN = RT,RE

9.6.3 Empty record

Abstract syntax

0

Static semantics

cF0=0

9.7 Patterns

In this section the semantics of pattern matching (the sole use of patterns) is defined.

9.7.1 Record pattern

Abstract syntax
) () RP )) >

Static semantics
CH (RP=RT)= (RT)
CF(RP = RM)=RD
CH(M=Py,....Vh=P) = Vi =any,...,\h=any) )= (RT)
CH(MVi=Py,....Vh=Py) =any)= (RT)

Dynamic semantics
EF ((RP)=N)=(RN)
Et+ ((RP) = N) = fail

RN | N = (RN
EF ((RP) = N) = fail [ARN[N=(RN]

The last condition means that N is not a bracketer record of values.
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9.7.2 Wildcard

Abstract syntax

any:T

Static semantics

CHT=type
Ck(any:T=T)=0

Dynamic semantics

EEN=T
EE(any:T=N)= 0O

9.7.3 Variable binding
Abstract syntax

Vv

Static semantics

CFTCT

V=7T' e
CF(?VéT)é(VéT)[ - ¢l

V=2T" | V=T’
CI—(?V:>T):>(V:>T)[£ =7 V=T e d

If there exists a restriction via a local variable declaration, V may be a value of a subtype of T’ (the declared
type). If there is no variable declaration, any type would match T.

Dynamic semantics

EEN=T
EFTCT

V=7T' € Z]
EF(?V=N)=V=N)

[AV=7T | V=7T € E]

EF (W =N)= V=N)

9.7.4 Expression pattern
Abstract syntax

IEA

Static semantics

CFEA=exit(T)
CFUEA=T)=0

Note that no bindings can be produced in EA
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Dynamic semantics

S5(N') ,
LEEATDEN gy

EF (IEA=N)= O

S(N') /

EF ('EA=N) = fail

£+ EAEY EN

EF ("EA=-N) = fail

9.7.5 Constructor application

Abstract syntax
C [P]

The default pattern is ().

Static semantics

CHC= (RT) —S
CFSCT

CF (P= (RT))= (RT)
CF({CP=T)= (RT)

Dynamic semantics

L (P=(RN)= RN) RN
IF (CP=N)= RN)

LF (P> RN))=fail [y _ Ry
EF (C P=N) = falil

[ACN |N=CN]

E+ (C P=N)=fall

9.7.6 Explicit typing
Abstract syntax

P:T

Static semantics

CHT=type
CFTCET
CH(P=T)=QRD
CFP:T=T)=(RT)
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Dynamic semantics

E+-N=T
£+ (P=N)= (RN)
£+ (P:T=N)= (RN)

EFN=T
Et+ (P=N)=fall
EF (P:T=N)=fail

EEN=T’
EFTNT =none
EF (P:T=N)=fail

9.8 Record patterns

Static semantics

CF (RP=RT)= (RT)

Dynamic semantics

£+ (RP=>RN) = (RN)

E - (RP=-RN) =-fall

9.8.1 Singleton record pattern
Abstract syntax
V=P

Static semantics

CH(P=T)=(RT
CH(V=P)=V=T))=(RT

Dynamic semantics

£+ (P=N)= (RN)
EF(V=P)=V=N))=(RN)
EF (P=N)=fail

EF ((V=P)=(V=N))=fail

9.8.2 Record wildcard
Abstract syntax

etc

Static semantics

Ck(etc=RT)= 0
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Dynamic semantics

E (etc=RN)= O

9.8.3 Record match
Abstract syntax
P asRP

Static semantics
CH(P=RD)= (R

CF (RP=RT)= (RT) [RT, and RT have disjoint fields]
CF (P asRP=RT)= (RT,RT,)

Dynamic semantics
EF(P=(RN))= (RN

£+ (RP=RN) = (RN,
Z I (P as RP=RN) = (RN, RN,

9.8.4 Record disjoint union

Abstract syntax
RRRP

Static semantics

CE(RA=RR)= RT)  Cr(RR=RB)= (RE) Ry and R have disjoint fields]
CF (RA,RR=RT,RT) = (RT,RT)

Dynamic semantics
£+ (RR=RN)= (RN) ZF (RR=RN,) = (RN,)
RA,RR= RN, RN;) = (RNj,RN))

EH(
£+ (RR=RN) = fall

EF (RR,RR=RN,RN,) = fail
EH(

EH(

RP = RNp) = fail
RR,RR = RN, RN,) = fall

9.8.5 Empty record pattern

Abstract syntax

0

Static semantics

CHO=0)=0
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Dynamic semantics

EF(O=0)=0

9.9 Record of variables

9.9.1 Singleton record variable

Abstract syntax

V=V

Static semantics

CH((V=V)=NV=T)=V'=T)

9.9.2 Record disjoint union

Abstract syntax

RV,RV

Static semantics

CF(RU=RR)=RT) CF(R%L=RE)=(RE)

CF (R, RL =R, RL)= (RT/,RT)

9.10 Behaviour pattern-matching
9.10.1 Single match
Abstract syntax

P[:[; E ;]:] ->B

The default selection predicate is [ true].

Static semantics

CHP=T)=RD
C;RTF E = exit(bool)
C:RTF B=exit(RT)

Cr ((PE] ->B)=T)= exit(RT)

CH(P=T)= (R
C;RTF E = exit(bool)
C;RT B=-guarded(RT)

CH((P [E]l -> B)=T)=-guarded(RT")

98
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Untimed dynamic semantics

E (P=N)=fail
F((P [E] -> B)=N)=fall

£ (P=N)= (RN)

- E[RN] 203 Sdfalse -/

Z+ ((P [E] -> B)=N) =-fail

£+ (P=N)= (RN)

f}— E[RN] *EY E/

F((P [E] -> B)=N)=fail
EF(P=N)=(RN)
T E[RN] 6(true) E/
EFBRN —"B

EF((P [E]l ->B)=N)

u(RN’)

RN
HRN) o

Timed dynamic semantics

£+ (P=N)= (RN)
- E[RN] 6(true) E/
£+ BRN “% B/

E+ ((P [E] -> B)=N) ¥2

e
()B

9.10.2 Multiple match

Abstract syntax

BM ’ |’ BM

Static semantics

C,RT,RR -

ISO/IEC 15437:2001(E)

BM;=T)= exit(RT;,RT) C,RT;,RT + (BM2=T) = exit(RT,,RT)

C,RT,RT2
C,RT,RTLF

(BM; | BMy) = T) = exit(RT,RT,RT)

BM; = T) = guarded(RT;,RT) C,RT,RT, - (BM2=T) = guarded(RT;, RT)

P Py ey

C,RT,RR

Untimed dynamic semantics

BM = N) "Y' g

(BM11BM2)=N) —
BM1:>N)¢fa|I

BM = N) "V B
BMllBMZ):N)

Mz = N) = fail
Mz = N) = fail
BM; | BMy) = N) = fail

(RN)
B

(RN)
B

o®™ 5

- (
= (
= (
- (
= (
= (
- (
= (

—
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Timed dynamic semantics

BM,=N) 2% B

(BMyIBMp) = N) ¥4 B

T (

- (

EF (BMp=N) = fall
£+ (BMp=N) ¥4 B
f}—( e(d)

(BM]_ | BMz) = N) — B

10 Predefined library

This clause presents the predefined library and the predefined type scheme (e.g. strings, sets, and lists) of
E-LOTOS. The types and functions of the predefined library are immediately available in each E-LOTOS
specification. The type scheme declarations are translated into a set of type and functions declarations (as
suggested by the “rich term syntax” of [21]).

These libraries try to be upward compatible with the existing LOTOS library. Whenever possible, the
names used for types, functions, and sorts are preserved.

For each predefined type is presented the interface containing the declaration of the type and of the
operations allowed for this type, and the implementation module. The static and dynamic semantics of the
types and operations defined are those induced by the implementation.

For each type scheme is presented the interface and the implementation of the type and of the operations
allowed for this type.

The interfaces contain the axiomatic description functions using ACT ONE equations.

10.1 Booleans

This subclause contains the interface and the implementation module for boolean values. The constructors
“true” and “false’ are defined as syntactic items and cannot be redefined as operators. Thus, they cannot
be overloaded at all.

interface Boolean is
type bool is
true | false
endtype
function not (x: bool) : bool
function infix or (x: bool, y: bool) : bool
function infix and (x: bool, y: bool) : bool
function infix implies (x: bool, y: bool) : bool

function infix iff (x: bool, y: bool) : bool

function infix xor (x: bool, y: bool) : bool
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function infix == (x: bool, y: bool) : bool
function infix !'= (x: bool, y: bool) : bool

eqns forall x, y: bool
ofsort bool

not (true) = false ;
not (false) = true ;

(x or true) = true ;
(x or false) = x ;

(x and true) = x ;
(x and false) = false ;

(x implies y) = (y or not x) ;

(x iff y)

((x implies y) and (y implies x)) ;

(x xor y) ((x and not y) or (y and not x)) ;
(x ==y) = (x iff y) ;
(x !'=y) = (x xor y)

endeqns

endint
The implementation of the boolean type is given by the Boolean module below.

module Boolean is

type bool is
true | false
endtype

function not (x: bool) : bool is
case X in
true -> false
| false -> true
endcase
endfun

function infix or (x: bool, y: bool) : bool is
case (x, y) in
(false, false) -> false
| (any: bool, any: bool) -> true
endcase
endfun

function infix and (x: bool, y: bool) : bool is
case (x, y) in
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(true, true) -> true

| (any: bool, any: bool) -> false
endcase

endfun

function infix implies (x: bool, y: bool) : bool is
y or not(x)

endfun

function infix iff (x: bool, y: bool) : bool is
x implies y and (y implies x)

endfun

function infix xor (x: bool, y: bool) : bool is
x and not(y) or (y and not(x))

endfun

function infix = : bool is
x iff y

endfun

(x: bool, y: bool)

function infix <> (x: bool, y: bool) : bool is

X XOr y
endfun

endmod

10.2 Natural Numbers

This subclause contains the interface and the implementation module for natural values. The constants of
type natural are recognized by the parser (token <nat> ), and may be used like in traditional programming
languages. The constructors of type nat are 0 and Succ .

The compatibility with the Standard LOTOS library is kept at the level of NaturalNumber module.
However, the BasicNaturalNumber module and interface are not given.

interface NaturalNumbers imports Boolean
is
type nat is
0, Succ (n: nat)

endtype

function infix + (m: nat, n: nat)
function infix * (m: nat, n: nat)
function infix ** (m: nat, n: nat)
function infix - (m: nat, n: nat)
function infix div (m: nat, n: nat)
function infix mod (m: nat, n: nat)
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(* All the constants 0, 1,

. are available *)

: nat raises RANGE_ERROR

: nat raises RANGE_ERROR

: nat raises RANGE_ERROR

: nat raises RANGE_ERROR

: nat raises ZERO_DIVISION

: nat raises ZERO_DIVISION
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function infix pred (m: nat) : nat raises RANGE_ERROR
function infix == (m: nat, n: nat) : bool
function infix != (m: nat, n: nat) : bool

function infix < (m: nat, n: nat) : bool

A
1]

function infix (m: nat, n: nat) : bool

function infix >= (m: nat, n: nat) : bool
function infix > (m: nat, n: nat) : bool
eqns forall m, n : nat

ofsort nat

m+ 0 =m;
m + Succ(n) = Succ(m) + n;

m*x 0 = 0;
m * Succ(n)

m+ (m * n);

m **x O = Succ(0);
m **x Succ(n) = m * (m ** n)

0-0=0;
m- 0 = m;
Succ (m) - Succ (n) = m - n;

(m < n) =>
m div n = 0;
(m >=n) and (n > 0) =>
mdivn = ((m - n) divan) + 1;

(m < n) =>
m mod n = m;
(m >= n) =>
mmod n = ((m - n) mod n);

pred (Succ (n))

]
[=]

ofsort bool
0 == 0 = true;
0 == Succ(m) = false;

Succ(m) == 0 = false;
Succ(m) == Succ(n) = m = n;
m !'=n = not(m == n);

0 < 0 = false;
0 < Succ(n) = true;
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Succ(n) < 0 = false;
Succ(m) < Succ(n) = m < n;

m<=n=m<nor (m=n);

m>=n =not (m < n);
m>n =not (m <= n);
endeqns

endint

module NaturalNumbers imports Boolean
is
type nat is
0, Succ (n: nat) (* all the constants O, 1, ... available *)
endtype

function infix + (m: nat, n: nat) : nat raises RANGE_ERROR is
(* if m > MAX_NAT then raise RANGE_ERROR endif x*)
case n in
0 ->m
| Succ (nl: nat) -> Succ (m) + nl
endcase
endfunc

function infix * (m: nat, n: nat) : nat raises RANGE_ERROR is
(* if m > MAX_NAT then raise RANGE_ERROR endif x)
case n in
0 ->0
| Succ (nl: nat) -> m + (m * nl)
endcase
endfunc

function infix ** (m: nat, n: nat) : nat raises RANGE_ERROR is
(* if m > MAX_NAT then raise RANGE_ERROR endif x*)
case n in
0->0
| Succ (nl: nat) -> m * (m ** nl)
endcase
endfunc

function infix - (m: nat, n: nat) : nat raises RANGE_ERROR is
case (m, n) is
(0, 0) >0
| (0, Succ (any: nat)) -> raise RANGE_ERROR
| (any: nat, 0) ->m
| (Succ (m1: nat), Succ (nl: nat)) -> ml - ni
endcase
endfun

function infix div (m: nat, n: nat) : nat raises ZERO_DIVISION is
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if (n = 0) then
raise ZERO_DIVISION
elsif (m < n) then
0
else
((m-n) div n) + 1
endif
endfun

function infix mod (m: nat, n: nat) : nat raises ZERO_DIVISION is
if (n = 0) then
raise ZERO_DIVISION
elsif (m < n) then
m
else
((m-n) mod n)
endif
endfun

function infix pred (m: nat) : nat raises RANGE_ERROR is
case n is
0 -> raise RANGE_ERROR
| Succ (nl: nat) -> nl
endcase
endfun

function infix == (m: nat, n: nat) : bool is
case (m, n) is
(0, 0) —> true
| (0, Succ (any: nat)) -> false
| (Succ (any: nat), 0) -> false
|  (Succ (m1: nat), Succ (nl: nat)) -> ml == nil
endcase
endfunc

function infix <> (m: nat, n: nat) : bool is
not (m == n)
endfunc

function infix < (m: nat, n: nat) : bool is
case (m, n) is
(any: nat, 0) -> false
I (0, Succ (any: nat)) -> true
| (Succ (ml: nat), Succ (nl: nat)) -> ml < nl
endcase
endfunc

function infix <= (m: nat, n: nat) : bool is
m<nor (m=n)

endfunc

function infix >= (m: nat, n: nat) : bool is
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not (m < n)
endfunc

function infix > (m: nat, n: nat) : bool is
not (m <= n)

endfunc

endmod

10.3 Integral Numbers

This subclause contains the interface and the implementation module for integer values. The constants of
type integral are signed natural values. Since natural constants are recognized by the parser (token <nat> ),

the integral values may be used like in traditional programming languages (with an unary operator “+" or

won

in front of the unsigned natural value). The constructors of type int are Pos (for positive integers) and Neg

(for negative integers).

interface IntegerNumbers imports NaturalNumbers
is

type int is

Pos (n: nat)

| Neg (n: nat)

endtype

(* Pos (X) == X ; Neg (X) == - X - 1 %)

(* Pos (Pos (X)) == Neg (Neg (X)) == X %)

function succ (n: int) : int raises RANGE_ERROR

function pred (n: int) : int raises RANGE_ERROR

function sign (n: int) : int

function abs (n: int) : int

function - (n: int) : int raises RANGE_ERROR

function infix + (m: int, n: int) : int raises RANGE_ERROR

function infix * (m: int, n: int) : int raises RANGE_ERROR

function infix ** (m: int, n: nat) : int raises RANGE_ERROR

function infix - (m: int, n: int) : int raises RANGE_ERROR

function infix div (m: int, n: int) : int raises ZERO_DIVISION

function infix mod (m: int, n: int) : int raises ZERO_DIVISION

function infix pred (m: int, n: int) : int raises RANGE_ERROR

function infix == (m: int, n: int) : bool
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function inf

function inf

function inf

function inf

function inf

function nat

ix !=

ix <

ix <=

ix >=

ix >

(k:

(m: int, n: int) : bool
(m: int, n: int) : bool
(m: int, n: int) : bool
(m: int, n: int) : bool
(m: int, n: int) : bool

int) : nat raises RANGE_ERROR

function int (k: nat) : int raises RANGE_ERROR

eqns forall M, N: mnat, X, Y: int

ofsort i
succ
succ
succ

pred
pred
pred

sign
sign
sign

abs (Pos (N))
abs (Neg (N))

nt
(Pos
(Neg
(Neg

(Pos
(Pos
(Neg

(Pos
(Pos
(Neg

(N)) = Pos (Succ (N));
(0)) = Pos (0);
(Succ (N))) = Neg (N);

(0)) = Neg (0);
(Succ (N))) = Pos (N);
(N)) = Neg (Succ (N));

(0)) = 0;
(Succ (M) = 1;
(N)) = Neg (Succ (0));

Pos (N);
Pos (Succ (N));

- (Pos (0)) = Pos (0);
- (Pos (Succ (N))) = Neg (N);
- (Neg (N)) = Pos (Succ (N));

Pos
Pos
Neg
Neg

X -

Pos
Pos
Neg
Neg

0) +
(Succ
0) +
(Succ

Y =X

an
an
an
an

* ¥ ¥ x

X = X;

(M) + X = Pos (N) + succ (X);
X = pred (X);

(N)) + X = Neg (N) + pred (X);

+ - (D;

Pos (N) = Pos (M * N);

Neg (N) = succ (Neg (M * Succ (N)));
Pos (N) = succ (Neg (Succ (M) * N));
Neg (N) = Pos (Succ (M) * Succ (N));

X *x 0 = Succ (0);
X *x Succ (N) = X * (X *x N);

(m <
md

n) =>
iv n

=0;
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(m >= n) =>
mdivn=((m - n) divn) + 1;

(m < n) =>
m mod n = m;
(m >= n) =>
mmod n = ((m - n) mod n);

Pos (M) == Pos (N) = M == N;
Pos (M) == Neg (N) = false;
Neg (M) == Pos (N) = false;
Neg (M) == Neg (N) = M == N;
X !'=Y =not X ==Y);

Pos (M) < Pos (N) = M < N;
Pos (M) < Neg (N) = false;
Neg (M) < Pos (N) = true;
Neg (M) < Neg (N) = M > N;

X<=Y=(X<Y) or Xeq¥);
X>Y =not X<=Y);
X > Y =not X< Y);
nat (Pos (N)) = N;
int (N) = Pos (N);
endeqns
endint (* IntegralNumbers *)

The module IntegralNumbers may be either an external module, or may implement the equations above
raising exceptions for the unspecified cases.

10.4 Rational Numbers
This subclause contains the interface and implementation module for rational values. The constants of type
rational are recognized by the parser (token <rational> ), and may be used like in traditional programming
languages. The constructor of type rational is frac . This constructor receives two irreducible integral
numbers, the second one (the denominator) should be greater than 0.
Note that the LOTOSPHERE project proposes the name “Frac " for the rational numbers.
interface RationalNumbers imports IntegerNumbers is
type rational is
frac (num: int, den: int) (* den > 0 *)

endtype

function infix + (f1: ratiomal, f2: rational) : ratiomal
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function infix - (f1: rational, f2: rational) : rational

function infix * (f1: rational, f2: rational) : rational

function infix ** (m: ratiomal, n: int) : rationmal

function infix / (f1: rational, f2: rational) : rational raises ZERO_DIVISION

function max (f1: rational, f2: rational) : rational
function min (f1: rational, f2: rational) : ratiomnal

function abs (f: rational) : rational

function round (f: rational) : rational

(* this function returns the nearest integral value of f, except for
halfway cases, which are rounded to the integral value larger in
magnitude *)

function ceil (f: rational) : rational
(* this function returns the least integral value greater than or
equal to f *)

function floor (f: rational) : ratiomal
(* this function returns the greatest value less than or equal to f *)

function infix > (f1: rational, f2: rational) : bool
function infix >= (f1: rational, f2: rational) : bool
function infix < (f1: rationmal, f2: rational) : bool
function infix <= (f1: ratiomal, f2: rational) : bool
function infix == (f1: rational, f2: rational) : bool
function infix '= (f1: rational, f2: rational) : bool

endint (* RationalNumbers *)

The implementation uses a local function “gd " (greater divisor) to reduce fractions which are not irre-
ducible.

module RationalNumbers imports IntegralNumbers is

type rational is
frac (num: int, den: int) (* den > 0 %)
endtype

(* local function *)
function gd (m: int, n: int) : int is
case n is

0 ->m
| any int -> gd (n, m mod n)
endcase

endfun

function reduce (f: rational) : rational is
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var gd: int =

in

gd (f.num, f.den)

frac (f.num div gd, f.den div gd) (* div is the integral division *)

endvar
endfun

function minus (f: ratiomal) : ratiomal is
frac (minus (f.num), f.den)

endfun

function infix +
reduce (frac
endfun

function infix -
reduce (frac
endfun

function infix *
reduce (frac
endfun

(f1: rational, f2: rational) : rational is
(f1.num * f2.den + f2.num * f1l.den, fl.den * f2.den))

(f1: rational, f2: rational) : rational is
(f1i.num * f2.den - f2.num * fil.den, fl.den * f2.den))

(f1: rational, f2: rational) : rational is
(f1.num * f2.num, fl.den * f2.den))

function infix ** (f: rational, p: int) : rational is
if p == 0 then

frac (1,

1)

elsif p < O then

(£ (p+ 1)) /f
else (x p > 0 %)

(£ #x (p - D) * £

endif
endfun

function infix /
case f2 in

(f1: rational, f2: rational) : rational raises ZERO_DIVISION is

frac (num => 0, den => any int) -> raise ZERO_DIVISION
|  any rational -> reduce (frac (f1.num * f2.den, f2.num * fl.den))

endcase
endfun

function max (f1:

rational, f2: rational) : rational is

if f1 >= f2 then f1 else f2 endif

endfun

function min (f1:

rational, f2: rational) : rational is

if £f1 >= f2 then f2 else f1 endif

endfun

function abs (f: rational) : ratiomal is
frac (abs (f.num), f.den)

endfun

function round (f: ratiomnal) : int is
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(f.num / f.den) +
(if (f.num rem f.den) >= (f.den / 2) then 1 else 0 endif)
endfun

function ceil (f: rational) : int is

(f.num / f.den) +

(if (f.num rem f.den) >= 0 then 1 else O endif)
endfun

function floor (f: ratiomnal) : int is
(f.num / f.den)
endfun

function infix > (f1: rational, f2: rational) : bool is
(f1.num * f2.den - f2.num * fi.den) > O
endfun

function infix >= (f1: rational, f2: rational) : bool is
(fl1.num * f2.den - f2.num * fil.den) >= 0
endfun

function infix < (f1: rational, f2: rational) : bool is
(f1.num * f2.den - f2.num * fi.den) < O
endfun

function infix <= (f1: rational, f2: rational) : bool is
(f1.num * f2.den - f2.num * fi.den) <= 0

endfun
function infix == (f1: rational, f2: rational) : bool is
(f1.num * f2.den) == (f2.num * f1.den)
endfun
function infix !'= (f1: rational, f2: rational) : bool is not (f1 == f2) endfun

endmod (* RationalNumbers *)

10.5 Floating Point Numbers

This subclause contains the interface for floating point values. These values are recognized by the parser
(token <float> ), and may be used like in traditional programming languages. The operations provided for
floating point numbers are the classical ones. They may be obtained by external implementation.

Note that this predefined type appears also in the LOTOSPHERE proposal.

interface FloatNumbers imports IntegralNumbers is
type float is
[+]-]<nat>. [<nat>] [E[+|-]<nat>]

endtype

function infix + (f1: float, f2: float) : float
function infix - (f1: float, f2: float) : float
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function infix * (f1: float, f2: float) : float
function infix **x (f1: float, f2: int) : float
function infix / (f1: float, f2: float) : float raises ZERO_DIVISION

function max (f1: float, f2: float) : float
function min (f1: float, f2: float) : float

function abs (f: float) : float

function sqrt (f: float) : float
function exp (f: float) : float (*x e"x %)
function log (f: float) : float (* log_10 x *)

function sin (f: float) : float
function cos (f: float) : float
function tan (f: float) : float
function asin (f: float) : float
function acos (f: float) : float
function atan (f: float) : float

function sinh (f: float) : float
function cosh (f: float) : float
function tanh (f: float) : float
function asinh (f: float) : float
function acosh (f: float) : float
function atanh (f: float) : float

function pi : float
function e : float

function round (f: float) : float

(* this function returns the nearest integral value to f, except for
halfway cases, which are rounded to the integral value larger in
magnitude *)

function ceil (f: float) : float
(* this function returns the least integral value greater than or
equal to f *)

function floor (f: float) : float
(* this function returns the greatest value less than or equal to f *)

function infix > (f1: float, f2: float) : bool
function infix >= (f1: float, f2: float) : bool
function infix < (f1: float, f2: float) : bool
function infix <= (f1: float, f2: float) : bool
function infix == (f1: float, f2: float) : bool
function infix '= (f1: float, f2: float) : bool

endint (* FloatNumbers *)
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10.6 Characters

This subclause contains the interface and the implementation module for character values. The constants of
type character are written between quote symbols (e.g., 'A’) and are recognized by the parser (token <char>
). They represent the ISO Latin-1 characters.

interface Characters imports NaturalNumbers is

type char is
(* all the 1ISO Latin-1 characters between simple quotes *)
endtype

function pred (c: char) : char raises RANGE_ERROR
function succ (c: char) : char raises RANGE_ERROR

function nat (c: char) : nat
function char (n: nat) : char raises RANGE_ERROR

function tolower (c: char) : char
function toupper (c: char) : char

function isalpha (c: char) : bool
function isdigit (c: char) : bool
function isxdigit (c: char) : bool
function islower (c: char) : bool
function isupper (c: char) : bool
function isalnum (c: char) : bool

function infix > (cl: char, c2: char) : bool
function infix >= (cl: char, c2: char) : bool
function infix < (cl1: char, c2: char) : bool
function infix <= (cl1: char, c2: char) : bool
function infix == (cl1: char, c2: char) : bool

function infix != (cl: char, c2: char) : bool

endint (* Characters *)

10.7 Strings
interface Strings imports NaturalNumbers, Characters is

type string is
endtype

function length (s: string) : nat

function concat (sl: string, s2: string) : string
function prefix (s: string, n: nat) : string
function suffix (s: string, n: nat) : string

function substr (s: string, nl: nat, n2: nat) : string

function index (sl: string, s2: string) : nat (* search from left *)+
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function rindex (sl: string, s2: string) : nat (* search from right *)+
function nth (s: string, n: nat) : char

function infix > (sl: string, s2: string) : bool
function infix >= (sl: string, s2: string) : bool
function infix < (sl: string, s2: string) : bool
function infix <= (sl: string, s2: string) : bool
function infix == (sl: string, s2: string) : bool
function infix != (sl: string, s2: string) : bool

function string (c: char) : string
function string (n: nat) : string
function string (n: int) ! string

function string (f: float) : string

function int (s: string, b: nat) : int raises RANGE_ERROR
function float (s: string) : float raises RANGE_ERROR

endint (* Strings *)

10.8 Enumerated Type Scheme

The declaration of an enumerated type ET with values C1 , ..., Cn :
type ET is

enum C1, ..., Cn
endtype

is translated into (substituted with) the following list of declarations (the interface of objects generated
for an enumerated type):

type ET is
Ct | ... | Cn
endtype

function min : ET
function max : ET

function pred (x: ET) : ET raises RANGE_ERROR
function succ (x: ET) : ET raises RANGE_ERROR

function infix > (x: ET, y: ET) : bool
function infix >= (x: ET, y: ET) : bool
function infix < (x: ET, y: ET) : bool
function infix <= (x: ET, y: ET) : bool
function infix == (x: ET, y: ET) : bool
function infix != (x: ET, y: ET) : bool
function pos (x: ET) : nat
function ET (n: nat) : ET raises RANGE_ERROR
function string (x: ET) : string
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The implementation of these function declarations is given below:

function min : ET is C1 endfun
function max : ET is Cn endfun

function pred (x: ET) : ET raises RANGE_ERROR is

case X is
Cl -> raise RANGE_ERROR
c2 -> C1
I
| Cn -> Cn-1
endcase
endfun

function succ (x: ET) : ET raises RANGE_ERROR is
case X is
Cl1 -> C2
|
| Cn -> raise RANGE_ERROR
endcase
endfun

function pos (x: ET) : Nat is
case X is

Ci1 > 1
I
| Cn ->n
endcase

endfun

function ET (n: nat) : ET raises RANGE_ERROR is
case n is
1 ->C1
|
| n -> Cn
| any nat -> raise RANGE_ERROR
endcase
endfun

function infix > (x: ET, y: ET) : Bool is pos (x) > pos (y) endfun

function infix >= (x: ET, y: ET) : Bool is pos (x) >= pos (y) endfun
function infix < (x: ET, y: ET) : Bool is pos (x) < pos (y) endfun
function infix <= (x: ET, y: ET) : Bool is pos (x) <= pos (y) endfun

function infix == (x: ET, y: ET) : Bool is pos (x) == pos (y) endfun

function infix != (x: ET, y: ET) : Bool is pos (x) != pos (y) endfun
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10.9 Record Type Scheme

A record type declaration:

type RT is
record F1: T1, ..., Fn: Tn
endtype

is translated into (substituted with) the following list of declarations (the interface of objects generated
for a record type):

type RT is
RT (F1: T1, ..., Fn: Tn)
endtype

(x selectors of RT *)
function get_F1 (x: RT) : T1

function get_Fn (x: RT) : Tn

(* setup fields functions of RT *)
function set_F1 (x: RT, f: T1) : RT

function set_Fn (x: RT, f: Tn) : RT

The implementation of the function declarations above is:

function get_F1 (x: RT) : Tl is x.F1 endfun
function get_Fn (x: RT) : Tn is x.Fn endfun
function set_F1 (x: RT, f: T1) : RT is

RT (F1 => f, F2 => x.F2, ...., Fn => x.Fn)
endfun
function set_Fn (x: RT, f: Tn) : RT is

RT (F1 => x.F1, F2 => x.F2, ...., Fn => f)
endfun

10.10 Set Type Scheme

The declaration of a type set ST with elements in the scalar type T :
type ST is set of T endtype

is translated into (substituted with) the following list of declarations (the interface of objects generated
for a set type):

type ST

function {} : ST
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function full : ST

function union (s1: ST, s2:
function diff (s1: ST, s2:
function inters (s1: ST, s2:

function card (s: ST) : Nat

function isin (e: T, s:
function isempty (s: ST)

S

ST)
ST)
ST

T)

function issubset (s1: ST, s2: ST)
function isdisjoint (s1: ST, s2: ST) : bool

function infix > (s1: ST,
function infix >= (s1: ST,

function infix < (s1: ST,
function infix <= (s1l: ST,
function infix == (s1: ST,
function infix !'= (s1: ST,

s2:
s2:
s2:
s2:
s2:
s2:

ST)
ST)
ST)
ST)
ST)
ST)

: ST
. ST
. ST

: bool
: bool
: bool

: bool
: bool
: bool
: bool
: bool
: bool
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The type ST is implemented like a list of elements. The constructors are “nil " and “cons ". However,
this implementation is not visible to the user, so no pattern-matching is allowed on set types.

type ST is

nil
| cons (e: T, s: ST)
endtype

function {} : ST is nil () endfun
function full : ST is cons (nil () endfun

function union (s1: ST, s2: ST)

case sl is
nil () -> s2
| cons (e: T, s: ST) -

>

if isin (e, s2) then
union (s, s2)

else

: ST is

cons (e, union (s, s2))

endif
endcase
endfun

function diff (s1: ST, s2: ST)

case sl is
nil () -> nil Q)

| cons (e: T, s: ST) —>
if isin (e, s2) then

diff (s, s2
else

)

: ST is

cons (e, diff (s, s2))
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endif
endcase
enfunc

function inters (s1: ST, s2: ST) : ST is
case sl is
nil ) -> nil O
| cons (e: T, s: ST) —>
if isin (e, s2) then
cons (e, Inters (s, s2))
else
inters (s, s2)
endif
endcase
endfun

function card (s: ST) : nat is
case s is
nil -> 0
| cons (any T, sl: ST) -> card (s1) + 1
endcase
endfun

function isin (e: T, s: ST) : bool is
case s is
nil () -> false
| cons (el: T, s1: ST) -> (e == el) orelse isin (e, sl1)
endcase
endfun

function isempty (s: ST) : bool is
case s is
nil () -> true
| any ST -> false
endcase
endfun

function issubset (s1: ST, s2: ST) : bool is
case (s1, s2) is
(nil, nil) -> true
| (nil, any ST) -> true
| (any ST, nil) -> false
| (cons (el: T, si1l: ST), any ST) ->
iselem (el, s2) andthen issubset (s11, s2)
endcase
endfun

function isdisjoint (s1: ST, s2: ST) : bool is
isempty (inters (s1, s2))

endfun

function infix > (s1: ST, s2: ST) : bool is
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issubset (s2, s1) and not (isempty (diff (s1, s2)))
endfun

function infix >= (s1: ST, s2: ST) : bool is issubset (s2, sl1) endfun
function infix < (s1: ST, s2: ST) : bool is
issubset (s1, s2) and not (isempty (diff (s1, s2)))

endfun

function infix <= (s1: ST, s2: ST) : bool is issubset (sl1l, s2) endfun

function infix == (s1: ST, s2: ST) : bool is
issubset (s1, s2) and issubset (s2, s1)
endfun
function infix '= (s1: ST, s2: ST) : bool is not (sl == s2) endfun

The “in extenso” (i.e. by giving the list of their elements) for a set type:
{E1, ..., En }
is translated into:

union (cons (E1, nil ()), union (..., cons (En, nil ())))

10.11 List Type Scheme

The declaration of a type list LT with elements of type T :
type LT is list of T endtype

is translated into (substituted with) the following list of declarations (the interface of objects generated
for a list type):

type LT

nil O
|  cons (e: T, 1: LT)
endtype

function isempty (1: LT) : bool

function [] : LT
function tcons (1: LT, e: T) : LT

function head (1: LT) : T raises EMPTY_LIST
function taill (1: LT) : LT raises EMPTY_LIST

function nth (1: LT, n: nat) : T raises RANGE_ERROR
function concat (11: LT, 12: LT) : LT

function length (1: LT) ! nat
function == (11: LT, 12: LT) : bool
function '= (11: LT, 12: LT) : bool
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”

The type LT has the constructors are “nil " and “cons ". These constructors are visible, so pattern-
matching is allowed on list types. The base type of the list must have an equality function “==").

function isempty (1: LT) : bool is
case s in
nil -> true
| any LT -> false
endcase
endfun

function [] : LT is nil () endfun

function tcons (1: LT, e: T) : LT is
case s in
nil -> cons (e, nil)
| cons (el: T, 11: LT) —-> cons (el, tcons (11, e))
endcase
endfun

function head (1: LT) : T raises EMPTY_LIST is
case s in
nil -> raise EMPTY_LIST
| cons (e: T, any LT) -> e
endcase
endfun

function tail (1: LT) : LT raises EMPTY_LIST is
case s in
nil -> raise EMPTY_LIST
| cons (any T, 11: LT) -> 11
endcase
endfun

function concat (11: LT, 12: LT) : LT is
case (s1, s2) is
(nil, any LT) -> 12
| (any LT, nil) -> 11
| (any LT, cons (e: T, 1: LT)) -> concat (append (11, e), 1)
endcase
endfun

function length (1: LT) : nat is
case s in

nil -> 0
| cons (any T, 1: LT) -> Succ (length (s))
endcase

endfun

function nth (1: LT, n: nat) : T raises RANGE_ERROR is
case (s, n) is
(nil, any nat) -> if n > O then raise RANGE_ERROR else nil endif
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| (cons (e: T, any LT), 0) -> e
| (cons (any T, 11: LT), any nat) -> nth (11, n - 1)
endcase

endfun

function == (11: LT, 12: LT) : bool is
case (s1, s2) is
(nil, any LT) -> false
| (any LT, nil) -> false
| (cons (el: T, 1lip: LT), comns (e2: T, 12p: LT)) ->
(el == e2) andthen (11lp == 12p)
endcase
endfun

function != (11: LT, 12: LT) : bool is not (11 == 12) endfun

The list may be specified “in extenso” by using the following notation:

[ E1, ..., En ]

where E1 , ..., En are expressions of type T . This notation is equivalent with
cons (E1, cons ( ... cons (En, nil ()) ... ))
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Annex A
(informative)

Tutorial

A.1 The base language

The ISO formal language LOTOS [6, 4] is composed of a process algebra part (based on CCS [19] and
CSP [11]) to describe behaviours, and an algebraic language (ACT ONE [8]) to describe the abstract data
types. This language is mathematically well-defined and expressive: it allows the description of concurrency,
nondeterminism, synchronous and asynchronous communications. It supports various levels of abstraction and
provides several specification styles. Good tools exist to support specification, verification and code generation.
Despite these positive features, this language is currently under revision in ISO [23] because feedback from
users has indicated that the usefulness of the language is limited by certain characteristics relating both to
technical capabilities and user-friendliness of the language.

Two main enhancements address datatypes and time. There is no notion of quantitative time in standard
LOTOS, which precludes any precise description of real-time systems. Furthermore, the LOTOS algebraic
datatypes are not user-friendly and suffer from several limitations such as the semi-decidability of equational
specifications, the lack of modularity and the inability to define partial operations.

For example, a simple router of packets containing a data field and an address field might be defined in
standard LOTOS:

processRouter [inp, left,right] : noexit :=
inp?p: packet
(
[getdestp) = L] —> left! getdatdp) ; Router [inp, left, right]
[1 [getdestp) = R] -> right!getdatgp) ; Router [inp, left, right]

)

endproc

This definition suffers from some problems of readability for non-LOTOS experts (for example the use of
selection predicates and choice rather than a caseconstruct) but is quite understandable compared to the

122 (© ISO/IEC 2001 — All rights reserved

FINAL DRAFT / PROJET FINAL



ISO/IEC 15437:2001(E)

definition of the packetdatatype:

type Packetis Data
sorts
packetdest
opns
mkpacket: dest data-> packet
getdest: packet-> dest
getdata: packet-> data
L : ->dest
R : ->dest
egns forall p: packet de:dest, da:data
ofsort packet mkpacketgetdest(p) ,getdata(p)) =p
ofsort dest getdestmkpacket(de da)) = de
ofsort data getdata mkpacket(de da)) = da
endeqns
endtype

This can be compared with the equivalent process declaration in the base language presented here:

processRouter [inp: packet left: data right: data is
var
p:packet
in
inp(7p) ;
casep.deis
L —> left(!p.da
| R ->right(!p.da)
endcase
Router [inp, left, right]
endvar
endproc

with the corresponding data type declarations:

type destis L | R endtype
type packetis (de=>dest da=>datd endtype

Note that:
e The gates in the Router process are explicitly typed.

e We can use field projection to access the fields of the packet, rather than using hand-crafted selection
functions.

e The scope of the variable p is made explicit by a local variable declaration.

e The casestatement is made explicit, rather than implicit using selection predicates and choice.

e We have moved the recursive call outside the casestatement, avoiding the need to duplicate it.

e The definition of the ‘dest’ type as a union, and the ‘packet’ type as a record is made explicit, and much

shorter.
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The revised LOTOS language is a two-layer language. The higher layer is the module language and it will be
described in the next subclause. The lower layer is the base language which we will informally present in this
subclause.

The static semantics of the base language is based on judgements such as C+ E =-exit (T) meaning ‘in
context C expression E has result type T’ for example:

1= float,x=float, / = (float float) — exit (float) + 1/x = exit (float)

means ‘in a context where 1 and x are floats, and / is a function from pairs of floats to floats, then the
expression 1/X has result type float". The static semantics includes:

e User-definable record, union types, and recursive types.
e Subtyping (for example we could allow integers as a subtype of floats).

e Imperative write-many variables, with a static semantics which ensures that every variable is written
before read, and that shared variables cannot be used for communication between processes.

e Gates are explicitly typed (but we can use subtyping to provide the power of standard LOTOS untyped
gates).

The dynamic semantics is based on judgements such as £+ E o meaning ‘in environment E expression

E reduces (with action a(N)) to E”’. For expressions, possible values of a are an exception X or a successful
termination action &. For example the expression 1/2 terminates with value 0.5:

1/2°92 plock

and 1/0 raises the exception Div:

F1/029 plock

The dynamic semantics includes:
e Behaviours communicating on gates with other behaviours.
e Behaviours or expressions raising exceptions, which may be trapped by exception handlers.
e Behaviours with real-time semantics.

In fact, the semantics of expressions is given by treating expressions as a subclass of behaviours: expressions
can only perform exception or termination actions, and cannot communicate on gates, or have any real-time
behaviour. Unifying expressions and behaviours in this way allows for a much simpler and uniform semantics.

The language described in this International Standard is based on previous proposals for real-timed LO-
TOS [17] and LOTOS with functional datatypes [12, 13]. Many of the language features, especially the
imperative features, are based on the language proposed in [10]. A previous version of the language can be
found [15].

A.1.1 Basic concepts
A.1.1.1 Declarations

A specification in the base language is given by a set of declarations. These declarations can be structured at
the module level (see Subclause A.2).

These declarations come in three flavours: type declarations, function declarations, and process decla-
rations. In the base language, all type, constructor, function and process identifiers must be unique—all
treatment of overloading is left to the module language.
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Type declarations A type declaration is either a type synonym or a datatype declaration. A type synonym
declares a new type identifier for an existing type. For example we can declare a type ‘point’ synonymous with
a record of floats as:

type pointis
(x=>float, y=>float)
endtype

and we can declare a recursive data type of integer lists as:

type intlist is
nil
| cong(int,intlist)
endtype

Type synonyms can be used interchangably, for example the following declarations are the same:

type colpixel is
(pt=>point, col=>colour
endtype
type colpixel is
(pt=>(x=>float,y=>float) , col=>coloun
endtype

We can use colpixel and colpixel as the same type (for example any function expecting a colpixel will accept
a colpixel). More succinctly, type equality is structural not by name.

Data type declarations define new types, listing all the constructors for that type. Since there can be more
than one constructor, we can define union types, for example:

type pduis
send packetbit) | ack(bit)
endtype

It is possible to define recursive data types, such as the datatype of lists above.
Finally, there is a shorthand for renaming types:

type coderenamesnat endtype

The base language does not provide a mechanism for defining parameterized types—this is left for the
module system.

Function declarations A function declaration defines a new function, which can be used in data expressions.
For example:

function reflect (p: point) : pointis
(X=>p.y,y=>p.X)
endfunc

The function parameters are given as a list of typed variables — in E-LOTOS we decorate binding occurrences
of variables with 7. A function can have more than one input parameter, and can return a record of results,
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for example (we will fill in the details later):

function partition (x:int,xs:intlist) : (intlist,intlist) is
var
lessintlist := all of xs less than X,
gtr:intlist: = all of Xs greater than X
in
(less gt
endvar
endfunc

This function can be called (for example):

function quicksort (xs:intlist) :intlist is

casexs is
nil ->
nil
| cong(?y,?ys) —>
var
[ :intlist, g:intlist
in

(71,79) := partition (y,ys)
append(quicksort (1) ,cons (y, quicksort (g)))
endvar
endcase
endfunc

This style of function is very common, so we provide some syntax sugar for it, using in and out parameters.
For example, the partition function could have been written:

function partition (in x:int, in xs:intlist, out lessintlist, out gtr:intlist) is
?less := all of XS less than X;
?gtr := all of Xs greater than X

endfunc

and then used in quicksort as:
partition (y,ys, ?l,79)
rather than:
(7l,7g) := partition (y,ys)
Functions may raise exceptions (described below) which have to be declared, for example:

function hd (xs:intlist) : int raises [Hd] is
casexs is
nil -> raise Hd
| cong(?x,any:intlist) -> x
endcase
endfunc

When such a function is called, the Hd exception is instantiated, for example the following will raise the
exception Foo:
hd (nil) [Foadl
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Most often, we use the same exception name as in the declaration:
hd (nil) [Hd]

This acts as a visual reminder that the hd function can raise the exception Hd.
Exceptions can be typed, for example:

function foo () raises [Foo: (string] is
raise FOo("Hello world")
endfunc

Any untyped exceptions are assumed to have type ).
Note that function declarations are just syntax sugar for a subclass of process declaration.

Process declarations Process declarations are very similar to function declarations: they have parameter
lists, in and out parameters, and a list of typed exception parameters.

However, there are two important differences between functions and processes: processes can have real-time
behaviour, and they can communicate on gates. For example, a simple counter process is defined:

processCounter [up :none,down :nonel is
up; (down ||| Counter [up,down])
endproc

By default, gates have type (etc), which allows communication of arbitrary data, for compatibility with existing
LOTOS. Also, the default return type of a process is null.
Process behaviours are discussed further in Subclause A.1.1.4.

A.1.1.2 Typing
Type expressions We have already seen a number of type expressions, for example:
e The data type intlist, and the type synonym point are both type identifiers.
e The type (x=>float,y=>float) is a record type with fields x and y.
e The type (int,intlist) is a pair type: in fact this is syntax sugar for the record type ($1=>int, $2=>intlist).

Record types can be extensible, for example the type (name=>string,etc) is a record type with at least one
field, but which can be extended to have others.
In addition to type identifiers and record types, we have two special types:

e The empty type honewith no values, used to give the functionality of processes such as stop or Counter
which never terminate.

e The universal type any which is a supertype of every other type, used to give types for gates which can
communicate data of any type, for compatibility with existing LOTOS.

Subtyping The base language supports subtyping, for example we could have integers as a subtype of floats.
The built-in subtyping is on records: we allow a record type (etc) which is a supertype of any other record. For
example, the type (name=>string, etc) is a record with at least one field ‘name’ of type string. This record type
can be extended to many subtypes, for example (name>string,age=>int,etc) or (hame->string,age=>int).
Note the difference between these last two types: the former can be extended with further fields, where the
latter cannot.

We include a special nonetype, which has no values. The type noneis the most specialised type, and any
is the most general type. Since a record type with a nonefield cannot have any values, we can identify it with
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none, for example the pair type (none,int) has no values, so is equivalent to the type none This means that
the one-element record type (none) is the most specialized record type, and (etc) is the most general.

For example, stop is a behaviour of type exit (none), meaning that it will never terminate. Since (none)
is the least general record type, we can use Stop wherever a process of any record type is required.

Similarly, if G is a gate of type gate(etc) then we can communicate values of any type along G—this is
the same semantics as the existing untyped gates in standard LOTOS.

A.1.1.3 Data expressions

In contrast to standard LOTOS (which has a separation between processes and functions), E-LOTOS considers
functions to be restricted forms of processes (with no communication or real-time capabilities). The language
of expressions is therefore very similar to the language of behaviours, and shares many features such as
pattern-matching, exception raising and handling, and imperative features.

Normal forms A normal form is a data expression which cannot be reduced any further. For example 1+ 1
is not in normal form, but 2 is. A normal form is one of the following:

e A primitive constant, such as "Hello world" or 2, for one of the built-in types.
e A variable, such as X or gtr.

e A record of normal forms, such as (x=>1.5,y=>—3.14), () or (5,nil()) (which is just syntax sugar for
($1=>5,$2=>nil O)).

e A constructor applied to a normal form, such as nil () or cong(5,nil ()).

We will let N range over normal forms, and (RN) range over record normal forms.

Pattern-matching The expression language includes a caseoperation, which allows branching depending
on the value of an expression, for example we can find the head of a list with:

casexsis
nil -> raise Hd
| cond(?x,any:list) -> x
endcase

This case operation consists of a value to branch on (in this case xs) together with a list of possibilities, given
by patterns. If the list is empty, then the first pattern will match, and the Hd exception will be raised. If the
list is non-empty, then the second pattern will match, x will be bound to the head of the list, and will then be
returned as the result.

Case expressions are evaluated by evaluating the expression to normal form, and then attempting to match
the resulting value against each pattern from top to bottom until a match is found. If the value does not
match any pattern (which cannot occur in the above example), a special Match exception is raised.

Note that cons(7x,any:list) is a structured pattern. At the highest level, we find the list constructor
cons, built from a record pattern that includes the elementary patterns ?X and any:list. For a list to match
this pattern, it has to have the form conghd,tl).

When a list matches the pattern cong(?x,any:list), the variable x is bound to the head of the list, for
example producing the substitution [x=>hd]. Since substitutions have the same syntax as records, we will make
a pun between record normal forms and substitutions.

We also allow expressions in patterns, which are evaluated when the pattern is matched, and match any
value equal to the result. This is most often used to match against constants, for example:

casex is
10 -> "zero"
| any:int -> "nonzero"
endcase
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Sometimes, it is useful to match against an expression, for example we can check to see if a list is a palindrome
(using a function which reverses a list) with:

casexs is
Ireversé€xs) -> "palindrome"
| any:list -> "nonpalindrome"
endcase

The main use of matching against expressions is in communication, as we shall see in Subclause A.1.1.4.
Patterns can be explicitly typed, which is useful in the presence of subtyping. For example, if int is a
subtype of float, then we can construct a casestatement to decide whether a value is an integer or not:

casex:floatis
any:int -> "integer"
| any:float -> "noninteger"
endcase

Again, the main use for explicitly typed patterns is in communication.
A pattern is one of the following:

e A bound variable, for example ?X.

o A free expression for example !0 or !reverséxs).

The typed wildcard pattern any:T.

A record pattern, for example (X=>7pX,y=>7py), O, or (?x,any:T)
(which is just syntax sugar for ($1=>7x,$2=>any:T)).

An extensible record pattern, for example (x=>7px,etc), (etc), or (7X,etc) where etcis a pattern which
matches any other fields. Note the difference between (?x,any:T) and (7X,etc): the former will only
match tuples with two fields where the latter will match tuples with any (positive) number of fields.

A record pattern with an as clause to bind part of the record, for example (7all as ?x,etc) or
(7x,7all as etd.

A constructor applied to a pattern, for example nil or cong(?x,any:list).

An explicitly typed pattern, for example ?y:int.
e A guarded pattern, for example ?y:int [y < 10] which matchs any integer less than 10.

It is easy to define operators such as if-statements as syntax sugar on top of the case operator, for example
the expression:

if E then E; elseE, endif
can be expanded to:

caseE is
true > E;
| any:bool -> E;
endcase

elsif-statements are also syntax sugar, for example the expression:

if E; then E; elsif E3 then E4 elseEs endif

(© ISO/IEC 2001 — All rights reserved 129

FINAL DRAFT / PROJET FINAL



ISO/IEC 15437:2001(E)

can be expanded to:

if E1 then
=)
else
if E3 then
Es
else
Es
endif
endif

Exceptions Expressions can raise exceptions, in order to signal an error of some kind, for example when we
attempt to take the head of an empty list:

function hd (xs:intlist) : int raises [Hd] is
casexs is
nil -> raise Hd
| cond7x,any:intlist) -> x
endcase
endfunc

Exceptions either propagate to the top level, or are trapped by an exception handler. For example we can
declare a function:

function hdO (xs:intlist) : intis
trap
exceptionHd is 0 endexn
in
hd (xs) [Hd]
endtrap
endfunc

Then hd0 (conga, a9 ) returns a, and hdO (nil) returns O, since the Hd exception raised by hd is trapped by
the exception handler.
Exceptions can be typed, for example:

trap
exceptionError (codeint) is
casecodeis
10 -=> "minor error"
| 11 -> "major error"
| any:int -> raise Unknown (code
endcase
endexn
in

endtrap
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We can declare more than one exception in a single trap operator, for example:

trap
exceptionFoois E; endexn
exceptionBar is E; endexn
in
E
endtrap

Note that Foo and Bar are only trapped in E, not in either E; or Ey. So if E raises Foo or Bar, then it will
be handled, but if E; or E, raises Foo or Bar then it will not.
In addition, we can write a ‘handler’ for the successful termination of an expression, for example:

trap

exception ParseErrois 0 endexn

exit (x:string) is string2int (x) [ParseErrar endexit
in

E
endtrap

This is useful in the case where we want any ParseError exception raised by E to be trapped, but not any
ParseError exception raised by the call to string2int. It is impossible to write this without the capability to
handle successful termination—of the two obvious ‘solutions’, one does not type-check:

string2int (
trap
exception ParseErrois 0 endexn
in
E
endtrap
) [ParseErrar

and the other traps the ParseError exception raised by string2int:

trap

exceptionParseErrois 0 endexn
in

string2int (E) [ParseErrar
endtrap

The trap operator both declares and traps the exception—this means it is impossible for an exception to
escape outside its scope. This can be contrasted with a language such as SML where exception declaration
and handling are separated, so it is possible for exceptions to escape their scope:

local
exceptionFoo
in
raise Foo
end

Note that the only way in which an exception can be observed by its environment is by trapping it—it is
impossible for expressions to synchronize on exceptions.
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Imperative features The data expression language is functional, but supports a language of record expres-
sions which mimics an imperative language with write-many variables. For example, the imperative expression:

?X :=0; 7y := "hello world";

is equivalent to the behaviour:

(x=>0,y=>"hello world")

The simplest imperative expression is an assignment P := E, where P is an irrefutable pattern and E an
expression, for example:

?X :=4
As we remarked earlier, we allow the use of out parameters as syntax sugar for assignment, for example:
partition (y,ys,?l,?70)

is shorthand for:

(?l,?g) := partition (y,ys)

There is a sequential composition operator whose syntax is E; ; Ea. It is like the LOTOS enabling operator
because it combines two expressions, but it has a slightly different semantics: it does not perform an internal
i action.

The var operator is used to restrict the scope of variables, with syntax var ILV in E endvar, where ILV
is a list of typed variables. For example:

var

X:int
in

?x:=E; XxX
endvar

has the same semantics as E «E. Optionally, some of the local variables can be initialized, for example we
could have written:

var
X:int:=E
in
X X
endvar

An iteration (or loop) operator is included in the language. This operator allows recursive processes to be

specified without using explicit process identifiers.

Loops with local variables can be declared—these local variables can be initialized, and should then be
assigned to on each iteration of the loop. A loop can be broken with a break command. For example, an
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imperative function to sum a list of numbers can be defined:

function sum (xs:intlist) : intis
var ys:intlist: =xs,

total:int: =0
in
loop
caseysis

nil -> break (total)
| cong(?z,7zs) -> 7total := total+z; ?ys :=zs
endcase
endloop
endvar
endfunc

The breakable loop is then defined using exception handling, for example the above loop is shorthand for:

trap
exceptionInner (x:int) is x endexn
in
loop
var ys:intlist: =xs,
total: int: =0
in
caseysis
nil -> raise Inner (total)
| cong?7z,7zs) -> 7total : = total+z; ?ys := zs
endcase
endvar
endloop
endtrap

We also allow named loops, so that you can break a loop other than the innermost one, for example:

loop fredin ...
loop janetin ...
if b then break fred ...
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As an example of the imperative features, an imperative definition of quicksort partitioning is as follows:

function partition (x:int,xs:intlist) : (intlist,intlist) is
loop
var
lessintlist: = nil,
gtr:intlist: = nil,
restintlist: = xs
in
caserestis
nil -> break ((lessgtr))
| cong(?y,?ys) [y <x] ->
?less:= congy,less; 7gtr := gtr; 7rest:=ys
| cong(?y,?ys) —>
7less:= lessg 7gtr := consy,gtr); 7rest:=ys
endcase
endvar
endloop
endfunc

It can be compared with the functional definition:

function partition (x:int,xs:intlist) : (intlist,intlist) is

casexsis
nil —>
(nil , nil)
| cong(?y,?ys) —>
var
lessintlist, gtr:intlist
in
(7less 7gtr) := partition (x,ys)
if x>y
then (congly,less, gtr)
else (less, congly,gtr))
endif
endvar
endcase
endfunc

Besides, we provide usual while and for, which are syntactic sugar for loop.

function fact (n:int) : int raises [OutOfRangg is
if n < 0 then raise OutOfRangeendif
var X:int,res:int:= 1in
for x:= 2 while x <= n by x:= x+1 do
res:= res* X
endfor
endvar
endfunc
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function NumElements(L :intlist) : intis
var X:int,total: int:= 0 in
while L <> NIL do
total: = total + 1 ;
cons(?x, 7L):=L
endwhile
endvar
endfunc

Static semantics The static semantics for expressions is given by translating them into the behaviour
language described below. For expressions which do not assign to variables, the typing is given by judgements:

CFE=exit (T)

meaning ‘in context C, expression E has result type T'. The context C gives the type for each of the free
identifiers used in E, for example we can deduce:

X=int, *= (int,int) —exit (int) F Xxxx=exit (int)

meaning ‘in a context where x is an integer and * is a function from pairs of integers to integers, then XX
returns an integer’.
Expressions which assign to variables but do not return a result have typing given by judgements:

CFE=exit Vi=>T1,...,Va=Th)

meaning ‘in context C, expression E assigns to variables V1 through to V, the types Ty through to T,'. For
example we can deduce:

2=int F ?x:=2=exit (x=-int)

meaning ‘in a context where 2 is an integer, then 7X:=2 assigns an integer to the variable x'.
Expressions which both assign to variables and return a result have typing given by judgements:

CHE=exit (T, Vi=Ty,...,Va=Th)
which combines the above two semantics. For example:
2=int, x= (int,int) —exit (int) F ?X:=2; XxX=exit (int,x=-int)

meaning ‘in a context where 2 is an integer and * is a function from pairs of integers to integers, then
?X:=2; X*X assigns an integer to the variable x and returns an integer'.

Note that x is not free in the expression 7X:=2; XX since it is bound by the assignment statement. This
is reflected in the type judgement above, which does not require x to be in the context.

Dynamic semantics The dynamic semantics of data expressions is defined by the translation into behaviour
expressions. There are two ways in which a data expression can have observable behaviour: either it terminates
successfully, or it raises an exception.

Expressions which terminate successfully with a value have dynamic semantics given by judgements:

e E

meaning ‘in environment E, the expression E returns normal form N and then behaves like E’’. As it happens,
E’ will always be an expression with no behaviour, since an expression cannot do anything after terminating,
but we use this notation for symmetry with the case of exception raising. The context gives the bindings of
function identifiers, and other similar static information required at run-time. For example:

2422 block
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maning ‘the expression 2% 2 returns the value 4 and then has no observable behaviour'.
Expressions which terminate successfully having assigned values to variables have dynamic semantics given
by judgements:

O(V1=N1,...,Vh=Np)
Z}_E 1 1 n n E/

meaning ‘in context E, the expression E assigns normal forms Nj through to Ny to variables Vj through to
Vn'. For example:

o 7x:=2°%22 plock

meaning ‘the expression 7X:=2 terminates, having assigned the value 2 to the variable x, and then has no
observable behaviour’.
Expressions which both assign to variables and return a result have dynamic semantics given by judgements:

O(N,V1=Ng,...,Vh=Ny
E-E 1=Ny n="tn) £

combining the two semantics, for example:

o4, 2)
Foox:=2; xxx > 223 plock

Similarly, the semantics of exceptions is given by judgements:

X(N)

EFE=—/=FE
For example:
raise X(1) X2 block

The semantics is defined formally in Subclausess 6.2.8.14 and 9.2.27.

A.1.1.4 Behaviour expressions

Some knowledge of LOTOS is assumed in this International Standard. However, for completeness, we provide
the syntax of Basic LOTOS (i.e. LOTOS without datatypes) together with some brief explanations.

B::=stop|exit|M[G'] |G;B|i;B|B [1 B|B|[G]| B|hideG"inB|B>>B|B[>B
The semantics is as follows:
e Deadlock: stopis an inactive behaviour.

e Termination: exit is a behaviour that terminates successfully. It performs an action on gate d and then
deadlocks.

e Process instantiation: M[G] instantiates the previously delared process definition with parameters G.
e Action-prefix: G;B is a behaviour that first performs action G and then behaves like B.

e Internal action-prefix: i;B is a behaviour that first performs the internal action i and then behaves like
B.

e External choice: By [] By is a process that can behave either like By or like By depending on the
environment.

e Parallelism: By | [G]1] By is the parallel composition of By and By with synchronisation on the gates in

G.
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e Abstraction: hide G in B hides in behaviour B all the actions from the set G, i.e. it renames them into
i

e Enabling: By >> By is the sequential composition of B1 and By, i.e. B, can start when B has terminated
successfully.

e Disabling: By [> By allows B> to disable B; provided B; has not terminated successfully.

The main differences between this language and the E-LOTOS base language that we have designed are as
follows:

e Actions are particular behaviours and the two forms of sequential composition (action-prefix and en-
abling) are unified.

e New features are added such as pattern-matching, exceptions, assignment, time and other operators
(e.g. an explicit renaming operator).

The behaviour language can be seen as an extension of the data language with communication between parallel
processes and real-time features.

Communication Behaviours can communicate on gates. The simplest communicating process is one which
synchronizes on a gate G: this is just written G. Such synchronizations can then be sequentially composed,
for example a behaviour which alternates between in and out actions is:

loop
inp; outp
endloop

Behaviours can also send or receive data on gates, for example a one-place integer buffer is:

loop
var x:int
in
inp(?x) ; outp(!x)
endvar
endloop

Here the variable x is bound by the communication on the inp gate, and is free in the communication on the
outp gate. The resulting behaviour copies integers from the inp gate to the outp gate.
When synchronizing on a gate, you can specify any pattern to synchronize on, for example:

G(age=>!28,name->7na,address>(numbee>?7no, street>!"Acacia Ave",etc))
will synchronize on any person aged 28 living in Acacia Avenue, and will bind the variables na and no
appropriately. This use of patterns in communications is the main reason for allowing ? and ! in patterns.
You can also specify a selection predicate specifying whether a synchronization should be allowed, for

example to select anyone in their 20s living on Acaica Avenue, you might say:

G(age=>7a,name->7na,address> (numbee>7no, street>! "Acacia Ave",etc))
[20< aandalsoa< 29]
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Gate parameters are given in process declarations, for example:

processBuffer [inp: (int) ,outp: (int)] is
loop
var X:int
in
inp(?x) ; outp(!x)
endvar
endloop
endproc

Gates may be typed: by default each gate has type (etc), so can communicate data of any type, for example:

processOverloadingExampldoverloaded (out x:int, out y:booD is
overloaded7x:int) ;
overloaded?y : bool)

endproc

The first communication on the overloaded gate has to be of type integer, and the second has to be of type
boolean.

We can use as patterns to match against all or some of a record. This is particularly useful when the
record is extensible, for example we can write a simple router capable of handling any type of data as:

processRouter [inp: (de=>dest etc) , left, right] is
var destinationdest, data: (etc)
in
inp(de=>7destination 7dataas eto ;
casedestinationis
L -> left!data
| R -> right!data
endcase
Router [inp, left, right]
endvar
endproc

Concurrency Concurrent behaviours can synchronize on their communications. For example, two behaviours
which are forced to synchronize on all communications are:

G(address> (numbee>7no, street>! "Acacia Ave",etc),etc)
| | G(age=>!28,name>7na,address>any:addrType

Since the two behaviours are forced to synchronize on the gate G, this has the same semantics as:
G(age=>!28,name>7na, address> (numbee>7no, streee>! T" AcaciaAvé, etc) )
Data may be communicated in both directions in a synchronization, for example:

G(age=>!28,name>7na,etc) ; B;
|| G(age=>7a,name>!"Fred",etc) ;B

has the same semantics as:

G(age=>!28,name>!"Fred",etc) ;
(?na:="Fred"; B;) || (7a:=28; Byp)
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Parallel behaviours have to synchronize on termination, for example the following will terminate immediately,
after setting variables x and y:

7x:=1 1] ?y:=2
Two behaviours which have no synchronizations at all (apart from synchronizing on termination) are:

overloaded?x:int)
|11 overloaded?y:bool)

This will communicate twice on the overloaded gate: once inputting an integer, and once inputting a boolean,
but the order is unspecified. Once both inputs have happened, the process can terminate. This process has
the same semantics as:
overloaded?x:int) ; overloaded?y:bool)
[1 overloaded?y:bool) ; overloaded?x:int)

Note that the variables bound by concurrent processes are all the variables bound by the components, and

that there is no possibility of communication by shared variables.

General parallel operator E-LOTOS has a parallel operator which allows explicit synchronization and “n
among m" synchronization:

par Gi#ny,...,Gp#np in
[[1] for By

...

[ [rn] for By

endpar

This operator says that: if some Bj can do an action with name G, and this action is specified in the I'j set
(the synchronization list), then this action must be synchronized with the actions of the others behaviours as
follows:

e if G is specified in the list of degrees (Gi1#ny,...,Gp#np) with the degree n, then B; has to synchronize
in G with n-1 other behaviours which have G in their synchronization list;

e if G does not appear in the list of degrees, then it has to synchronize with all other behaviours having
G in their synchronization list.

On the other hand, if G is not in the I set, Bj can do it in interleaving with the other processes B;.

Time Behaviours have real-time capabilities, given by three constructs:
e a time type, with addition and comparisons on times,
e a wait operator, to introduce delays, and
e an extended communication operator, which is sensitive to delay.

The time datatype is a total order with addition. We shall let d range over values of type time.
The delay operator is just written wait(d) which delays by time d and then terminates. For example a
behaviour which communicates on gate G every time unit is:

loop

G;

wait (1)
endloop
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We can delay by an arbitrary time expression wait (E), for example:

loop
var x:time
in
G(?X);
wait (X)
endvar
endloop

Also, we have a simple way to write a nondeterministic delay:

loop
var x:time
in
G;
?X := any time;
wait (x)
endvar
endloop

Communications can be made sensitive to time by adding a @P annotation, which matches the pattern P to
the time at which the communication happens (measured from when the communication was enabled). For
example:

G(7x:int)e7t[t < 3]

is a behaviour that agrees to accept an integer value (to be bound to variable x), provided that less than 3
time units have passed, whereas:

G(?x:int)e!3

is similar, but the action can only occur at time 3, because the pattern variable has been replaced by a pattern
value !3. This behaviour has the same semantics as:

var

t:time
in

G(?x:int)e7t[t = 3]
endvar

The time features are directly inspired by ET-LOTOS [17] but are adapted to fit with other new paradigms of
the language, such as:

e action is a behaviour,
e sequential composition does not generate an i action,
e the presence of pattern-matching,

e the presence of exception raising and handling.
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Urgency An important concept is urgency: a behaviour is urgent if it cannot delay—for example if there is a
computation which must be performed immediately. For example, sequential composition is urgent—once the
first behaviour terminates, control is immediately passed to the second without delay. For example, consider
the process:

loop
loop tick endloop [> wait (1) ;
loop tock endloop [> wait (1)
endloop

This will perform any number of ‘tick’ actions during the first time interval, then at time 1 control is handed
over, and any number of ‘tock’ actions is performed until time 2, and so on. Each of the hand-overs is urgent,
so we know it is impossible for a ‘tick’ action to happen in an even time interval, or a ‘tock’ action to happen
in an odd time interval.

In E-LOTOS, the urgent actions are:

e Internal (i) actions, whether written explicitly or caused by hiding.
o Exception raising (X) actions.
e Termination (d) actions.

All of these actions happen immediately. However, there is one exception to the urgency of these actions: it
is possible for a termination to be delayed by a parallel behaviour. For example the following behaviour will
terminate at time 2:

wait (1) ; exit || wait(2) ; exit

The urgent semantics of exceptions given here is basically the same as the ‘signals’ model of Timed CSP [7].

Hiding The syntax for hiding is like in existing LOTOS, except that the (declared) gates are typed. For
example in:

hide mid: (int) in
Buffer [inp,mid] || Buffer [mid,outp]
endhide

a new mid gate is declared, which can communicate integers, and is then replaced by internal i actions.
This operator preserves the property of urgency of all i, and allows the modelling of urgency on hidden
synchronization. This means that one can express that a synchronization should occur as soon as made
possible by all the processes involved. For example the behaviour:

hide G in
wait(1) ; G; By
[l wait(2); G; B>
endhide

has the same semantics as:

wait(2); i;

hide G in
By Il By

endhide

The hidden G occurs after 2 time units, which is as soon as both processes can perform G.

ISO/IEC 2001 — All rights reserved 141
© g

FINAL DRAFT / PROJET FINAL



ISO/IEC 15437:2001(E)

The behaviour:

hide G in
Gert[t>3]; B
endhide

has the same semantics as:

wait(3); 7t:=3; i;
hide G in B endhide

Again the earliest possible time for G to occur is after 3 time units.
The behaviour:

hide G in
Gert[t>3]; B
endhide

has two possible semantics depending on whether the type time is discrete or dense. If time is a synonym for
natural numbers (discrete time), the behaviour has the same semantics as:

wait(4); 7t:=4; i;
hide G in B endhide

because 4 is the smallest natural number strictly greater than 3. On the other hand, if time is a synonym for
rational numbers (dense time), the behaviour has the same semantics as:

wait (3) ; block

The reason why this process timestops after 3 time units without even performing the hidden G is because
there is no smallest rational (or earliest time) strictly greater than 3.

Having to hide synchronizations to make them occur as soon as possible is sometimes criticized, because
there are cases where one would like to still observe those gates. The problem here lies in the interpretation
of the word ‘observation’. Observing requires interaction, and interaction may lead to interference. Clearly,
we would like to show the interaction to the environment without allowing it to interfere. There is a nice
solution to this problem. It suffices to raise an exception (signal) immediately after the occurrence of the
hidden interaction as follows. Consider two processes, Producer and Consumer, that want to synchronise on
the sync event as soon as they are both ready to do so. We add a special monitoring process that synchronizes
with them and sends a signal just after sync occurred:

Producer = var t:timein 7t:= any time; wait(t) endvar; sync; Producer
Consumer = sync var t:timein ?7t:= any time; wait(t) endvar; Consumer
Monitoring = syng; signal yes; Monitoring
System = hide syncin (Producer| | Consumer| | Monitoring)

The signal operator is the same as raise except that it allows computation to carry on after the exception has
been raised: raise X is shorthand for signal X; block.

Suspend/Resume This operator is an extension of the LOTOS disabling which allows the resume of the
interrupted behaviour. The resume is done through an exception gate which is specified inside the operator.
For example, in process:

wait(4); By [X > wait(1); i; wait(2) ; raise(X)

the left behaviour is continously suspended by the internal action after one time unit. The left behaviour is
suspended during two time units and then resumes via the exception X. The left behaviour is blocked when it
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is suspended; it does not evolve in time or in actions. It results, in our example, that this process is resumed
in the following state after its first suspension:

wait(3); By [X > wait(1); i; wait(2); raise(X)
and not in
wait(1); By [X > wait(1); i; wait(2) ; raise(X).

The right behaviour is always restarted after a resume, it means, for instance, that the following two
expressions have the same semantics:
B1 [X > By; raise(X)
B; [X > By signaI(X); Bs

This quite simple operator can be used to specify more complex interruption mechanisms where, for
instance, a behaviour can suspend several behaviours. For example, consider the process:

(Bl [Xl > Gp; ’1;raise(X1) [1] Bz [X2 > Gy; fo_;raise(Xz))
| [G1,G2, G, Gh] |
Bs

The behaviour B3 control By and By through the gate Gj and G. For instance, Bz can suspend By with the
gate Gy and resume it with G}. In this way, it is possible to specify more complex interruption mechanisms
used, for instance, in real-time schedulers.

Let us remark that the LOTOS disabling is a special case of this Suspend/Resume operator where no
exception gate has been specified.

Renaming An explicit renaming operator is introduced in the language. It allows one to rename observable
actions into observable actions, or exceptions into exceptions.

Renaming an observable action into another observable action may be much more powerful than one might
think at first, because it allows one to do more than just renaming gate names. For example, it can be used to
change the structure of events occurring at a gate (adding or removing attributes), or to merge or split gates.

The simplest form of renaming just renames one gate to another:

rename

G (x=>7i:int) is G' (x=>1i)
in

B
endren

Note the syntactic similarity between renaming and function declaration or exception trapping. This form of
renaming is so common that we provide a shorthand for it:

rename
G (x=>int) is G
in
B
endren

We can remove a field from a gate:

rename
G (x=>7i:int,y=>any:bool) is G'(!i)
in
B
endren
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We can add a field to a gate:

rename
G (x=>7i:int) is G’ (x=>'i,y=>!true)
in
B
endren

We can merge two gates G’ and G” into a single gate G:

rename
G (x=>7i:int) is G(x=>!i,y=>!true)
G” (x=>7i:int) is G(x=>!i,y=>!false)

in
B

endren

We can also split one gate G into two gates G1 and G2:

rename
G (x=>7i:int,y=>11) is Gy (!i)
G (x=>7i:int,y=>12) is Gy (')
in
B
endren

We can rename exceptions in a similar way.

Imperative feature for behaviours As with expressions, a number of “imperative” features are supported
to ease writing specifications. Some examples with l00p has been presented. As the rest are obvious, we only
present some little examples:

processprotocol [down: packet up] is
var
code packet
data (etc)
in
down(de=>7code, 7dataas eto ;
while code>disconnectdo
up'data;
down(de=>7code, 7dataas etQ
endwhile
endvar
endproc

Static semantics The static semantics for behaviour expressions is very similar to that of data expressions,
and is given by judgements:

CHB=exit V=T)
For example:

G=-gate any (G(7x:int) ||| G(?y:booD)=-exit (x=-int,y=bool)
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However, it is useful to identify the behaviour expressions that cannot terminate initially, i.e. without having
first performed an (internal or observable) action or sent a signal. These behaviours will type as:

C+B=guarded (V=T)
And of course, the following rule is valid:

CrHB=guarded (V=T)
CHB=exit V=T)

By carefully requiring behaviour expressions to be so guarded in some contexts (e.g. choice, disabling and sus-
pend/resume), we can preserve time determinism even though sequential composition and exception handling
do not introduce an internal action.

Dynamic semantics The dynamic semantics of data expressions is given by two kinds of reduction:

S(RN)

e Successful termination £+ E — E’.

X(RN)

e Exception raising £+ E E'.

The dynamic semantics of behaviour expressions extends this with three new kinds of judgement:

e Internal actions E+B —> o B'.

G(RN)

e Communication £E+B —' B,

£(d)

e Delay E-B—B'.

For example (up to strong bisimulation):

i) G wait) ~% G(7t) ;wait ()

c® ?t:=3; wait(3)
E@ 2t:=3; wait(1)
ED - 2:=3; wait(0)
0U=3) block

The urgency of internal, exception and termination actions is given by the properties:

e No behaviour B can offer both IL> and — E(d)

e No behaviour B can offer both X(R1Y and id%
e No behaviour B can offer both 6(RN) and ﬂ

For example:

6(t¢3)

?t:= block

but:
7t:=3 523

However, in order to get the correct synchronization semantics for termination, we have to allow terminated
processes to age when placed in a parallel context. Consider the following example:

7t:=3 | | wait(2) ;7y:=true
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We would like this to have semantics (up to strong bisimulation):

7t:=3 | | wait(2) ;7y:=true e ?t:=3 | | wait(1);?y:=true
&D 7t:=3 | | wait(0) ; 7y:=true

0(t=3,y=true
—

block

In order to achieve this, we allow terminated processes to age in a parallel composition. The alternative would
be to treat d actions (and sequential composition) in the same way as gates (and hiding), but this would have
introduced many negative premises into the semantics (for example sequential composition and exception
handling), which we have tried to avoid. The semantics presented here only uses negative premises in the
semantics of hiding.

A.2 The module language

LOTOS has only a limited form of modules, which encapsulate data types and operations but not processes.
Moreover, this mechanism does not support abstraction: every object declared in a module is exported outside.
These deficiencies make LOTOS difficult to use, and cause problems for users and tool implementors alike. A
critical evaluation of LOTOS data types from the user point of view can be found, for instance, in [20].

One of the goals of E-LOTOS is to develop a modularization system, which should allow export and import,
hiding, and generic modules. The modules used in the data part should be the same as those used in the
behavioural part, so ‘process’ declarations should be allowed as well as ‘type’ and ‘operation’ declarations. For
abstraction and code re-use, interfaces and generic modules are very useful.

For example, a simple router of packets containing a data field and an address field is specified in LOTOS
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specificationRouterin, left, right] : noexit :=
type Naturalis
sorts nat

endtype
type Datais
formalsorts data
endtype
type Packetis Data
sorts
packetdest
opns
mkpacket: dest data-> packet
getdest: packet-> dest
getdata: packet-> data
L : -> dest
R : -> dest
eqns forall p: packet de:dest, da:data
ofsort packet mkpacketgetdest(p) ,getdata(p)) =p
ofsort dest getdestmkpacket(de da)) = de
ofsort data getdatad mkpacket(de da)) = da
endtype
type NatPackeis Packetactualizedby Naturalusing
natpackeffor packet
datafor nat
endtype
behaviour Routelfin, left, right]
where
processRouter [in, left, right] : noexit :=
in7p: natpacket
(

[getdestp) = L1 —> left! getdatdp) ; Router [in, left, right]
[1 [getdestp) = R]1 -> right!getdatdp) ; Router [in, left, right]

)
endproc

endspec
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Apart from readability problems of the specification language discussed in Subclause A.1, this specification
suffers from some problems of re-usability. For example, it is not possible to parameterize the Router process
specification by a generic data type, because the behaviour part of standard LOTOS must refer only to fully
instantiated types. So, to obtain a Router dealing with boolean data, one has to re-write the process Router
to accept BoolPackets instead of NatPackets.

This can be compared with the equivalent specification using the module language presented here (the
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base language is one presented in Subclause A.1):

interface Datais
type data

endint

module Destinationis
type destis L |R endtype

endmod

generic RouterD: Data) imports Destinationis
type packetis (de => destda=> data endtype
processRouterlin: packetleft: dataright: datd is

endproc
endgen
module NatRouteris
Router (Naturalrenaming (types nat :=data)
endmod
specification Routerimports NatRouteris
gatesin:any, left: any, right: any
behaviour
Router [in, left, right]
endspec

Note that:
e Abstract data types, like data, can be declared into interfaces.
e Generic modules are parameterized by interfaces, in a functional style.

e Process and behaviours can be declared in modules and generic modules; generic data types can be used
into behaviour expresions.

e Modules and generic modules can import other modules in order to use their definitions.

e Modules present a “by default” interface, which contains all the definitions. However, an interface can
restrain the module through an explicit declaration.

e Generic modules are instantiated by modules which match a specified interface (via a renaming). For
example, the Natural module matches the interface Data if we map the type data to nat. So, the generic
router module can be instantiated with Natural to obtain a router managing naturals as data.

e A specification entity can import modules already declared. The body of the specification could be a
behaviour expression or an expression. The gates and exceptions used in the body have to be declared.

e The name space is flat. An extension of this proposal with a dot notation for identifiers will be investi-
gated.

For this proposal we present a complete abstract syntax and a static semantics.

The abstract syntax contains: specification declaration, module declaration, module expressions, generic
module declarations, interface declarations, interface expressions, and declarations.

The static semantics of this language is formally defined. It is based on judgments such as B top-dec=C
meaning ‘in the context B of top-level declarations, the top level definition top-dec is well formed and gives
the context C'. For example:

F (module OnePointis type M is(x:int,y:int) ) = (OnePoints {M = type,M = (x=-int,y=-int) })
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means ‘then the OnePoint module definition is bound to a context (signature) where the type M is declared,
and it is equivalent to the type pair (X:int,y:int)’. We assume in this subclause some built-in (pervasives)
types like int, bool, etc. The static semantics includes:

e Abstract data types.

e Modules declaration and module expressions.

e Generic modules parameterized by interfaces, and generic module instantiation.

e Interface declarations and expressions.

e Enrichment, sub-typing, and matching relation between interfaces and modules semantic objects.

e Renaming of modules and interfaces.

The module language described in this paper is based on previous discussions for the module language [14]
and on previous proposals for LOTOS with a module system [24].
A.2.1 Basic concepts
We provide here a short introduction to this proposal by giving example of how it responds to issues formulated
in the questionnaire of [22, Subsection 7.2].
A.2.1.1 Naming
The domain of names is not structured. However, an extension of this proposal with a structured domain for
identifiers will be investigated.
A.2.1.2 Specification structuring
A specification in modular-E-LOTOS is given as a sequence of module declarations, generic modules declara-

tions, and interface declarations.

Modules Modules are sequences of declarations of types, constructors, processes, functions, and value
constants. For types, functions, processes, and values constants the user has to provide an implementation.
Modules can be declared using module declarations, whose simplest form is:

module mod-id is dec endmod

where mod-id is a module identifier and dec is a (base language) declaration, enriched with value constant
declarations. For example, a one-point domain has the following declaration:

module OnePointis
type M is zero() endtype
value 0: M is zero() endval
function infix + (x:M,y:M):M is
case(zero() ,zero()) is
(Ix,'y) ->0
endcase
endfunc
endmod

Unlike the SML module system, we have not nested modules; the possibility to declare nested modules in
SML is unusual, makes the module system more complex, and it is not obvious whether the extra complexity
is necessary.
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Processes can be declared in modules. For example, the specification of a data-flow process is:

module DataFlowis
processFlow [In: (int,int),Out: (int)] is
In(?x:int,?y:int) ; Out(! (x+y)) ; Flow [In,Ouf]
endproc
endmod

Note that the type int is a built-in type, so no importation clauses are needed.

Interfaces Intuitively, an interface is a module type. Whereas a module expression declares a module, an
interface expression specifies a class of modules. For example, the data-flow module has the interface:

interface DataFlowis
processFlow [In: (int,int),Out:int]
endint

An interface is not the type of any particular module, but rather of a whole class of modules, namely all the
modules that match the interface. For example, the interface DataFlow can be matched by any module which
has at least a a process with name Flow, gates of type (int,int) and int, and with functionality exit(none)
(noexit in LOTOS).

In the language we accept equations to be specified in interfaces. For example, the Monoid interface is:

interface Monoid is
type M
value 0: M
function infix + (M,M) : M
egns forall x,y,z : M ->

(0+x)=x;
(x +0)=x;
(x+y)+2)=(x+(y+2)
endeqgns
endint

Tools could treat equational specifications just as (type checked) comments, so we should ensure that (as in
Extended ML) the equations can be commented out without affecting the semantics of the module.

Generic Modules Genericity is a useful tool to construct specifications and for code reuse. Here we provide
a mean for genericity using generic modules. Generic modules allow standard libraries of components to be
built up, and support code reuse of both components and glue. The simplest declaration of a generic module
is:

generic gen-id (mod-id : int-id) is dec endgen
where gen-id is a generic module identifier, mod-id is a identifier for a formal module matching the interface

int-id, and dec are declarations of the base language.
Generic modules cannot be parameterized by generic modules.
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So, as well as specifying the exports of a module, interfaces are also used to specify the parameters of a
generic module. For example, a generic list module can be implemented using monomorphic lists as follows:

interface List imports Monoid is
type E
function inj(x:E) :M

endint

interface EqTypeis
type E

endint

generic GenericList(Eq: EqTyp® :List is
type M is nil O |cons(E,M)endtype
value 0 is nil () endval
function infix + (s1:M,s2:M) :M is

caseslis
nil() — s2
| cong(?X,?XS) — CONS(X,XS+S2)
endcase
endfunc
function inj(x:E) :M is cong(x,nil ()) endfunc
endgen

This module can be used as follows:

module ListNat: [List renaming (typesE := nat)lis
GenericListNaturalrenaming (types nat :=E))
endmod

A.2.1.3 Abstraction, Hiding

Abstraction is present by abstract data types declaration in interfaces. An abstract data type can be specified
as follows:

type S

This abstract data type may be implemented by a lot of concrete (or manifest) data types. For example, if
we declare:

interface Setis
type Element
type Set
value empty: Set
function insert(x: Elements: Se : Set
function deletegx: Elements: Sef : Set
function membecx: Elements: Se) : bool
endint

several implementations for type Set may be given: using list, binary trees ...

An issue of abstract data types (ADT) is type equality. Equality is an important concept in E-LOTOS,
since it is used implicitly by synchronization. So far, all types allow equality, but the module system can
introduce data abstraction, so it is no longer possible to see the internal representation of a data type. Our
proposal consider abstract data types as equality types. Users have to define an equality function for each
abstract data type used in communication.
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Another means for abstraction is hiding. It constrains an existing module interface (or view) by another
(more general) interface, provided that the module matches the second interface. The effect is to obtain
different views of the module, depending on the current interface of the module. Consider, for example, the

following specification:

interface VIEWL1 is

type S
value x:S
valuey:S
endint
interface VIEW?2 is
type S
type pairSis (x:S,y:S) endtype
endint
module A is

type Sis ACK () IREQ() endtype
value x : Siis ACK () endval
valuey: Sis REQ(Q) endval
type pairSis (x:S)y:S) endtype
endmod
module A1:VIEW1 is A endmod
module A2:VIEW?2 is A endmod

As a result of constraint Al by VIEW1, only the components specified in VIEW1 are accessible for users

of Al. Hence, pair, ACK and REQ are not accessible via Al.

A.2.1.4 Composition of modules and interfaces

There are several means to compose modules and interfaces:

Importation of interfaces into interfaces using “imports int-expq,- -, int-exp," clause.

Importation of modules into modules and generic modules using “imports mod-expy,-- -, mod-exp," .

e Renaming of interfaces and modules, whose simpler form is:

module mod-id" is
mod-id renaming (typesS := S,...opnsC :=C/,...)
endmod

Instantiation of generic modules, whose simpler form is:

module mod-id is gen-id (mod-id") endmod
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Interface importation Interfaces can import other interfaces. For example, the interface for pre-orders
extends that for partial orders with one equation:

interface PreOrderis
type T
function infix <=(x:T,y:T) :bool
egns forall x,y,z: T
X<=X;
(x<=y andalsoy<=z)=>x<=y;
endegns
endint
interface PartialOrderimports PreOrderis
egns forall x,y: T
(x<=y andalsoy<=x)=>x=y;
endegns
endint

Note that the sort bool and the operations on this sort (as => and andalsg) are built-in.

Module importation Modules can import other modules: the coercion of the natural numbers type (as-
suming an appropriate Natural module) to a Monoid structure is made by:

module NatMonoid: Monoid imports Naturalis
type M is nat endtype
endmod

In the case of multiple importation, the definitions provided by each importer must be compatible. Thus, if
two or more modules provide definitions for a common name, these definitions must be the same.

Instantiation Instantiation provides code re-use. For example, generic List can be instantiated several times:

module ListNat: [List renaming (typesE := nat)] is
GenericListNaturalrenaming (types nat := E))

endmod

module ListBool: [List renaming (typesE := bool)] is
GenericListBooleanrenaming (types bool := E))

endmod

The result of the first instantiation is a module having as type E the type nat, and M being a list of
naturals. The interface of this module is the List interface where the E type is replaced by nat. Similarly for
the second instantiation. Importing the modules ListNat and ListBool will generate a name clash for M, +,
and inj. To avoid this a renaming can be applied, as described in the next paragraph.

Since lists, arrays and sets are frequently used in specifications some rich syntax for them is suitable
(see A.2.1.8).

Renaming Renaming is used to give an unique name to objects to avoid name clashes. The solution proposed
is compatible with ACT ONE renaming of types. For example, obtaining a module of integer lists with type
ListNat is as follows:
module ListNat is
GenericListNaturalrenaming (types nat := E))
renaming (types ListNat := List)
endmod
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A.2.1.5 Equational specifications

We allow equational specifications in interfaces. For example, in the Monoid interface:

eqgns forall x,y,z:nat
(x+0)=x;
x=(x+0);
(x+(y+2))=((x+y)+2);
endegns

Many tools will treat these specifications just as (type checked) comments, so we should ensure that (as with
Extended ML) the equations can be commented out without effecting the semantics of the module.

An extension of the solution proposed here is presented in [9]. It allows to specify equations, relations and
properties.

We have to provide a formal semantics for when equations are valid (although this is obviously not
computable, so we cannot expect automatic tools for checking validity).

A.2.1.6 Relationship with the external environment

External declarations are allowed for modules to allow interfacing to other specification or implementation
languages. For example, one could give an external implementation of the Monoid module by declaring:

module ExtMonoid: Monoid is external endmod

Any object declared to be external has no formal dynamic semantics.

A.2.1.7 Compatibility with ACT ONE

The module system of E-LOTOS will include algebraic specifications in interfaces. For example, we can
compare the LOTOS specification:

type Monoid is
sorts
M
opns
0: >M
+_:M,M ->M
egns forall x,y,z:M
ofsort M
x+0=X;
0+x=x;
(x+y)+z=x+(y+2)
endtype
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with the declaration from the example data language:

interface Monoid is
type M
value 0:M
function infix +(x:M,y:M):M
egns forall x,y,z:M
(x+0)=x;
(0+x)=x;
((x+y)+2)=(x+(y+2)) ;
endeqgns
endint
module Monoid: Monoid is external endmod

There is a strong resemblance between such specifications and ACT ONE data type declarations. There are,
however, a number of differences, which need to be resolved:

1. ACT ONE allows overloading, as long as the sort of any expression can be determined statically,

2. module Monoid is specified to be any structure which satisfies the axioms, not just the initial one (in
particular we may wish to introduce an initial declaration similar to the current external),

3. the relationship between generic modules and ACT ONE parameterized types and type renaming should
be clarified.

A.2.1.8 Base environment

The base environment is a collection of signatures (i.e. interfaces) and (possibly generic) modules which are
predefined, and can be used in any E-LOTOS specification. They play the same role for E-LOTOQOS as the
standard libraries do for LOTOS, and the relationship with them should be clarified.

For each module:

e We should give an interface, a module, and (where necessary) the dynamic semantics for the module.

e We should specify if the module is pervasive or not. A module is pervasive if it is available everywhere
without explicit import reference. The identification of pervasive modules will be the subject of further
discussions.

e We should specify whether the module will be defined with genericity.

e We should specify whether the types and functions contained in the module will be defined using the
base language, or if they will be implemented externally (e.g. real or floating-point numbers).

In the present paper, the built-in data types and the rich term syntax are not described in detail. In
the given examples, the implementation parts are often omitted and only interfaces are provided. A detailed
specification should be provided maybe based on existing proposals, for example [10] [21].

We propose the following predefined types: the type ‘int’, the type ‘real’, the type ‘bool’, the type ‘char’,
the type ‘string’. All these types can be declared in a Standard module which can be pervasive.

Also we propose a set of constructed types with their rich term syntax: enumerated types, subrange types,
record types, arrays, sets, and lists.
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A.2.1.9 Static semantics

Modules In static semantics, a module is a context. Modules can be declared using module declarations,
whose simplest form is

module mod-id is dec endmod

where mod-id is a module identifier and dec is a (base language) declaration enriched with value declarations.
The context associated with the module identifier mod-id is generated by the declarations in dec. For example,
the declaration

module Ordltemis

type item is int endtype

function leq(i:item,j:item) : bool is i<=j endfunc
endmod

elaborates to the following environment
Ordltem=- {item=-int,leq=- [] (i = item,j = item) [1 — exit(booD }

In this example we suppose that integers are pervasive.

Interfaces Intuitively, an interface is a type for modules. Whereas a module expression declares a module,
an interface expression specifies a class of modules. An interface is represented semantically by a context
bound to the interface identifier. For example, the Monoid interface declaration below

interface Monoid is
type M
value 0:M
function infix +(M,M) :M
egns forall x,y,z:M ->
(0+x) = x;
(x+0) = x;
(x+y)+2) = (x+(y+2));
endegns
endint

elaborates to the following environment
Monoid= {M = type,0=M,+=[1(M,M) [] — exit(M)}
Over interfaces bindings and modules bindings we define a match relation. Intuitively, a module matches an

interface if the former provides compatible definitions for each definition given in the second one.

Generic modules The static semantics object corresponding to a generic module is an application from
a record of module bindings to a module binding. For example, the result of elaborating a generic module
declaration

generic gen-id (mod-id : int-id) is dec endgen

gen-id= (mod-id=C) — ('

where ( is the binding (type) of the interface identifier int-id, and (' is the result of elaborating dec.

The elaboration of a generic module instantiation consists to check first that the actual module parameters
match the domain of the binding (here (mod-id = C)), and then deriving the result from (', by instantiation
of the formal parameters used in the generic module body.
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Closure Restrictions The semantics presented requires no restrictions on reference to non-local identifiers.
For example, it allows an interface expression to refer to external interface identifiers and to external module
identifiers; it also allows a generic module and a renaming morphism to refer to external identifiers of any
kinds.

However, for implementation purposes, one may want to impose the following restrictions on reference of
identifiers (ignoring references to identifiers bound to the base environment, which may occur anywhere):

e In any interface binding int-id imports ... is int-exp, the only non-local references in int-exp are to
identifiers of the imported interfaces. For example, in the following monomorphic list declaration:

interface List imports Monoid is
type E
function inj(x:E) :M

endint

the only one non-local reference is to type M imported from Monoid interface.

e In any generic module binding gen-id (mod-id : int-exp)* : int-exp’ imports ... is mod-exp, the only
non-local references are to interface identifiers and to identifiers of the imported modules, except that
int-exp’ may refer to mod-id and its identifiers. For example, in the following generic module declaration:

generic GenericListEq: EqType :List is
type M is nil ) |cons(E,M) endtype
value 0 is nil () endval
function infix +(s1:M,s2:M) :M is

caseslis
nil() — s2
| cong(?X,?7XS) — cons(X,Xs+S2)
endcase
endfunc
function inj(x:E) :M is congx, nil ()) endfunc
endgen

the only non-local declarations are to interface identifier EqType and to identifiers declared into EqType,
E.

A.3 An E-LOTOS specification of the ODP trader

A.3.1 Introduction

In this annex, we present an E-LOTOS specification of the ODP trader computational viewpoint. The ODP
trader is an object which enables software components to find appropriate services providers within an open
and dynamically changing distributed system. The trader specification is a good example of how the language
can be applied to specify real problems.

Our E-LOTOS specification follows the informal computational description of the trading function given
in [1]. The specification is not complete in the sense that it does not include all the functionality given in
the informal description. But, it describes an important portion of this functionality and mostly features not
considered here can be added directly without difficulties. A previous version of this specification is presented
in [18].

In what follows, Subclause A.3.2 gives an informal overview of the trading function. Subclause A.3.3 details
some relevant parts of our E-LOTOS specifications. Finally, Annex A.3.3 contains the complete E-LOTOS
specification of the trader.
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A.3.2 An overview of the ODP Trader

In order to use services in an open distributed systems, users need to know which services are available and who
are their providers. Since sites and applications are frequently changing in large distributed systems, it seems
compulsory to have a mechanism which enables software components to find appropriate services providers.
This mechanism, called Trading Function, is supplied in ODP [2, 3] by the trader object

Following the philosophy of ODP, the trader is specified through several viewpoints. In the next subclauses,
we gives an informal description of this viewpoints.

A.3.2.1 Enterprise viewpoint

From the enterprise viewpoint, a trader is an object that enables clients to find dynamically suitable servers in
an ODP system. A trader can be viewed as an advertiser where objects can announce their capabilities and
become aware of capabilities of other objects.

An announcement in a trader is called service offer It describes the characteristics or properties satisfied
by the service. In addition to service properties, a service offer also contains the interface where the service is
available.

Advertising a service offer is called export When a trader accepts an export request, it stores the exported
service offer in a centralized or distributed database. This database is often termed service offer space

On the other hand, an importer can require knowledge about adequate service providers. In this case,
the trader accepts a request, called import, containing an expression of service requirements desired by the
importer. The trader matches the importer’s service request with its database of service offers and selects a
list (probably empty) of appropriated service offers which satisfy the requirements made by the importer.

The list of matched services offers is returned to the importer which may then interact directly with any
service described in the list. The Figure A.1 summarize the interactions of a trader and its clients.

TRADER
import
replies f exports
import
requests
service
replies
Importers Exporters
service
invocations

Figure A.1: Interactions of a trader and its clients

Export and import activities are governed by a trading policy, which comprises trader policies, importer
policies and exporter policies. Where an activity involves interactions between objects, the resulting policy
will be a compromise between the wishes of the interacting objects. Therefore, a trader's behaviour is limited
by the policies established for these activities. In other words, trader policies determine and guide a trader’s
behaviour. For example, a trader policy can restrict resources used by an individual import request.

Several autonomous traders can be 'linked’ in order to share their service offer spaces. Thus, a trader also
can play the role of exporter or importer with respect to other trader(s). Such a group of autonomous traders
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is termed interworking group A trader within an interworking group enlarges the service offer space for its
users by including offers of other traders in the group. This enlargement of the service offer space is made
indirectly when a trader propagates import requests to neighbor traders.

A.3.2.2 Information Viewpoint

The trader information viewpoint defines the information elements and the relationships between them which
are manipulated by the ODP trading function. In the standard [1], this viewpoint is formally described using the
formal specification notation Z. The specification includes basic concepts for information and, static invariant
and dynamic schemata for the ODP trading function. In this annex we do not consider this viewpoint.

A.3.2.3 Computational Viewpoint

The trading function computational viewpoint describes an object template for a trader. This object has
interfaces for service and management operations. Service operations are related to import and export activities
whereas management operations are provided to add, delete or modify links to other traders.

In the standard [1], this viewpoint description comprehends:

e signature templates for the service interface and management interface (defined in CORBA IDL),
e types used in the operations parameters (defined in CORBA IDL), and
e informal descriptions of the trader’s behaviour.

The trader’'s behaviour is given by the behaviour of every service operation and management operation,
plus a set of constraints on interleaving of actions performed by these operations. In the next subclause, we
give in E-LOTOS a formal description of the trader’s behaviour. This formal specification could be viewed as
a complement of the informal one given in [1].

A.3.3 E-LOTOS Specification of the trader

This subsection outlines our E-LOTOS specification of the ODP trader computational viewpoint. Here, we
present only the most relevant parts of the specification. In particular, we pay attention in the definition of
the trader’'s behaviour. The Subclause A.3.4 contains the complete specification including type and functions
definitions which are used to define the behaviour of operations.

A trader is modeled by a process which can interact with the environment through two ports. In one port,
the trader receives operation invocations from clients and management objects. In the other port, it returns
the results to the respective invokers. Following the ODP terminology, we will call termination to the action
of return a result.

The following E-LOTOS code shows a scenario where a trader communicates with other client objects.
The trader receives invocations on the gate inv and send the respective terminations on the gate ter.

par inv#2, ter#2, bind#2
[inv,ter] -> Trader[inv,ter](...)
|| [inv,ter] -> importer[inv,ter]
|| [bind] -> importerExporter[bind]
|| [inv,ter,bind] -> bindingObject[inv,ter,bind]
endpar

This behavior expression represent a scenario where:
e The Trader and importer processes directly interchange data using inv and ter.

e The Trader and importerExporter processes are indirectly communicated through the bindigObject
process which redirerects invocations and terminations of one to other process.
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A.3.3.1 Type declarations

In the specification, the greatest part of the type declarations comprise types for the operation parameters.
The standard [1] defines these types in CORBA IDL and translate them to E-LOTOS is very easy. Also, we
translate exception declarations given in CORBA IDL to type declarations in the E-LOTOS notation. In order
to made more concise the specification, we have wiped the tailing string “Type” from all type names in [1].

Ports are typed in E-LOTOS, therefore we need specify types for data exchanged (offered) by E-LOTOS
processes. In particular, we need specify which are the types involved in trader interactions. In the rest of this
subsection we describe these types.

The signature for operation invocations and operation terminations is defined in the following types:

type InvocationSig is
ExportOfferInv ( serviceDescription => Servicedescription,
servicePropValues => PropertyValuelist,
offerPropValues => PropertyValuelist,
serviceInterfaceld => Interfaceld )
| ImportOfferInv (serviceDescription => ServiceDescription,
matchingCriteria => Rule,
preferenceCriteria => Rule,
orderingRequirementlList => OrderRequirementlist,
servicePropertiesOfInterest => PropertiesOfInterest,
offerPropertiesOfInterest => PropertiesOfInterest )
| AddLinkInv ( newLinkName => name,
linkPropValues => PropertyValuelList,
targetInterfaceld => Interfaceld )
| ... (* other invocation signatures *)
endtype

type TerminationSig is
ExportOfferTer (offerId => ServiceOfferId)
| ImportOfferTer ( detailsOfServiceOffers => ServiceOfferDetaillist )
| AddLinkTer ( linkId => LinkId )
| ... (* other termination signatures *)
endtype

Notice that an invocation signature states the input parameters of the respective operation whereas a termi-
nation signature states the output parameters.

Every trader or client has an interface identifier. These identifiers are used in invocations and terminations
to distinguish one of others. Therefore, an invocation (termination) contains the identifier of the invoked trader
and the identifier of the originator client. The type of values interchanged in invocations and terminations is
defined in E-LOTOS by the following declaration:

type Invocation is
(interfaceld => Interfaceldentifier,
originatorId => Interfaceldentifier,
invocation => InvocationSig)

endtype

type Termination is
(interfaceld => Interfaceldentifier,
originatorId => Interfaceldentifier,
termination => TerminationSig)
endtype
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A.3.3.2 Computational Behaviour of the trader

At the most abstract level, the trader object is a parallel composition of three processes. The ServiceInterface
and ManagementInterface processes provide functionality for service operations and management operations,
respectively. The process StateProc represents the trader state.

process Trader [inv: Invocation, ter: Termination]
( interfaceIld: InterfaceIldentifier,
properties : Properties,
offerSpace : ServiceOfferSpace,
linkSpace : linkOfferSpace ) is
hide sa:stateAccess in
( Servicelnterface [inv, ter, sa] (interfaceld)
[1]
ManagementInterface [inv, ter, sal] (interfaceId)
)
| [sa] |
StateProc [sal] ( properties, offerSpace, linkSpace )
endhide
endproc (xTrader *)

Service operations only write in the trader service offer space while management operations only write in
the trader link space and/or change trader properties. Therefore, beside an operations can eventually access
both the service offer space and the link space of the trader, service operations and management operations
can be performed in parallel without destroy the consistency of the trader state.

The process StateProc encapsulates three elements which conform the trader state: a set of trader
properties, the service offer space and the link space. Service and management operations use the trader state
through the and the link spacesa port which is hided within the trader.

In order to illustrate how the operation’s behaviour are defined we show the definition of the ServiceInterface
process. In this process, all service operations are offered to clients in parallel. However, the availability of
operations is constrained in such way that accessing operations (as import offer) and modifying operations (as
export offer) can not be overlapped in time. Availability of operations is defined in a constraint oriented style
by composing the processes representing operations with the OrderingConstraints process.

process ServiceInterface [ inv: Invocation,
ter: Termination,
sa: stateAccessCh ]
( interfaceld: Interfaceldentifier ) is
( ImportOffer [inv, ter, sal (interfaceld)
1]
exportOffer [inv, ter, sa] (interfaceId)
[
(* other service operations *)
)
| [inv, ter]l|
OrderingConstraints [inv, ter]
endproc (*Servicelnterface *)

The most significant and complex service operation is the importation of an offer. The behaviour of the
operation is given below by the ImportOffer process definition.
Informally, for each invocation the ImportOffer process performs the following activities:

e receive the invocation,
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e access the state to get the offer database, trader links and trader properties,

e match the offers against arguments and propagate the import invocation to interoperate with 'neighbor’
traders,

e When some trader finds good matchesthey are submitted in the termination.

process ImportOffer [ inv: Invocation, ter: Termination,
sa: stateAccess ]
(id: Interfaceld) is
inv ( 'id, 7origld,
ImportOfferInv ( ?sd, ?matchingC, ?preferenceC,
?ordering, ?spO0fInt, 7opOfInt ) ) ;
sa Read( 7traderProp, 7offers, 7links ) ;
trap
exception X ( offers: ServiceOfferDetaillist ) is
ter ( !'id, '!origId, ImportOfferTer(offers) )
endexn
exit is
ter ( !'id, 'origId, ImportOfferTer(emptyOffers) )
endexit
in
. (* match local offers x*)
11
(* interoperate with other traders x*)
endtrap
[1]
ImportOffer [ inv, ter, sa ] ( id )
endproc

The above definition is a good example to illustrate the use of the trap constructor. We use this constructor
to express that, when several trader are interoperating in an import operation, the matched offers returned to
the original importer are those of the 'first’ trader which had successful in the matching activity.

A.3.4 The complete specification
A.3.4.1 Type Declarations

type List is
Nil
| Cons (any, List)
endtype

type Name is
String
endtype

type Interfaceld is
Integer

endtype

type InterfaceldList is

List (¥ of Interfaceld *)
endtype
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type GraphEdgeSpec is
(1inkId => LinkId,
edgeName => Name,
linkPropertyValues => PropertyValuelList
toNodeLocation => InterfaceId)
endtype

type OfferPartitionSubgraph is
List (* of GraphEdgeSpec *)
endtype

type PropertyName is
ServicePropertyName (Name),
| OfferPropertyName (Name),
| LinkPropertyName (Name),
| TraderPropertyName (Name),
endtype

type Order is

ASCENDING

| DESCENDING
endtype

type OrderRequirementlList is
(orderDirection => OrderType,
propertyName => PropertyName)
endtype

type LiteralPropertyValue is
| BoolVal (Bool)
| IntVal (Integer)
| NameVal (Name)
| RefVal (InterfaceId)
endtype

type LiteralOrProperty is
Literal (LiteralPropertyValue)
| Property (PropertyName)
endtype

type Rule is
TRUE
| Exist (propertyName)

| LiteralOrProperty EQ LiteralOrProperty,
| LiteralOrProperty LT LiteralOrProperty,
| LiteralOrProperty LE LiteralOrProperty,
| LiteralOrProperty GT LiteralOrProperty,
| LiteralOrProperty GE LiteralOrProperty,
| LiteralOrProperty NE LiteralOrProperty,
| NOT (Rule)

| Rule AND Rule
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| Rule OR Rule
endtype

type RulelList
List (* of Rule *)
endtype

type PropertyValue is

(name => PropertyName,

value => LiteralPropertyValue)
endtype

type PropertyNamelList is
List (x of PropertyName *)
endtype

type PropertiesOflInterest is
ALL
| Interesting ( PropertyNameList )
endtype

type PropertyValuelist is
List (* of PropertyValue *)
endtype

type ServiceDescription is
integer
endtype

type QualificationCode is
Full_succes
| Selection_preference_not_obtained
| Property_of_interest_not_avalilable
| Offer_property_of_interest_not_avalilable
endtype

type Qualifier is
List (* of QualificationCode *)
endtype

type ServiceOfferDetail is
(interfaceld => Interfaceld,
servicePropertyValues => PropertyValuelist,
serviceOfferPropertyValues => PropertyValuelist,
offerQualificationList => Qualifier)

endtype

type ServiceOfferDetaillist is
List (* of ServiceOfferDetail *)

endtype

type ServiceOfferId is
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integer
endtype

type ServiceOfferIdList is
List (* of ServiceOfferId x)
endtype

type ServiceOfferDescription is
(serviceOfferId => ServiceOfferId,
serviceDescription => ServiceDescription,
Interfaceld => Interfaceld,
servicePropertyValues => PropertyValuelist,
serviceOfferPropertyValues => PropertyValueList)
endtype

type ServiceOfferSpace is
List (* of ServiceOfferDescription *)
endtype

type LinkId is
Integer
endtype

type LinkIdList is
List (* of LinkId *)
endtype

type InvocationSig is
ExportOfferInv ( serviceDescription => Servicedescription,
servicePropValues => PropertyValuelist,
offerPropValues => PropertyValuelist,
serviceInterfaceld => Interfaceld )
| WithdrawOfferInv ( offerId => ServiceOfferId )
| ModifyOfferInv ( offerId => ServiceOfferId,
servicePropValues => PropertyValuelist,
offerPropValues => PropertyValueList )
| ImportOfferInv (serviceDescription => ServiceDescription,
matchingCriteria => Rule,
preferenceCriteria => Rule,
orderingRequirementList => OrderRequirementlist,
servicePropertiesOfInterest => PropertiesOfInterest,
offerPropertiesOfInterest => PropertiesOfInterest )
| QueryOfferPartitionSubgraphInv
| DescribeOfferInv ( serviceOfferIdList => ServiceOfferIdlList,
servicePropertiesOfInterest => PropertiesOfInterest,
offerPropertiesOfInterest => PropertiesOfInterest )
| AddLinkInv ( newLinkName => name,
linkPropValues => PropertyValuelist,
targetInterfaceld => Interfaceld )
| RemoveLinkInv ( linkId => LinkId )
endtype
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type TerminationSig is
ExportOfferTer (offerId => ServiceOfferId)
WithdrawOfferTer
ModifyOfferTer
ImportOfferTer ( detailsOfServiceOffers => ServiceOfferDetaillist )
QueryOfferPartitionSubgraphTer

(offerPartitionSubgraph => 0fferPartitionSubgraph)
| DescribeOfferTer ( detailsOfServiceOffers => ServiceOfferDetaillist )
| AddLinkTer ( linkId => LinkId )
|

RemoveLinkTer
| Error (err => TraderErrorExceptions)
endtype

type Invocation is
(interfaceld => Interfaceld,
originatorId => Interfaceld,
invocation => InvocationSig)
entype

type Termination is
(interfaceld => Interfaceld,
originatorId => Interfaceld,
termination => TerminationSig)
endtype

type stateAccess is (stateAcc) endtypechan

type stateAcc is
Read ( properties => PropertyValuelist,
offerSpace => ServiceOfferSpace,
linkSpace => O0OfferPartitionSubgraph )
ReadProperties ( properties => PropertyValueList )
ReadOffers ( offerSpace => ServiceOfferSpace )
ReadLinks ( linkSpace => O0fferPartitionSubgraph )
Write ( properties => PropertyValuelist,
offerSpace => ServiceOfferSpace,
linkSpace => OQOfferPartitionSubgraph )
| WriteProperties ( properties => PropertyValuelList )
| WriteOffers ( offerSpace => ServiceOfferSpace )
| WriteLinks ( linkSpace => OfferPartitionSubgraph )
| NewServiceOfferId ( serviceOfferId => ServiceOfferId )
| NewLinkId ( linkId => LinkId )
endtype

type TraderErrorExceptions is
SystemSpecificException (reason => string)
| UndefinedProperty ( pName => PropertyName )
| BadOfferIdentity ( offerId => ServiceOfferId )
| InvalidArgumentSyntax
endtype
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(% ————————— List general functions --------—----- *)

function append (xs, ys: List) : List is
case xs is

Nil -> ys
Cons(?7x, xxs?) -> Couns(x,append(xxs,ys))
endcase
endfunc

function IsIn (x: any, xs: List) : Boolean

case xs
Nil -> false
Cons(?y, ys?) -> x = y orelse IsIn(x,ys)
endcase
endfunc

function delete (x: any, xs: List) : Boolean
case Xs is
Nil -> Nil
Cons (!x, 7ys) —-> ys
Cons (?7y, ?ys) -> Cons (y, delete(x,ys))
endcase
endfunc

function 1t (1pl, 1p2: LiteralOrProperty) : Boolean
raises [err: (TraderErrorExceptions)] is

case (1pi,1p2)

(IntVal(?i), Intval(?j)) ->1i < j

(NameVal(?n), Nameval(?m)) -> n < m

otherwise -> raise err (InvalidArgumentSyntax)
endcase
endfunc

function le (1pl, 1p2: LiteralOrProperty) : Boolean
raises [err: (TraderErrorExceptions)] is
1t(1p1,1p2) [err] orelse (1lpl = 1p2)
endfunc

function gt (1lpl, 1p2: LiteralOrProperty) : Boolean
raises [err: (TraderErrorExceptions)] is
not le(lpl,1p2) [err]
endfunc

function ge (1lpl, 1p2: LiteralOrProperty) : Boolean
raises [err: (TraderErrorExceptions)] is
not 1t(1lpl,1p2) [err]
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endfunc

function ne (1pl, 1lp2: LiteralOrProperty) : Boolean is
not (1pl = 1p2)
endfunc

function valueOf ( lp: LiteralOrProperty, props: PropertyValuelist )
: LiteralPropertyValue
raises [err: (TraderErrorExceptions)]
case lp is
Property (7pName) -> propValueOf (pName, props) [err]
Literal (?7v) -> v
endcase
endfunc

function neighbours (1: OfferPartitionSubgraph) : InterfaceIdList is
case 1

Nil -> Nil

Cons( (?1id, ?nm, ?1Props, 7id), 7tl) -> Cons(id,tl)
endcase
endfunc
(¢ —=—m———— PropertyValuelist functions ----------—--—- *)

function existProperty ( pName: PropertyName,
props: PropertyValuelist ) : Boolean
case props 1is
Nil —>
false
Cons ((name => !pName, etc), any:PropertyValueList) ->
true
Cons (any:PropertyValue, 7tl) ->
existProperty (am, tl)
endcase
endfunc

function propValueOf ( pName: PropertyName, props: PropertyValuelist )
: LiteralPropertyValue
raises [err: (TraderErrorExceptions)]
case props is
Nil ->
raise err ( UndefinedProperty(pName) )
Cons ((!pName, 7v), any:PropertyValueList) ->
v
Cons (any:PropertyValue, 7tl) ->
propValueOf (pName, tl) [err]
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endcaspe
endfunc

function existAllProperties (pns: PropertyNamelist, pVals: PropertyValueList)
: Boolean is
case pns is
Nil ->
true
Cons(?pn, 7xs ) ->
existProperty (pn, pVals) andalso existAllProperties (xs, pVals)
endcase
endfunc

function filterProps ( pns: PropertyNamelList, pVals: PropertyValueList )
: PropertyValuelList
case pVals is
Nil ->
Nil
Cons( (7pn,?v), 7pvs ) ->
if IsIn (pn, pns)
then
Cons( (pn,v), FilterProps(pns,pvs) )
else
filterProps(pns,pvs)
endif
endcase
endfunc

function interestingProps ( intr: PropertiesOflInterest,
pVals: PropertyValueList )

: PropertyValueList
case intr is
ALL -> pVals
Interesting (7pns) -> filterProps(pns, pVals)
endcase
endfunc
(k —=—mm——— QualificationCode functions ------------- *)

function insQualification (q: QualificationCode, gs: Qualifier)
Qualifier is
case gs is
Nil -> Coms (g, Nil)
?rs -> if q = Full_succes

then rs
else Cons (q,rs)
endif
endcase
endfunc
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function conforms ( criteria: Rule,
sPropVal, oPropVal, traderProp: PropertyValueList )
: Boolean
raises [err: (TraderErrorExceptions)] is
var
props : PropertyValuelList := append ( sPropVal, append(oPropVal,traderProp) )
in
case criteria is
TRUE -> True
Exist ( ?propertyName ) ->
case propertyName is
?nm, linkPropertyName (any:Name) ->
raise err (SystemSpecificException ("bad use of link property
name in rule"))
?nm ->
existProperty (nm, sPropVal)
endcase
?1lpl EQ 71p2 ->
valueOf (1pl, props) [err] = valueOf (1lp2, props) [err]
?1p1 LT ?1p2 ->
1t (valueOf (1pl, props) [err], valueOf(1lp2, props) [err]) [err]
?1pl LE ?1p2 ->
le (valueOf(lpl, props) [err], valueOf (1p2, props) [err]) [err]
?1lpl GT 71p2 ->
gt (valueOf (1pl, props) [err], valueOf (1p2, props) [err]) [err]
71pl GE ?1p2 ->
ge (valueOf (1pl, props) [err], valueOf (1p2, props) [err]) [err]
?1pl NE 71p2 ->
not (valueOf(lpl, props)[err] = valueOf (1p2, props) [err])
NOT ?r ->
not conforms (r, sPropVal, oPropVal, traderProp) [err]
?rl AND 7r2 ->
conforms (rl, sPropVal, oPropVal, traderProp) [err] andalso
conforms (r2, sPropVal, oPropVal, traderProp) [err]
?rl OR 7r2 ->
conforms (ril, sPropVal, oPropVal, traderProp) [err] orelse
conforms (r2, sPropVal, oPropVal, traderProp) [err]
endcase
endvar
endfunc

(k —=—m———— ServiceOfferSpace functions ------------- *)

function matchOffers ( sd: ServiceDescription,
matchingC, preferenceC: Rule,
traderProp: PropertyValuelist,
sp0fInt, opOfInt: PropertiesOfInterest,
offers: ServiceOfferSpace )
: ServiceOfferDetaillist
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raises [err: (TraderErrorExceptions)] is
case offers is
Nil -> Nil
Cons ( (70Id, !sd, 7interfld, ?sPropVal, 7oPropVal), 7tl ) ->
var
t1lMtchs : ServiceOfferDetaillist := matchOffers(sd, matchingC,
preferenceC, traderProp,
sp0fInt, opOfInt, tl) [err]
in
if conforms ( matchingC, sPropVal, oPropVal, traderProp ) [err]
then
local
var ss,o0s : PropertyValuelist,
sq, 0q, pq : QualificationCode,
qq: Qualifier
in
?ss := InterestingProps (spOfInt, sPropVal);
?sq := if existAllProperties (spOfInt, sPropVal)
then Full_succes
else Property_of_interest_not_avalilable
endif;
?70s := InterestingProps (opOfInt, oPropVal);
?oq := if existAllProperties (opOfInt, oPropVal)
then Full_succes
else Offer_property_of_interest_not_avalilable
endif;
?pq := if conforms (preferenceC, sPropVal, oPropVal, traderProp)
[err]
then Full_succes
else Selection_preference_not_obtained
endif;
7qq :=
insQualification(sq,insQualification(oq,insQualification(qq,Nil)));
Cons((interfId, ss, os, qq),tlMtchs)
endvar
else tlMtchs
endif
endvar
Cons (any:ServiceOfferDescription, 7tl) ->
matchOffers (sd,matchingC,preferenceC,traderProp,sp0fInt,op0fInt,tl)
[err]
endcase
endfunc

function getOfferDetails ( oId: ServiceOfferId,
offers: ServiceOfferSpace,
out sDes: ServiceDescription
out interflId: Interfaceld,
out sProps, oProps: PropertiesOfInterest )
: ServiceOfferDetaillist
raises [err: (TraderErrorExceptions)] is
case offers is
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Nil ->
raise err ( BadOfferIdentity(oId) )
Cons ( (!oId, 7sd, ?7id, ?sPropVal, ?7oPropVal) , 7tl ) ->
7?sDes := sd ;
7interfld := id;
?sProps := sPropVal;
?oProps := oPropVal
Cons (any:ServiceOfferDescription, ?7tl) ->
getOfferDetails (oId, tl, ?sDes, ?7interfld, 7sProps, 7oProps) [err]
endcase
endfunc

function existOffer (oId: ServiceOfferId, offers: ServiceOfferSpace)
: Boolean is
case offers is
Nil ->
false
Cons( (?7id, 7sd, 7id, 7sProps, 7oProps), 7tl ) ->
( id = 0id ) orelse existOffer (oId, tl)
endcase
endfunc

function delOffer (olId: ServiceOfferId, offers: ServiceOfferSpace)

: ServiceOfferSpace
case offers is
Nil -> Nil
Cons( (!'oId, 7sd, 7id, ?sProps, 7oProps), 7tl ) ->
tl

Cons( ?o0d, 7ods ) —>
Cons(od,del0ffer(oId,tl))
endcase
endfunc

function deleteOffer (olId: ServiceOfferId, offers: ServiceOfferSpace)
ServiceOfferSpace
raises [err: (TraderErrorExceptions)] is
if existOffer(old, offers)
then raise err ( BadOfferIdentity(oId) )
else delOffer(oId, offers)
endif
endfunc

function describe ( offerIds: ServiceOfferIdList,
sp0fInt, opOfInt: PropertiesOfInterest,
offers: ServiceOfferSpace ) : ServiceOfferDetaillList
raises [err: (TraderErrorExceptions)] is
case offerlds is
Nil ->
Nil
Cons (?70id, 7oids) ->
var interfId: Interfaceld,
sProps, oProps : PropertyValuleList
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ss,os : PropertyValuelist,
sq, oq : QualificationCode,
qq: Qualifier
in
getOfferDetails ( oid, offers, any:ServiceDescription,
?7interfId, 7sProps, 7oProps ) [err];
?ss := InterestingProps (spOflInt, sProps);
?sq := if existAllProperties (spOfInt, sProps)
then Full_succes
else Property_of_interest_not_avalilable
endif;
?70s := InterestingProps (opOfInt, oProps);
7oq := if existAllProperties (opOfInt, oProps)
then Full_succes
else Offer_property_of_interest_not_avalilable
endif;
?qq := insQualification(oq,insQualification(sq,Nil));
Cons( (interfId, ss, os, qq),
describe (offerIds, spOfInt, opOfInt, sds) [err] )
endvar
endcase
endfunc

(k === ServiceOfferDetaillist ordering functions ------------- *)
function IsOrdered ( ordering: OrderRequirementList,

d, d1: ServiceOfferDetail ) : Boolean
raises [err: (TraderErrorExceptions)] is

var
vs: PropertyValuelist := append(d.servicePropertyValues,
d.serviceOfferPropertyValues),
vls: PropertyValuelList := append(dl.servicePropertyValues,
dl.serviceOfferPropertyValues)
in

case ordering is
Nil -> true
Cons ((ASCENDING, ?pName), ?tl) ->
var 1, 11: LiteralPropertyValue
in
7?1 := propValueOf (pname, vs) [err];
7?11 := propValueOf (pname, vis) [err];
1 < 11 orelse ( 1 = 11 andalso IsOrdered (tl, d, d4d1) )
endvar
Cons ((DESCENDING, ?pName), 7tl) ->
var 1, 11: LiteralPropertyValue
in
?1 := propValueOf (pname, vs) [err];
7?11 := propValueOf (pname, vis) [err];
1 > 11 orelse ( 1 = 11 andalso IsOrdered (tl, d, d1) )
endvar
endcase
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endloc
endfunc

function partition ( in ordering: OrderRequirementList,
in d: ServiceOfferDetail,
in ds: ServiceOfferDetaillist
out less, gtr: ServiceOfferDetaillist)
raises [err: (TraderErrorExceptions)] is
loop ( out less, gtr: ServiceOfferDetaillist,
in 1,g, rest: ServiceOfferDetaillist )
?1 := Nil; ?g := Nil; 7rest := ds;
case rest is
Nil -> break (less=>1, gtr=>g)
Cons (7d1, 7dis) [ IsOrdered (ordering, d, d1) [err] ] ->
7?1 := Cons(dl,1); ?g := g; Trest:= dls
Cons (7dl, 7d1s) [ not IsOrdered (ordering, d, d1) [err] ] ->
?1 :=1; 7?g := Cons(dl,g); 7rest := dis
endloop
endfunc

function sort ( ordering: OrderRequirementlList,
offers: ServiceOfferDetaillist ) : ServiceOfferDetaillList
raises [err: (TraderErrorExceptions)] is
case offers is
Nil ->
Nil
Cons(?7d, ds) —->
var less, gtr: ServiceOfferDetaillist
in
partition (ordering, d, ds, 7less, 7gtr) [err];
append( sort(ordering,less), Cons(d,sort(ordering, gtr)) )
endvar
endcase
endfunc

A.3.4.3 Process Declaration

process Trader [inv: Invocation, ter: Termination]
( interfaceld: Interfaceld,
properties : PropertyValuelist,
offerSpace : ServiceOfferSpace,
linkSpace : O0OfferPartitionSubgraph ) is
hide sa:stateAccess in
( Servicelnterface [inv, ter, sa] (interfaceId)
[11

ManagementInterface [inv, ter, sal] (interfaceId)

)
| [sal |
StateProc [sal] ( properties, offerSpace, linkSpace )
endhide
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endproc (*Trader *)

process Servicelnterface [ inv: Invocation,
ter: Termination,
sa: stateAccess ]
( interfaceld: Interfaceld ) is
( ImportOffer [inv, ter, sal] (interfaceld)
[
QueryOfferPartitionSubgraph [inv, ter, sa] (interfaceId)
[
describeOffer [inv, ter, sal] (interfaceld)
[
exportOffer [inv, ter, sa] (interfaceId)
11
withdrawOffer [inv, ter, sal] (interfaceld)
[
modifyOffer [inv, ter, sal] (interfaceld)
)
| [inv, ter]l|
ServiceOperationsOrderingConstraints [inv, ter]
endproc (*Servicelnterface *)

process ServiceOperationsOrderingConstraints
[ inv: Invocation, ter: Termination ] is

loop

var id, origId: Interfaceld

in
inv ( ?7id, 7origld, ExportOfferInv (etc) ) ;
ter ( 'id, l!origld, ExportOfferTer (etc) )
(]
inv ( 7id, 7Porigld, WithdrawOfferInv (etc) ) ;
ter ( 'id, !origId, WithdrawOfferTer (etc) )
[]
inv ( ?7id, 7origld, ModifyOfferInv (etc) ) ;
ter ( !'id, 'origId, ModifyOfferTer (etc) )

endvar

[]

hide nr:() in
importOfferConstraint [inv, ter, nr]
N
queryOfferPartitionSubgraphConstraint [inv, ter, nr]
N
describeOfferConstraint [inv, ter, nr]
endhide
endloop
endproc (*ServiceOperationsOrderingConstraints*)

process importOfferConstraint [inv: Invocation,
ter: Termination, nr: ()] : () is
var id, origld: Interfaceld
in
inv ( 7id, 7origld, ImportOfferInv (etc) ) ;

(© ISO/IEC 2001 — All rights reserved 175

FINAL DRAFT / PROJET FINAL



ISO/IEC 15437:2001(E)

ter ( 'id, !origId, ImportOfferTer (etc) )
endvar

(]
nr
11
importOfferConstraint [inv, ter, nr]
endproc (*importOfferConstraintx*)

process queryOfferPartitionSubgraphConstraint
[inv: Invocation, ter: Termination, nr: ()] : () is
var id, origId: Interfaceld
in
inv ( 7id, 7origld, QueryOfferPartitionSubgraphInv (etc) ) ;

ter ( !id, l!origId, QueryOfferPartitionSubgraphTer (etc) )
endvar

(]
nr
N
queryOfferPartitionSubgraphConstraint [inv, ter, nr]
endproc (*queryOfferPartitionSubgraphConstraintx*)

process describeOfferConstraint [inv: Invocation,

ter: Termination, nr: ()] : (O is
var id, origld: Interfaceld
in
inv ( ?7id, 7origld, DescribeOfferInv (etc) ) ;

ter ( 'id, !origId, DescribeOfferTer (etc) )
endvar

[]
nr
[11
describeOfferConstraint [inv, ter, nr]
endproc (*describeOfferConstraint *)

process ImportOffer [ inv: Invocation, ter: Termination, sa: stateAccess ]
(id: Interfaceld) is
inv ( 'id, 7origld,
ImportOfferInv ( ?sd, ?matchingC, 7preferenceC,
?ordering, 7spOfInt, 7opOfInt ) ) ;
sa ( Read(?traderProp, 7offers, ?7links) ) ;
trap
exception X ( offers: ServiceOfferDetaillist ) is
ter ( !'id, '!origId, !ImportOfferTer(offers) )
endexn
exception err ( e: TraderErrorExceptions ) is
ter ( !'id, 'origId, !Error(e) )
endexn
exit is
ter ( !'id, !origId, !ImportOfferTer(emptyOffers) )
endexn
in

var matches: ServiceOfferDetaillist :=
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sort ( ordering,
matchOffers(sd,matchingC, preferenceC, traderProp,
sp0fInt, opO0fInt, offers) [err] )
in
if matches <> emptyOffers
then raise X (matches)
else exit
endif
endvar
Il
var neighs: InterfacelIdList := neighbours (links)
in
PropagateImport [ inv, ter ]
( id, sd, matchingC, preferenceC, ordering,
spInterest, opInterest, neighs )
[ X]
endvar
endtrap
N
ImportOffer [ inv, ter, sa ] ( id )
endproc (*ImportOfferx*)

process PropagateImport [ inv: Invocation, ter: Termination ]
( id: Interfaceld,
sd: ServiceDescription,
matchingC, preferenceC: Rule,
ordering: OrderRequirementlist,
spInterest: PropertiesOfInterest,
opInterest: PropertiesOfInterest,
neighs: InterfaceIdList )
raises [ X: (ServiceOfferDetaillist)] : () is
if neighs = Nil
then exit
else
var x: Interfaceld

in
?x := any Interfaceld [isIn(x,neighs)] ;
( var matches: ServiceOfferDetaillist
in
inv ( !x, !id, !ImportOfferInv ( sd, matchingC, preferenceC,
ordering, spInterest, opInterest ) )
ter ( !x, !'id, ImportOfferTer ( ?matches ) ) ;
if matches <> emptyOffers
then raise X (matches) endif
endvar
[11
PropagateImport [ inv, ter ]
( id, sd, matchingC, preferenceC, ordering,
spInterest, opInterest, delete (x, neighs) )
[ X]
)
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endvar
endproc (*Propagatelmport*)

process QueryOfferPartitionSubgraph
[ inv: Invocation, ter: Termination, sa: stateAccess ]
(id: Interfaceld) is
inv (!id, 7origld, QueryOfferPartitionSubgraphInv ) ;
sa ( ReadLinks(?7subg) ) ;
ter (!id, !origld, !QueryOfferPartitionSubgraphTer (subg))
endproc

process describeOffer [ inv: Invocation, ter: Termination, sa: stateAccess ]
(id: InterfaceId) is
inv ( !id, ?origld,
DescribeOfferInv (7offerIds, 7spIlnterest, 7opInterest) ;
sa ( ReadOffers(7offers) ) ;
ter ( !id, 'origld,
DescribeOfferTer (!describe(offerIds, spOfInt, opOfInt, offers)) )
endproc

process exportOffer [ inv: Invocation, ter: Termination, sa: stateAccess ]
(id: Interfaceld) is

inv ( 'id, 7origld, ExportOfferInv (7sd, 7sProps, 7oProps, 7interfld) ) ;
sa ( NewServiceOfferId(7oId) ) ;
sa ( ReadOffers (7offers) ) ;
sa ( !WriteOffers(Cons((oId, sd, interfId, sProps, oProps), offers)) ) ;
ter ( !'id, 'origId, !ExportOfferTer (oId) )

endproc

process withdrawOffer [ inv: Invocation, ter: Termination, sa: stateAccess ]
(id: Interfaceld) is
inv ( 'id, 7origId, WithdrawOfferInv (7oId) ) ;
sa ( ReadOffers(7offers) ) ;
sa ( !'WriteOffers(deleteOffer(oId,offers)) ) ;
ter ( !'id, l!origId, WithdrawOfferTer )
endproc

process modifyOffer [ inv: Invocation, ter: Termination, sa: stateAccess ]
(id: Interfaceld) is
inv ( !id, 7origIld, ModifyOfferInv (7oId,?sProps,?oProps) )
sa (ReadOffers(?offers) ) ;
getOfferDetails ( !oId, !offers, 7intrfId, 7sd, etc );
sa ( WriteOffers(!Cons((oId, sd, intrfId, sProps, oProps),
deleteOffer(old,offers))) );
ter ( !'id, l!origId, ModifyOrderTer )
endproc

process StateProc [ s: stateAccess ]
( ps: PropertyValuelist, sos: ServiceOfferSpace,
ls: OfferPartitionSubgraph ) is
loop
var props: PropertyValuelist := ps,

178 © ISO/IEC 2001 — All rights reserved

FINAL DRAFT / PROJET FINAL



ISO/IEC 15437:2001(E)

offs: ServiceOfferSpace := sos,
Ins: OfferPartitionSubgraph := 1s,
in
(s ( Read(!props, !offs, !lns) )
[1 s ( ReadProperties(!props) )
[1 s ( ReadOffers(loffs) )
[] s ( ReadLinks(!lns) )
); ?props := props; 7offs := offs; 7lns := lns
(
s (Write(?props, 7offs, 7lns))
(]
s (WriteProperties(?props)) ;
70ffs := offs; 7lns := lns
(
s (WriteOffers(?offs)) ;
?props := props; 7lns := lns
(]
s (WriteLinks(?1ns)) ;
?props := props; 7offs := offs
endvar
endloop
11
var offerIds: ServiceOfferIdList,
linkIds: LinkIdList

init
7offerIds := Nil; 7linkIds := Nil
in
loop
var old: ServiceOfferId
in
s (NewServiceOfferId(7oId)) [not IsIn (oId, offersIds)] ;
7offerIds := Cons(old, offerIds)
endvar
(1
var 1nId: LinkId
in
s (NewLinkId(?1nId)) [not IsIn (1nId, linkIds)] ;
?linkIds := Cons(oId, linkIds)
endvar
endloop
endvar
endproc

process ManagementInterface [ inv: Invocation, ter: Termination, sa: stateAccess ]
(id:interfaceld) is
( AddLink [inv, ter, sal] (interfaceIld)
[
RemovelLink [inv, ter, sa] (interfaceld)
)
| [inv, ter]|
ManagementOperationsOrderingConstraints [inv, ter]
endproc
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process AddLink [ inv: Invocation, ter: Termination, sa: stateAccess ]
(id:interfaceId) is
inv ( !id, 7origld, AddLinkInv (?nm, ?71Props, 7targetId) ) ;
sa ( ReadLinks(?1lns) ) ;
sa ( NewLinkId(?1id) ) ;
sa ( !WriteLinks(Cons((lid,nm,l1Props,targetId), 1lns)) ) ;
ter ( !id, l!origId, !AddLinkTer(lid) ;
endproc

process RemovelLink [ inv: Invocation, ter: Termination, sa: stateAccess ]
(id:interfaceld) is
inv ( !'id, 7origlId, RemoveLinkInv (?71id) )
sa ( ReadLinks(?1lns) );
sa ( !WritelLinks(deleteLink(1lid,1lns)) ) ;
ter ( !id, 'origId, RemoveLinkTer )
endproc

Annex B
(informative)

Guidelines for LOTOS to E-LOTOS
translation

B.1 Introduction

This annex is devoted for those LOTOS users that want to update to E-LOTOS and for those interested in
seeing the differences and improvements introduced in the language.

E-LOTOS has been designed with the intention of being upward compatible with LOTOS. However, this
does not imply that E-LOTOS tools should be able to process LOTOS specification. It rather means that the
main concepts of LOTOS (behaviour based on process algebras and data based on algebraic semantics) are
the core of E-LOTOS. It is recommended to start with a (brief) looking at Annex A.

In this annex we will not describe the new features of E-LOTOS. Subclause B.1.2 describes how to
translate from basic LOTOS to (basic) E-LOTOS. Subclause B.1.3 describe how data types from LOTOS
are supported and can be translate to E-LOTOS data types. Subclause B.1.4 describes the translation of a
LOTOS specification with data and behaviour to E-LOTOS.

B.1.1 Specification and process definition

The first change a LOTOS user will notice is that a specification is just a small part of a E-LOTOS description.
The introduction of modules in E-LOTQOS caused this change. A specification in E-LOTOS is an optional
sequence of module declaration and a specification. So, a LOTOS specification is just a E-LOTQOS one without
modules.

In E-LOTOS, the functionality of processes and specification is not fixed on the definition.
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Processes cannot be nested. In fact, the where clause of LOTOS has been removed. So, the name space
inside a module is flat, so name overriding is not allowed. The translation from LOTOS is straightforward:
raise the nested processes (and everywhere in a where clause) to the top level definition. Maybe some name
solving would be needed.

Process instantiation and recursion It is very usual to specify some system that evolutes through some

states or phases, modeled as LOTOS processes, commonly all of them with the same signature (same gates

and parameters). For example, a specification of some chip, with a gate per pinstruction and a number of

parameters (registers, state variable, etc.). In LOTOS this should be a tedious piece of work in which all gates

and variables are repeated every instantiation, without really changing but a little data. In E-LOTOS, you

may abbreviate the instantiation of a process by just writing the specific changes in gates and/or parameters.
For example, the famous VendingMachine (taken from [6]):

(xLOTOSk) (+E—LOTOSk)
processVending [coin,candylcandyd : noexit := processVending [coin,candylcandy?is
coin; coin;
(candyl Vendinglcoin,candylcandy2 (candyl Vendingf...]
[1candy2 Vending[coin,candylcandy2 [Jcandy2 Vending[...]
) )
endproc endproc

You may abbreviate just part of the gate list, by stating explicit instantiation, as in the following example:

processSingleBuffer [inp, outp] is
inp; outp; SingleBufferl...]
endproc

processDoubleBuffer [inp,outp] is
hide middle in
SingleBuffer [outp=-middle, ...]
| [middle] |
SingleBuffer [inp=-middle, ...]
endhide
endproc

B.1.2 Basic LOTOS

Enabling and exit In E-LOTOS, enabling operator (>> ) has been joined with action prefix (; ) in just one
operator, sequential composition (; ). So, LOTOS expressions with enabling operator is easily translated into
E-LOTOS, taking care of keeping precedence and removing exit from the left part of the expression:

a; b; exit >> c; stop = a;b;c; stop
a; b; (exit >> c; stop) = a; b; c; stop

Thus exit becomes obsolete, and it is removed from E-LOTOS.

Operator associativity In E-LOTOS, all operators have the same precedence, but action prefix “; ", which
has the higher precedence. Asociativity is left-handed, as in LOTOS. However, it is not possible to mix different
operators in the same expression without explicitly specifying its asociativity. So, the following expression would
cause a syntactical error in E-LOTOS:

Bi [>B; ||l B3
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The precedence in LOTOS is not very intuitive: in this case, this behaviour is parsed as (B1 [> By) ||| Bs.
This expression can be translated into E-LOTOS as:

(By [>By) Il B or disB; [>Byenddis ||| B3

There are two ways to express precedence in E-LOTOS: via parenthesis or via specific begin-end keywords
for each behaviour binary operator. So, we have:

dis enddis for disabling ([>)

fullsync  endfullsync  for full synchronization (|| )

conc endconc for partial synchronization (| [G1,...,Gn] )
sel endsel for selection ([1 )

suspend endsuspend for disabling ([> )

inter endinter for interleaving (|11 )

The associativity with the same operator is keep, so the following expressions are equivalent both in LOTOS
and in E-LOTOS:

B1 op Bo op B3 = Bj op (B2 op Bs)

also equivalent to:

op-begin-keyword B op By op Bz op-end-keyword

B.1.3 Data Types

Data types have been revised substantially in E-LOTOS, gaining advantage from practical application of
LOTOS in industry. This revision includes more user friendly data types, predefined ones, partial functions,
and more intuitive semantics. For a LOTQOS user, the main change is in equations: E-LOTOS does not define
dynamic semantics for equations. Tools can treat equations as type checked comments.

Constructors and functions E-LOTOS makes a difference between constructors and functions. Therefore,
LOTOS opnswill be split as in the following example:

(xLOTOSk) (*E—LOTOSx)
type Booleanis interface Booleanis
sorts bool type bool is
opns true, false
true, false: -> bool endtype
—and.: bool,bool -> bool function infix and(a: bool,b:bool) : bool
endtype endint

Interfaces and implementations In E-LOTOS, data type implementations may come from an external
module (which may be a E-LOTOS specification or any other kind of implementation). Booleanwould be
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split in E-LOTOS in the following way:

interface Booleanis
type bool is
true, false
endtype
function infix and(a: bool,b:bool) : bool
egns
forall x, y : bool
ofsort bool
X and true = X;
X and false = false;
endint

module Booleanis
type bool is
true, false
endtype
function infix and(x: bool,y:bool) : bool
case(x,y) in
(true,true) -> true
| (any:bool, any: bool) -> false
endcase
endfunc
endmod

Extensions and combinations of type specifications To specify data types with a large number of oper-
ations, or to enrich existing data types, there is a language constructor to combine existing specifications or
to extend them. An example is:

(xLOTOSx) (*E— LOTOSx)
type NaturalNumbelis boolean interface NaturalNumbeimports Booleanis
endtype endint

module NaturalNumbeiimports Booleanis

endmod
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A larger example The following is a possible type definition for natural numbers:

(xLOTOSx)
type NaturalNumberss boolean
sorts nat
opns
0: -> nat
succ nat-> nat
_+_: nat,nat-> nat
_<_: nat,nat-> bool
egns
forall m, n : nat
ofsort nat
m+0=m;
m + sucgn) = succ (m+n) ;
ofsort bool
0 < 0 = false;
0 < sucdn) = true;
sucdm) < 0 = falsg;
sucgm) < sucgn) = m< n;
endtype

(*E— LOTOSx)
interface NaturalNumbersmports booleanis
type natis
0 | sucan:nab
endtype
function infix +(m:nat,n:nat) : nat
function infix <(m:nat,n:nat :bool
eqgns
forall m, n : nat
ofsort nat
m+0=m;
m + sucgn) = succ (m+n) ;
ofsort bool
0 < 0 = false;
0 < sucgn) = true;
sucgm) < 0 = false;
sucgm) < sucgn) = m< n;
endint

module NaturalNumbersmports Booleanis
type natis
0 | Succ(n: nad
endtype

function infix + (m: nat, n: na®) : natis
casenin
0->m
| Succ(nl: naH -> Succ(m) + nl
endcase
endfunc
endmod

E-LOTOS has predefined types, so you do not really need to translate basic types as Booleans, Natural,
and others (see Clause 10). However, NaturalNumber is a good example for showing the differences between

LOTOS and E-LOTOS data types.

The main difference in the example is that definition may be separated from implementation. This allows

providing external implementation of data types.

Parameterized types A parameterized type in LOTOS can be seen as a template for building new types,
or as a partial specification with general features of a data type. These specifications will be completed
later, obtaining complete data type specifications. The usual applications are general containers, as “queues”,
“stacks”, etc. In LOTOS, this is done via formal sorts, operations and equations.

In E-LOTOS, instead of formal types, we use generic modules. Genericity is used for constructing speci-
fications and for code reuse. The above example would be specified in E-LOTOS as follows:
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(xLOTOSk) (+E—LOTOSk)
type Queueis generic Queue(Eq: EqType is
formalsorts element type M is
formalopns e0: -> element nil | cons(E,M)
sorts queue endtype
opns endgen

create -> queue
add: element queue-> nat
first: queue-> element

eqns
endtype
and thus can be actualized by any other type, for example a queue of natural numbers:
(xLOTOSk) (*E— LOTOSx)
type NatQueuses module ListNat is
Queueactualizedby NaturalNumbersising GenericList(Naturalrenaming (types nat:=E) )
sorthamesnatfor element renaming (types ListNat: =List)
opnnamesO0 for e0 endmod
endtype

However, a list constructor is available in E-LOTOS as predefined type, so a list of natural number could
be as simple as:

E-LOTOS
type NatQueuses list of Nat endtype

Renaming Renaming of data type specifications is useful when some required semantics is already captured
in an existing data type. It is also very common to apply renaming for rapid prototyping, where existing data
type definition is close to the goal and further details are left for further refinement. Renaming is applied to
sorts and operations. With different syntax, the same construction exists in E-LOTOS, and it applies to every
component of a module (so, it is extended to rename values, processes, etc.).

(xLOTOSk) (xE— LOTOSk)
type Connectionis module Connectionis
Queuerenamedby Queuerenaming (
sortnames types queue:= channel
channelfor queue opns element: = message
messagdor element add := send
opnnames first := receive
sendfor add )
receivefor first endmod
endtype

B.1.4 Full LOTOS

Write-many variables In E-LOTOS we have write-many variables. As in LOTOS there were just write-once
variables, there is no problem, as typically in LOTOS variable definition overrides previous declared ones.

Accept Accept construction is not needed in E-LOTOS, as sequential composition (“;") is used. Values are
automatically passed from one behaviour to the next one.
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Let Let construction translation is straightforward: in E-LOTOS it is called var: the only difference is that
endvar is needed in E-LOTOS.

Successful termination with value offers In LOTOS, exit is used to specify the successful termination of
a process, possibly with a list of values. There are two typical applications: generation of values as a result
of some processing or passing values from a behaviour to another. Both cases are implicit in E-LOTOS: the
first one is usually modelled via out parameters of a process. The second one is simply the default semantics
of E-LOTOS (see acceptabove).
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