
On the Introduction of Gate Typing in E�LOTOS

Version ���

Hubert GARAVEL�

INRIA Rh�one�Alpes
VERIMAG � Miniparc�ZIRST

rue Lavoisier
����� MONTBONNOT ST MARTIN

FRANCE
Tel � �	��
 �� 
� 
� ��
Fax � �	��
 �� �� �� ��

E�mail � hubert�garavel�imag�fr

February� ��� �

�

Abstract

In standard Lotos� gates are completely typeless� This paper proposes a gate typing extension

to Lotos� This extension is simple� fully upward compatible� and is shown to solve the need

for structured events� Gate type�checking can be performed statically and does not require any

change in the dynamic semantics of Lotos�

� Basic de�nitions

A basic knowledge of Lotos is assumed� The following terms will be used in the paper�

� An �experiment o�er� �or �o�er�� denotes either a value emission ��V � or receipt ��X � S��
It corresponds to the non�terminal symbol �experiment�offer� in the syntax of Lotos�

� An �experiment o�er list� is a �possibly empty� list of experiment o�ers simultaneously proposed
for a rendez�vous� It corresponds to the non�terminal symbol �experiment�offer�list��

� An �action denotation� denotes a rendez�vous proposal� It consists of a gate followed by an
experiment o�er list	 and possibly a boolean guard �called the �selection predicate��� It corre�
sponds to the non�terminal symbol �action�denotation��

� A �pro
le� hS�� ���� Sni is an n�tuple �n � �� of sorts	 corresponding to the sorts of the experiment
o�ers in an experiment o�er list� For instance	 the pro
le of �G �true �� �X�Y�S� is likely to
be �hbool� nat� S� Si�� This de
nition of pro
le will be extended in section ��

�This work has been supported in part by the Commissionof the EuropeanCommunities� under ESPRIT EC�Canada
Exploratory Collaborative Activity EC�CA ��������� 	EUCALYPTUS� A European
Canadian Lotos Protocol Tool
Set��






� Rationale

In Lotos	 gates are untyped� they can accept any pro
le	 i�e�	 any number of experiment o�ers	 and
of any sort�

In its most general de
nition	 a �gate typing� mechanism would consist in associating to each gate
declaration a set of constraints that restrict the pro
les accepted by the gate�

Gate typing exists in other Formal Description Techniques such as Estelle ��channels�� and Sdl

��signals���

This proposal for introducing gate typing in E�Lotos is motivated by the following considerations�


� Gate typing is a desirable feature	 which would improve�

Readability� since it would no longer be necessary to parse a whole Lotos description in
order to guess what pro
les can be accepted by a given gate �

Modularity� since the interfaces of Lotos processes �especially when considered as �black
boxes�� would be clearly de
ned �

Reliability� since it would allow an early detection of certain classes of deadlocks� For instance	
strange behaviours like �G �false	 


 �� G ��	 


� could be detected statically if
gate G is declared to accept only boolean values� Also	 it could allow the static detection
of mistakes such as� omission of an experiment o�er	 supply of an experiment o�er with a
wrong sort	 permutation of gate parameters in process instantiations	 etc�

�� A limited form of gate typing already exists in current Lotos� It is called �function�
ality� and is associated with the special gate ��� used in �exit� and ��� accept� operators�

Functionality declarations specify the acceptable pro
le for the ��� gate� �exit� denotes pro
le
hi	 �exit �S�� ���� Sn�� denotes pro
le hS�� ���� Sni	 �noexit� means that there is no need to
specify a pro
le since the ��� gate will not be used at all�

Functionality constraints restrict the use of the �exit� and ��� accept� operators according
to functionality declarations� They attempt to prevent potential deadlocks on the ��� gate
�although a full deadlock prevention can not be obtained statically	 since the problem is known
to be undecidable��

The functionality mechanism	 although useful	 is not so well integrated with the other Lotos
features	 and often appears as a �special case��

An appropriate gate typing mechanism for E�Lotos should take into account the existing
functionality mechanism�

�� Polymorphic gates should be preserved� A gate is said to be �polymorphic� �or �untyped��
if it accepts any pro
le� In current Lotos	 all the gates are polymorphic� E�Lotos should still
allow polymorphic gates for at least three reasons �

Upward compatibility� forbidding polymorphic gates would require all existing Lotos spec�
i
cations to be rewritten� Such a rewriting is not feasible practically	 unless it is done
automatically by some re�engineering tool�

Design� during the early stages of an application design � and especially the architecture
de
nition phase � design concepts are often not detailed enough� there is usually little
knowledge about acceptable pro
les� Polymorphic gates allow this problem to be deferred
to further phases	 still producing a valid Lotos speci
cation�

�



Polyvalence� Lotos is both a �calculus� and a �language�� This is an essential feature of
Lotos� Researchers and teachers praise its conciseness and use it as a convenient set
of notations to express concurrency and communication concepts� On the other hand	
programmers are asking for more support in the development of large applications�

An appropriate gate typing mechanism for E�Lotos should conciliate both points of view�

It is clear that untyped gates are not satisfactory for �programming in the large�	 and that
typed gates should be used for this purpose�

However	 typed gates are not suitable for �programming in the small� since they intro�
duce a syntactic overhead that is not justi
ed when describing simple automata �property
observers	 for instance� or experimenting with small descriptions�

�� Gate overloading should be allowed� A gate is said to be �overloaded� if it accepts a 
nite
number of pro
les �possible more than a single one�� The essential di�erence between �over�
loaded� and �polymorphic� relies in the fact that the set of pro
les accepted by an overloaded
gate is enumeratively de
ned	 whereas a polymorphic gate can accept any pro
le�

Requiring that a gate may only accept a single pro
le is too restrictive for many applications
�see	 for instance	 the example given in Annex A�� Despite the fact that it is possible to write
any Lotos speci
cation using only single pro
le gates	 this approach is not always suitable� it
increases the number of gates and goes against architectural principles� In particular	 it should
be possible to add a new pro
le to a gate in an existing speci
cation without upsetting this
speci
cation by splitting this gate into two non�overloaded gates�

It is worth noticing that	 in Estelle	 channels may carry messages with di�erent pro
les�

�� Gate typing should provide for structured events� It is well�known that current Lotos
is not fully appropriate for large constraint�oriented descriptions� Such descriptions require
so�called �structured events�� it is not always necessary nor desirable that all constraining
processes know about all experiment o�ers on a gate	 since this is clearly a lack of structuring�

This problem was pointed out by Pippo Scollo when developing OSI descriptions� he proposed
shorthand notations for action denotations in order to have structured events �KS����

A desirable gate typing mechanism should take this problem into consideration	 by allowing
action denotations to be structured�

�� Gate type checking should be performed at compile�time� In Lotos and most high�
level languages	 type checking is done statically	 at compile�time	 not at run�time�

The same principles should also apply to gate type checking� gate typing should only be a
matter of static semantics and should bring no change in the existing dynamic semantics� In
particular	 gate typing should not introduce run�time overhead�

� Proposal for a gate typing mechanism

��� Lexical changes

Three new keywords should be introduced in the syntax� �channel�	 �endchan�	 and �


��

Two new classes of identi
ers should be introduced in the syntax� channel identi
ers and experiment
identi
ers�

�channel�identifier� � �identifier� 	

�experiment�identifier� � �identifier� 	

�



��� Pro�les

The syntax of a pro
le is de
ned as follows�

�experiment�declaration� ���

�sort�identifier�

� �experiment�identifier� 
�
 �sort�identifier� 	

�experiment�declaration�list� ���

�experiment�declaration�

� �experiment�declaration� 
�
 �experiment�declaration�list� 	

�profile� ���


�
 
�


� 
�
 �experiment�declaration�list� 
�


These are some examples of pro
les�

� ���� denotes an empty pro
le	 with no experiment o�er�

� ��bool�� denotes a pro
le with a single experiment o�er of sort bool�

� ��bool� nat� bool�� denotes a pro
le with three experiment o�ers	 the respective sorts of
which being bool	 nat and bool�

� ��E��bool� E��nat� E��bool�� denotes a pro
le with three experiment o�ers	 the respective
sorts of which being bool	 nat and bool and the respective names of which being E�	 E� and
E��

� ��bool� E��nat� bool�� denotes a pro
le with three experiment o�ers	 the respective sorts
of which being bool	 nat and bool	 the name of the second experiment o�er being E�	 the 
rst
and third experiment o�ers being anonymous�

The experiment identi
ers occurring in the same pro
le must be pairwise distinct�

Formally	 a pro
le will be de
ned as an n�tuple hE� � S�� ���� En � Sni where �n � ��	 S�� ���� Sn are sort
identi
ers	 and E�� ���� En are experiment identi
ers� It is allowed to have some of the Ei unde
ned
to represent anonymous experiment o�ers� by convention	 anonymous Ei are supposed to be equal
to a special value noted ����

Two pro
les P � � hE�� � S
�
�� ���� E

�
m � S�mi and P

�� � hE��� � S��� � ���� E
��
n � S

��
ni are equal �P

� � P ��� i��

�m � n� � ��i � f
� ����mg� ��E�i � E��i � � �S�i � S��i ��

��� Channel declarations

The syntax of Lotos is extended with a notion of channel declaration� A channel declaration may
occur in any place where a type declaration may occur� The corresponding syntax is�

�channel�declaration� ���


channel
 �channel�identifier� 
is


�profile�list�


endchan
 	

�profile�list� ���

�profile�

� �profile� �profile�list�

These are some examples of channel declarations	 from the simplest to the most complex ones�

�



channel C� is

��

endchan

channel C� is

�bool�

endchan

channel C� is

��

�bool�

endchan

channel C� is

��

�bool�

�nat� nat�

�E��bool� nat� E��bool�

endchan

Intuitively	 a channel is a gate type� Each pro
le in a channel de
nition speci
es a permitted pro
le
for all the gates typed with this channel� Channel de
nitions with more than a single pro
le allow
gate overloading�

In channel de
nitions	 sorts identi
ers are visible with the same scope rules as in process de
nitions�

The occurrences of channel identi
ers and experiment identi
ers in the channel de
nitions are bind�
ing occurrences� These identi
ers are visible in processes de
nitions with the same scope as sort
identi
ers�

The pro
les occurring in the same channel de
nition are pairwise di�erent�

Remark

It is not required that the experiment identi
ers de
ned in the same channel de
nition be pairwise
di�erent� For instance	 the following channel declaration is valid�

channel C� is

�bool�

�E��bool�

�bool� nat�

�E��bool� nat�

�bool� E��nat�

endchan

�

Remark

The proposed syntax could be extended to allow a channel de
nition to import other channel de
ni�
tions �as it is the case in Lotos for type signatures�� For instance	 channels C� and C� above could
be de
ned as�

channel C� is C�� C�

endchan

channel C� is C�

�



�nat� nat�

�E��bool� nat� E��bool�

endchan

�

��� Typed gate declarations

In Lotos	 there are four occurrences of gate declarations� the �hide� operator	 the �choice� oper�
ator	 the �par� operator and process formal gate parameters�

The proposed mechanism extends the existing gate declaration syntax by allowing the gate identi
er
to be optionally followed by a channel identi
er�

The proposed syntax is�

�gate�identifier� ���

�identifier� 	

�gate�identifier�list� ���

�gate�identifier�

� �gate�identifier� 
�
 �gate�identifier�list� 	

�gate�declaration� ���

�gate�identifier�list�

� �gate�identifier�list� 
�
 
any


� �gate�identifier�list� 
�
 �channel�identifier� 	

�gate�declarations� ���

�gate�declaration�

� �gate�declaration� 
�
 �gate�declarations� 	

�gate�selection� ���

�gate�declarations� 
in
 
�
 �gate�identifier�list� 
�


�gate�selections� ��

�gate�selection�

� �gate�selection� 
�
 �gate�selections� 	

�� for the 
hide
 operator




 
hide
 �gate�declarations� 
in
 




�� for the 
choice
 operator




 
choice
 �gate�selections� 
��
 




�� for the 
par
 operator




 
par
 �gate�selections� �parallel�operator� 




�� for process definitions




 
process
 �process�identifier� 
�
 �gate�declarations� 
�
 




These are some example of possible declarations�

hide G� in 




hide G�� G�� G� in 




hide G� � any in 




hide G� � any� G�� G� � any in 




hide G� � C� in 




hide G�� G� � C�� G� � C� in 




The intuitive signi
cation of gate declarations is the following�

� A gate not followed by ��� or followed by �� any� is an untyped �polymorphic� gate�

�



� A gate followed by �� C�	 where C is a channel identi
er	 is typed with this channel�

Remark

There is no syntactic ambiguity between �any� and a channel identi
er	 because the former is a
reserved keyword� �

Remark

There is a syntactic ambiguity regarding the respective precedences of ��� and ���� As a design
choice	 ��� is assigned a lower priority that ���� For instance	 the following declaration�

hide G�� G� � C�� G�� G� � C� in 




will be parsed as�
hide fG�� G�g � C�� fG�� G�g � C� in 




and not as�
hide G�� fG� � C�g� G�� fG� � C�g in 




Said di�erently	 gate typing extends as much as possible to the left	 in order to encourage strong
typing� However	 the second meaning can still be obtained using the �any� declaration�

hide G� � any� G� � C�� G� � any� G� � C� in 




�

��� Gate type equivalence

New statics semantics rules have to be introduced in order to ensure that �gate substitutions� are
well�typed� There are three cases in Lotos where a gate G�� is substituted to another gate G��

� choice G� in ����� G��� ����

� par G� in ����� G��� ����

� P ����� G��� ��������� where process P ����� G�� ������������

Substituting a gate G�� to a gate G� is only permitted if G� and G�� have a compatible gate type �see
below��

Two gates G� and G�� have a compatible type �which is noted �G� � G��� i� one of the following
conditions is satis
ed�


� both G� and G�� are declared untyped �polymorphic��

�� G� and G�� are declared to be typed with the same channel identi
er�

Remark

The de
nition above is based upon �name equivalence� for channels	 instead of �structure equiva�
lence�� There are two reasons for this choice�

� Structure equivalence would lead to loose typing and unnecessary complexity in the static
semantics� For instance	 it would imply that the three channels below are equivalent because
they contain the same pro
les�

channel C� is

��

�bool�

�



�nat� nat�

endchan

channel C� is

��

�bool�

�nat� nat�

endchan

channel C� is

�nat� nat�

��

�bool�

endchan

� Structure equivalence is not usual in Lotos� two types with the same signature are not con�
sidered to be the same	 two sorts with the same attached operations are not considered to be
identical	 etc�

�

Remark

Untyped gates are not compatible with typed gates	 meaning that untyped gates are not �jokers�
which can be used anywhere� This is a condition for strong typing� Otherwise	 undesirable properties
would ensue� for instance	 given two typed gates G� and G�� and an untyped gate G	 then G � G� and
G � G�� and � assuming that ��� is an equivalence relation � by transitivityG� � G��� consequently	
��� would be the universal relation� �

��� Tagged action denotations

The Lotos syntax has to be extended for allowing experiment identi
ers to be explicitly referenced in
experiment o�ers� This is an essential point of the proposed mechanism	 as far as structured events
are concerned� Experiments identi
ers play the role of �tags�� they do not change the dynamic
semantics of action denotations�

The current syntax of action denotations is the following�

�action�denotation� ���

�gate�identifier�

� �gate�identifier� �experiment�offer�list� �selection�predicate�

� 
i
 	

�experiment�offer�list� ���

�experiment�offer�

� �experiment�offer�list� �experiment�offer� 	

�experiment�offer� ���


�
 �identifier�declaration�

� 
�
 �value�expression� 	

The extended syntax requires to change only the de
nition of experiment o�ers�

�experiment�offer� ���


�
 �identifier�declaration�

� 
�
 �value�expression�

�



� �experiment�identifier� 
��
 
�
 �identifier�declaration�

� �experiment�identifier� 
��
 
�
 �value�expression� 	

These are some examples of tagged action denotations�

channel C is

��

�E� � bool�

�E� � bool� E� � nat� E� � bool�

endchan

process P �G � C� � noexit ��

G E� �� �true	

G E� �� �X�bool	

G E� �� �true E� �� �succ��� E� �� �false	

G E� �� �X�bool E� �� �Y�nat E� �� �Z�bool	

G �true �succ��� E� �� �false	

stop

endproc

The experiment identi
ers occurring in an tagged action denotation must be de
ned in the pro
le
or the channel corresponding to the gate� Tagged action denotations can not be used if the gate is
untyped gate�

��	 Incomplete action denotations

It is also suitable to allow some experiment o�ers being omitted� For this purpose	 a new symbol
�


� is introduced in the action denotation syntax� it expresses the fact that the experiment o�er
list is incomplete� The syntax of these lists is modi
ed as follows�

�experiment�offer�list� � ��

�experiment�offer�

� 






� �experiment�offer� �experiment�offer�list� 	

Incomplete lists are to be completed with ��o�ers containing �dummy� variables that will never be
used� Incomplete lists are only allowed if no ambiguity can occur during completion �the completion
algorithm will be detailed in section ����� For instance	 with the channel de
nition of the previous
examples	 the following action denotations�

G E� �� �false 


	

G E� �� �succ ��� 


	

G E� �� �Z�bool 


	

G E� �� �succ��� E� �� �false 


	

G E� �� �X�bool E� �� �succ��� E� �� �true 


	

G �succ��� 


	

stop

are expanded into standard Lotos action denotations	 where p	 q	 r are �dummy� variables that will
never be used�

G �false �q�nat �r�bool	

G �p�bool �succ ��� �r�bool	

G �p�bool �q�nat �Z�bool	

�



G �false �succ��� �r�bool	

G �X�bool �succ��� �true	

G �p�bool �succ��� �r�bool	

stop

If an action denotation is incomplete �i�e�	 if it contains the �


� symbol�	 its gate must not be
untyped�

Remark

It is not required that all the experiment o�ers of an incomplete action be tagged� �

If an action denotation is incomplete	 the order of experiment o�ers is not signi
cant� For instance	
with the previous notations	 the following code�

G E� �� �succ��� E� �� �false 


	

G E� �� �false E� �� �succ��� 


	

G E� �� �false E� �� �succ��� E� �� �false 


	

stop

is expanded into�

G �false �succ��� �r�bool	

G �p�bool �succ��� �false	

G �false �succ��� �false	

stop

Remark

In this proposal	 order�free experiment o�ers are only allowed for incomplete actions� They are not
permitted if the �


� symbol is absent� �

��
 Well�typed action denotations

The static semantics has to be extended with new rules	 in order to deal with gate typing extensions�
Basically	 there are three tasks to be performed�

Action binding� it is necessary to check whether the action is compatible with the gate of the type�
In case of gate overloading	 it is necessary to select the appropriate pro
le	 if any� This problem
is close to the resolution of operation overloading	 but the corresponding algorithm is much
simpler since it only involves a limited form of pattern�matching�

Action completion� incomplete actions have to be completed	 according to the appropriate pro
le�

Action reordering� incomplete actions have to be re�ordered	 according to the appropriate pro
le�

Let A be an action denotation of the form�

G �E����O�����En���On �


� ��V ��

where�

� G is a gate�

� O�� ���� On is a possibly empty list �n � �� of experiment o�ers�

� E�� ���� En are the experiment identi
ers possibly attached to O�� ���� On �or ��� if not present��

� V is a selection predicate�


�



Let S�� ���� Sn be the respective sorts of the experiment o�ers O�� ���� On�

Let � be the set of pro
les de
ned as follows�

� If G is untyped	 then � � ���

� If G is typed with channel C	 then � � fP�� ���� Pmg where �m � 
� and where P�� ���� Pm are
the pro
les contained in the de
nition of C�

To de
ne if action A is well�typed	 several cases are to be considered�


� If � � ��	 then A is well�typed i��

� all the Ei �i � f
� ���� ng� are equal to �	 and

� the �


� symbol is absent

�� If � �� ���

�a� If the �


� symbol is absent	 then A is well�typed i� the cardinal of �� is equal to 
	
where �� be the set of pro
les de
ned as follows�

�� � fhE�� � S
�
�� ���� E

�
n � S

�
ni � � j ��i � f
� ���� ng� �Ei � fE�ig 	 f�g� � �S�i � Si�g

�b� If the �


� symbol is present	 then A is well�typed i� the cardinal of �� is equal to 
	
where �� be the set of pro
les de
ned as follows�

�� �

�
hE�� � S

�
�� ���� E

�
m � S�mi � � j

�n 
 m� � ��� � f
� ���� ng� f
� ����mgj� injective�
��i � f
� ���� ng� �Ei � fE�

��i�g 	 f�g� � �Si � S�
��i��

�

Remark

�� is the set of pro
les that �match� the tagged experiment o�ers of A �possibly with reordering and
completion	 as 
gured out by function ��� If the cardinal of �� is �	 then action A is not matched
by any pro
le� If the cardinal of �� is greater than 
	 then several matches are possible	 which is
considered to be an error �ambiguity�� �

Remark

The gate typing de
nition is �strong� in the sense that it does not allow any ambiguity� For instance	
the following code will be rejected�

channel C is

�STATUS�bool� REASON�nat�

�STATUS�bool� CODE�nat�

�STATUS�bool� REASON�nat� CODE�nat�

endchan






hide G�C in �G STATUS���true CODE���n�nat 


 �n eq ��	 stop�

because two di�erent pro
les match the incomplete action denotation� Although such ambiguity
might be useful �it introduces some kind on genericity� it is forbidden for safety reasons and to keep
things simple� �

��� Functionality declarations

The proposed mechanism allows to use a pro
le or a channel identi
er for declaring the functionality
of a process� The existing syntax�







�functionality�list� ���


�
 
noexit


� 
�
 
exit


� 
�
 
exit
 
�
 �sort�list� 
�
 	

should be replaced by�

�functionality�list� ���


�
 
noexit


� 
�
 
exit


� 
�
 
exit
 
�
 �sort�list� 
�
 	

� 

 �� the empty string

� 
�
 �channel�identifier� 	

A channel identi
er occurring in a functionality list must only contain a single pro
le �possibly with
experiment identi
ers��

Remark

There is no syntactic ambiguity between �noexit� �resp� �exit�� and the channel identi
er	 since
�noexit� and �exit� are reserved keywords� �

It is not clear at this point whether the existing constructs �noexit�	 �exit� and �exit �S�� ���� Sn��
have to be dropped from Lotos or kept for backward compatibility�

There would be great bene
ts in dropping them�

� �noexit� is too verbose and could be replaced by the empty string	 introduced for this purpose�

� �exit� and �exit �S�� ���� Sn�� introduce structure equivalence for pro
les �see section ���
above�� Therefore	 gate type equivalence for the ��� gate can not be the same as the equiva�
lence de
ned in section ��� for ordinary gates� It must be extended in order to combine name
equivalence �for channel identi
ers� and structure equivalence �for functionalities de
ned with
�exit���

It is clear that �exit� and �exit �S�� ���� Sn�� and the corresponding functionality rules are
irregular with respect to the proposed gate typing mechanism� They could be replaced by
channel names�

If these constructs are kept	 the revised standard should strongly discourage their use	 warn about
their possible deprecation in a next revision of the standard	 recommend the aforementioned replace�
ment solutions	 and advise compiler writers to �ag the use of these constructs�

���
 Extended exit and accept statements

Tagging	 completion and reordering also apply to �exit� and �accept� statement	 in the same way
as for action denotations�

exit �E� �� false� succ ���� E� �� any bool�

exit �E� �� succ ���� 


�

exit �succ ���� 


�

exit �E� �� false� E� �� true� 


�

�� accept E� �� x�bool� y�nat� E� �� z�nat in

�� accept y�nat 


 in

Missing argments in �exit� are replaced by �any� clauses� Missing arguments in �accept� are
discarded�


�



���� Miscellaneous

To develop common vocabulary and notations amongst the Lotos community	 the standard library
of E�Lotos should contain a prede
ned channel identi
er �none��

channel NONE is

��

endchan

which would allow to de
ne gates without experiment o�er�

hide G��none� G��any in 




� Conclusion

The proposed gate typing mechanism builds upon another proposal by Jos�e Manas �Man����

It meets the rationale exposed in section ��

It is totally upward compatible with current Lotos	 in the sense that any existing Lotos program
would remain a valid program under the proposed gate typing extension�

It provides a simple and elegant solution for the need of structured events� Annex B demonstrates
that the modularity problem reported by Pippo Scollo can be solved with the proposed mechanism�

Another approach ��compound events�� was proposed for the same modularity problem� Compound
events are based on the introduction of a synchronous action product� There are essential di�erences
between the �compound events� approach and the �gate typing� approach proposed here�

� Gate typing is performed statically �at compile�time� whereas compound events are more likely
computed at run�time�

� Introducing gate typing does not modify the existing dynamic semantics of Lotos	 whereas
compound events require major changes�

� Gate typing is based on fairly standard type�checking algorithms	 which could easily be added to
existing tools� Conversely	 there is little experience about e�ective implementation of compound
events�

� Compound events do not remove the need for gate typing� With compound events	 a gate
typing mechanism is still necessary� it must be even more complex than the current proposal	
in order to deal with action products�

It would be interesting to decide whether compound events are more expressive than gate typing and
whether this additional expressiveness	 if any	 is worth the additional complexity in the static and
dynamic semantics�

References

�KS��� Harro Kremer and Giuseppe Scollo� Formal description in Lotos of the OSI transport
protocol de
ned in ISO�IS ����� University of Twente	 The Netherlands	 
����

�Man��� Jos�e A� Manas� Typed Gates� Contribution MAD� to the Madrid E�Lotos meeting	
ISO�IEC JTC
�SC�
�WG
�N����	 January 
����


�



�Mou��� Laurent Mounier� A LOTOS Speci
cation of a Transit�Node� Rapport SPECTRE ����	
VERIMAG	 Grenoble	 March 
����

Annex A� The Transit Node example

The example below is based on an already existing Lotos description of a message router �called
�transit node��� The requirements and functioning principles of the transit node were de
ned in the
framework of the ESPRIT SPECS projet� On this basis	 a Lotos speci
cation was developed by
Laurent Mounier �Mou���� This Lotos speci
cation was modi
ed in order to type all the gates� It
is clear that the description is much more readable and informative after the introduction of gate
typing�

This example illustrates how channel de
nitions can be used	 and justi
es the need for gate overload�
ing�

specification Transit�Node �DI�Data�In� DO�Data�Out� timeout�Data�Out� � noexit

library BOOLEAN� NATURALNUMBER endlib

type PORT is NATURALNUMBER renamedby

sortnames PortNo for Nat

endtype

type ROUTE is NATURALNUMBER renamedby

sortnames RouteNo for Nat

endtype

type ENVELOPPE is NATURALNUMBER renamedby

sortnames Env for Nat

endtype

type COMMANDS is

sorts Command

opns

Add�Data�Port ��� constructor �	�

Add�Route ��� constructor �	�

Send�Faults ��� constructor �	�

Other�Command ��� constructor �	 � 
� Command

endtype

type ERROR�CODE is

sorts ErrorCode

opns

Unknown�Route ��� constructor �	�

Timed�Out ��� constructor �	�

Wrong�Msg ��� constructor �	 � 
� ErrorCode

endtype

type PORT�SET is BOOLEAN� PORT

sorts PortSet

opns

emptyset ��� constructor �	 � 
� PortSet

add ��� constructor �	 � PortNo� PortSet 
� PortSet

�IsIn� � PortNo� PortSet 
� Bool

�includes� � PortSet� PortSet 
� Bool

���� � PortSet� PortSet 
� Bool

eqns

forall ps� ps
� ps��PortSet� p� p
� p��PortNo

ofsort Bool


�



p IsIn emptyset � false �

p IsIn add�p� ps	 � true �

not �p
 eq p�	 �� p
 IsIn add�p�� ps	 � p
 IsIn ps �

ofsort Bool

ps includes emptyset � true �

not �p IsIn ps
	 �� ps
 includes add�p� ps�	 � false �

p IsIn ps
 �� ps
 includes add�p� ps�	 � ps
 includes ps� �

ofsort Bool

emptyset �� emptyset � true �

emptyset �� add�p�� ps�	 � false �

add�p
� ps
	 �� emptyset � false �

add�p
� ps
	 �� add�p�� ps�	 � �p
 eq p�	 and �ps
 �� ps�	 �

endtype

type ROUTE�LIST is BOOLEAN� PORT�SET� ROUTE

sorts RouteList

opns

emptyrl ��� constructor �	 � 
� RouteList

insert ��� constructor �	 � RouteNo� PortSet� RouteList 
� RouteList

�IsIn� � RouteNo� RouteList 
� Bool

route � RouteNo� RouteList 
� PortSet

update � RouteNo� PortSet� RouteList 
� RouteList

eqns

forall rl�RouteList� r� r
� r��RouteNo� ps� ps
� ps��PortSet

ofsort Bool

r IsIn emptyrl � false �

r IsIn insert �r� ps� rl	 � true �

not �r
 eq r�	 �� r
 IsIn insert�r�� ps� rl	 � r
 IsIn rl �

ofsort PortSet

route�r� emptyrl	 � emptyset �

route�r� insert�r� ps� rl		 � ps �

not �r
 eq r�	 �� route�r
� insert�r�� ps� rl		 � route�r
� rl	 �

ofsort RouteList

update�r� ps� emptyrl	 � emptyrl �

update�r� ps
� insert�r� ps�� rl		 � insert�r� ps
� rl	 �

not �r
 eq r�	 ��

update�r
� ps
� insert�r�� ps�� rl		 �

insert�r�� ps�� update�r
� ps
� rl		 �

endtype

type ENV�LIST is BOOLEAN� ENVELOPPE

sorts EnvList

opns

emptyl ��� constructor �	 � 
� EnvList

insert ��� constructor �	 � Env� EnvList 
� EnvList

head � EnvList 
� Env

tail � EnvList 
� EnvList

remove � Env� EnvList 
� EnvList

�IsIn� � Env� EnvList 
� Bool

minus � EnvList� EnvList 
� EnvList

���� � EnvList� EnvList 
� Bool

eqns

forall l� l
� l��EnvList� r� r
� r��Env

ofsort Env

head�insert�r�l		 � r �

ofsort EnvList

tail�insert�r�l		 � l �

remove�r� emptyl	 � emptyl �

remove�r� insert�r� l		 � l �

not �r
 eq r�	 ��

remove�r
� insert�r�� l		 � insert�r�� remove�r
� l		 �

minus�l� emptyl	 � l �


�



minus�l
� insert�r� l�		 � minus�remove�r� l
	� l�	 �

ofsort Bool

r IsIn emptyl � false �

r IsIn insert �r� l	 � true �

not �r
 eq r�	 �� r
 IsIn insert�r�� l	 � r
 IsIn l �

ofsort Bool

emptyl �� emptyl � true �

emptyl �� insert�r�� l�	 � false �

insert�r
� l
	 �� emptyl � false �

insert�r
� l
	 �� insert�r�� l�	 � �r
 eq r�	 and �l
 �� l�	 �

endtype

�� ���������������������������������������������������������������������� �	

channel Data�In is

�PortNo� Env� RouteNo	

endchan

channel Data�Out is

�PortNo� Env	

endchan

channel Control�In is

�Command	

�Command� PortNo	

�Command� RouteNo� PortSet	

endchan

channel Control�Out is

�Bool� EnvList	

endchan

channel Control�Error is

�ErrorCode	

endchan

channel Error�Out is

�	

endchan

channel Data�Error is

�Env� ErrorCode	

endchan

channel Route�Query is

�RouteNo	

endchan

channel Route�Answer is

�PortSet	

�ErrorCode	

endchan

channel Port�Creation is

�PortNo	

endchan

�� ���������������������������������������������������������������������� �	

behaviour

hide CI�Control�In� CO�Control�Out� erri
�Control�Error� erri��Data�Error�


�



erro�Error�Out� rq�Route�Query� ra�Route�Answer� crep�Port�Creation�

io�Data�Out in

�� Controler �CI� erri
� erro� crep� rq� ra� �emptyrl� emptyset	

��erri
� erro��

ErrHandler �erri
� erri�� erro� CO� �false� emptyl	 	

��crep� rq� ra� erri���

DataInPorts �DI� crep� rq� ra� erri�� io� 	

��crep� io��

DataOutPorts �DO� crep� io� timeout�

where

�� ���������������������������������������������������������������������� �	

process Controler �CI�Control�In� erri�Control�Error� erro�Error�Out�

crep�Port�Creation� rq�Route�Query� ra�Route�Answer�

�rl�RouteList� ps�PortSet	 � noexit ��

�� Valid commands from control
port
in �	

CI �Add�Data�Port �n�PortNo �not �n IsIn ps	� �

�� only non
existing ports can be open �	

crep �n �

Controler �CI� erri� erro� crep� rq� ra� �rl� add�n�ps		

��

CI �Add�Route �r�RouteNo �s�PortSet �

AdRoute �CI� erri� erro� crep� rq� ra� �rl� ps� r� s	

��

CI �Send�Faults �

erro �

Controler �CI� erri� erro� crep� rq� ra� �rl� ps	

�� Other command from control
port
in �	

��

CI �Other�Command �

erri �Wrong�Msg �

Controler �CI� erri� erro� crep� rq� ra� �rl� ps	

�� Route query from data ports �	

��

rq �r�RouteNo

��r IsIn rl	 and �ps includes route�r� rl		

and not�route�r� rl	 �� emptyset	� �

�� route r exists and it defines an existing non empty port set �	

ra �route�r� rl	 �

Controler �CI� erri� erro� crep� rq� ra� �rl� ps	

��

rq �r�RouteNo

�not�r IsIn rl	 or not�ps includes route�r� rl		

or �route�r� rl	 �� emptyset	� �

�� route r doesn�t exist or defines a non
existing or empty set �	

ra �Unknown�Route �

Controler �CI� erri� erro� crep� rq� ra� �rl� ps	

�� ���������������������������������������������������������������������� �	

process AdRoute �CI�Control�In� erri�Control�Error� erro�Error�Out�

crep�Port�Creation� rq�Route�Query� ra�Route�Answer�

�rl�RouteList� ps�PortSet� r�RouteNo� s�PortSet	 � noexit ��

�r IsIn rl� 
�

�� update the definition of an existing route �	


�



Controler �CI� erri� erro� crep� rq� ra� �update�r� s� rl	� ps	

��

�not �r IsIn rl	� 
�

�� create a new route �	

Controler �CI� erri� erro� crep� rq� ra� �insert�r� s� rl	� ps	

endproc

�� ���������������������������������������������������������������������� �	

process ErrHandler �erri
�Control�Error� erri��Data�Error� erro�Error�Out�

CO�Control�Out� �b�Bool� l�EnvList	 � noexit ��

�� records that a reception of a non valid control message occured �	

erri
 �er�ErrorCode �b eq false� �

ErrHandler �erri
� erri�� erro� CO� �true� l	

��

erri
 �er�ErrorCode �b eq true� �

ErrHandler �erri
� erri�� erro� CO� �true� l	

�� records erroneous data messages �	

��

erri� �e�Env �er�ErrorCode �not �e IsIn l	� �

ErrHandler �erri
� erri�� erro� CO� �b� insert�e�l		

��

erri� �e�Env �er�ErrorCode �e IsIn l� �

ErrHandler �erri
� erri�� erro� CO� �b� l	

�� routes erroneous messages on control port out CO �	

��

erro �

CO �b �l �

ErrHandler �erri
� erri�� erro� CO� �false� emptyl	

endproc

�� ���������������������������������������������������������������������� �	

process DataInPorts �DI�Data�In� crep�Port�Creation� rq�Route�Query�

ra�Route�Answer� erri�Data�Error� io�Data�Out� � noexit ��

�crep �� of PortNo � Inport �DI� rq� ra� erri� io� �� of PortNo		

���

�crep �
 of PortNo � Inport �DI� rq� ra� erri� io� �
 of PortNo		

endproc

�� ���������������������������������������������������������������������� �	

process Inport �DI�Data�In� rq�Route�Query� ra�Route�Answer� erri�Data�Error�

io�Data�Out� �n�PortNo	 � noexit ��

DI �n �e�Env �r�RouteNo �

�� ask Controler process for data ports out associated with route r �	

rq �r �

�

�� a valid port set is associated with route r �	

ra �s�PortSet �

SendIt �DI� rq� ra� erri� io� �n� s� e	

��

�� route r is not correctly defined� no port set associated with �	

ra �er�ErrorCode � erri �e �er �

InPort �DI� rq� ra� erri� io� �n	

	


�



endproc

�� ���������������������������������������������������������������������� �	

process SendIt �DI�Data�In� rq�rq� ra�Route�Answer� erri�Data�Error�

io�Data�Out� �n�PortNo� s�PortSet� e�Env	 � noexit ��

�� choose any port of port set s and put message e in the buffer �	

choice outp�PortNo �� �outp IsIn s� 
� io �outp �e �

Inport �DI� rq� ra� erri� io� �n	

endproc

�� ���������������������������������������������������������������������� �	

process DataOutPorts �DO�Data�Out� crep�Port�Creation� io�Data�Out�

timeout�Data�Out� � noexit ��

�crep �� of PortNo � OutPort �DO� io� timeout� �� of PortNo� emptyl		

���

�crep �
 of PortNo � OutPort �DO� io� timeout� �
 of PortNo� emptyl		

endproc

�� ���������������������������������������������������������������������� �	

process OutPort �DO�Data�Out� io�Data�Out� timeout�Data�Out�

�n�PortNo� l�EnvList	 � noexit ��

�� add a new message to the buffer of data port out n �	

io �n �e�Env �not �e IsIn l	��

OutPort �DO� io� timeout� �n� insert�e� l		

�� the first message is picked up from the buffer of data port out n ��� �	

��

�not �l �� emptyl	� 
�

�

�� ��� and is transmitted outside the node �	

DO �n �head�l	 �

OutPort �DO� io� timeout� �n� tail�l		

��

�� ��� or is declared �timed out� �	

timeout �n �head�l	 �

OutPort �DO� io� timeout� �n� tail�l		

	

endproc

�� ���������������������������������������������������������������������� �	

endspec

Annex B� The Transport Service example

The example below is borrowed from the formal description in Lotos of the Transport Protocol
�KS���� This description is not written in standard Lotos	 because the authors chose to use short�
hands in order to deal with structured events� This example shows that the proposed gate typing
mechanism is very close to these shorthands	 though more general and more readable�

In the excerpts below	 gate p has � experiment o�ers and is used by many small processes� Each
process only works on a few experiment o�ers and needs not to know about the other ones�


�



Shorthands are similar to incomplete actions� they allow to omit experiments	 which are to be replaced
by ��o�ers with dummy variables� To work properly	 shorthands assume that each gate has only a
single pro
le and that the sorts of all experiments o�ers in this pro
le are pairwise distinct� Under
this assumption	 there is no need for experiment identi
ers�

This is a part of the original Transport Protocol description�

��

The events at gate p have the following structure�

p �tr�TPId �ni�NCId �cl�Class �d�Dir �c�Copy �tpdu�ETPDU �err�TPErr

��

process TCLocalRef �p� �lr�TPId� � noexit��

p 	lr 


TCLocalRef �p� �lr�

endproc

process FreeReference �p� r� �lr�Ref� � noexit��

p �tr�TPId �Qual�tr� eq Local and �Ref�tr� eq lr�� 


BoundReference �p� r� �Local�lr��

endproc

process UseBoundReference �p� �tr�TPId� � noexit ��

p 	tr �d�Dir �c�Copy �tpdu�ETPDU �not�AssignLocalRef�d� c� tpdu��� 


UseBoundReference �p� �tr�

endproc

process TCIdByRef �p� � noexit��

p �tr�TPId 	Send 	New �tpdu�ETPDU �LocalSrcRef�tr� tpdu�� 


TCLocalRef �p� �Local�Ref�tr���

��

p �tr�TPId 	Recv �tpdu�ETPDU �RemoteSrcRef�tr� tpdu�� 


TCRemoteRef �p� �tr�

endproc

The same excerpt can be written in a very close way using the proposed gate typing mechanism�
Basically	 it is su�cient to de
ne a channel �which formalizes the comments contained in the original
description� and to add �


� symbols to incomplete action denotations� Also	 to improve readability	
��o�ers have been tagged	 but this is not mandatory�

channel TPDU�transfer is

�tr�TPId� ni�NCId� cl�Class� d�Dir� c�Copy� tpdu�ETPDU� err�TPErr�

endchan

process TCLocalRef �p�TPDU�transfer� �lr�TPId� � noexit��

p tr��	lr 


 


TCLocalRef �p� �lr�

endproc

process FreeReference �p�TPDU�transfer� r� �lr�Ref� � noexit��

p �tr�TPId 


 �Qual�tr� eq Local and �Ref�tr� eq lr�� 


BoundReference �p� r� �Local�lr��

endproc

process UseBoundReference �p�TPDU�transfer� �tr�TPId� � noexit ��

p tr��	tr �d�Dir �c�Copy �tpdu�ETPDU 


 �not�AssignLocalRef�d� c� tpdu��� 


��



UseBoundReference �p� �tr�

endproc

process TCIdByRef �p�TPDU�transfer� � noexit��

p �tr�TPId d��	Send c��	New �tpdu�ETPDU 


 �LocalSrcRef�tr� tpdu�� 


TCLocalRef �p� �Local�Ref�tr���

��

p �tr�TPId d��	Recv �tpdu�ETPDU 


 �RemoteSrcRef�tr� tpdu�� 


TCRemoteRef �p� �tr�

endproc

�



