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Abstract

The importance of coroutines as a programming paradigm is recognized. This paper proposes
to extend LOTOS with a coroutine operator, for which syntax, static semantics, and untimed
semantics are provided. We show that this coroutine mechanism generalizes several other op-
eratorrs, which exist in LOTOS or which have been proposed for E-LOTOS, including trap,
suspend-resume, and hiding.
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1 Comments about the existing core behaviour language

At present, the definition of E-LoT0S, as provided by the Kansas City output document is far
advanced. However, some issues remain unsolved, especially in the behaviour part:

e The definition of the core behaviour language, as produced after the Kansas City meeting,

has introduced a new class of objects, ezceptions, which can be felt as “similar to gates, but
different” .

Following the famous Occam razor principle, we must question ourselves about the need for
having two concepts: gates and exceptions.

If we only consider an “untimed semantics” point of view, it is clear that gates and exceptions
are much the same concept, and that we could replace exceptions by gates everywhere without
any problem. This approach advocated in [GS96] brings simplicity, expressiveness and good
algebraic properties.

If we consider a “timed semantics” point of view, the major difference between gates and
exceptions is urgency. According to ET-LOTOS principles, urgency is only attached to hidden
gates; visible gates are not urgent. This is not the case with exceptions, which are always
urgent.

We notice that this definition of exceptions as urgent (although motivated by semantic “tricks”)
violates the ET-LOTOS principle stating that one cannot enforce urgency on visible events:
from the outside of a system, we can observe visible, urgent exceptions, which is is not allowed
for gates.

If accepted, this design choice will have the following consequence. Practically, when designing a
system in E-LOTOS, engineers will associate gates to non-urgent external events and exceptions
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to urgent external events. However, as gates and exceptiosn are not symmetric (for instance,
exceptions cannot be synchronized), they will face limitations (e.g., the impossibility of using
constraint-oriented style for urgent signals).

This semantics also has unpleasant effects, especially in the definition of the synchronized
termination (synchronization of two “exits” by parallel composition).

We are also worried by the fact that exceptions are systematically urgent, although this is not
always necessary. For instance, if a process is programmed with sequential composition, it will
use an urgent action “6” that can be in conflict with a truly urgent external event.

It is to be feared that a plain use of exceptions in real-time programs may create, as an arte-
fact, undesirable urgency constraints, therefore leading to unsuitable non-determinism or time

deadlocks.

One can worry about the complexity of the resulting language, since urgency occurs at different
places: for hidden gates, for exceptions, in the “hide” operator. Having urgency disseminated
at many places and in different contexts would not make of E-LOTOS and elegant and easy-to-
learn language, nor it would simplify the design and analysis of real-time programs with “true”
urgency constraints.

The definition of the core behaviour language does not include a suspend-resume operator. As
it is now, E-LOTOS cannot be used for describing the behaviour of real-time systems with task
switching and coroutines. The need for such features has been pointed out in many places, e.g.
[GH93, GH94] in the case of avionics embedded software.

Finally, the suspend-resume operator proposed in [Her96] seems incompatible with the “trap”
operator of E-LOTOS. It would be better if the “trap” operator could be seen as a particular
case of a suspend that does not resume.

Motivations and rationale

In order to solve the aforementioned problems, we suggest a refined design of the behaviour language,
based upon the following principles:

1.

The practical need for suspend-resume operator, and more generally for task switching and
coroutines, should be addressed.

Urgency should be introduced in a single place. There should exist a unique operator to introduce
urgency, all possible uses of urgency being obtained as shorthands from this operator.

. Currently, the reason for distinguishing gates and exceptions is urgency. In the proposed new

framework, this justification should no longer hold. Gates and exceptions should be unified, thus
leading to a great reduction in syntactic and semantic complexity.

Urgency should be made optional. The E-LOTOS specifier should have the freedom to specify
when urgency is needed and when it is not (in opposite to the current definitions where urgency
is always a default, for hidden gates, for exceptions, etc.) This will allow a more accurate
description of timed behaviours, avoiding over-specification issues in real-time constraints.

. Trap and suspend-resume should be integrated. The ‘trap” operator should be equivalent to a

suspend operator without resumption. It would be even better the both the trap and suspend-
resume could be obtained as special cases of a more general mechanism.



3 A quick overview of coroutines in programming languages

Coroutines allow to model a set of cooperating processes that execute in mutual exclusion, only one of
these processes being active at a time. We see coroutines as an intermediate step between sequential
and parallel programming:

e Introduced in sequential languages, coroutines bring a “flavour of concurrency” that allows
computations to be interleaved (i.e., executed in pseudo-parallelism), according to a demand-
driven scheduling strategy.

Coroutines were originally introduced by Conway [Con63] as a natural paradigm in compiler
development. Several programming languages have incorporated the concept of a coroutine in
their definition, such as SIMULA and MODULA-2.

Another approach was adopted for classical programming languages as PASCAL and FORTRAN
for which coroutine extensions have been proposed as a mean to add missing concurrent capa-
bilities.

e Compared to the concurreny offered by a language like LOTOS, coroutines may be useful to
specify a limited form (e.g., deterministic) form of parallel composition.

The importance of coroutines (combined with concurrency) for parallel languages has been
pointed out by Kahn and MacQueen [KM77]. They proposed a coroutine mechanism to specify
networks of parallel processes interconnected by channels, as a part of theoretical work on “lazy
evaluators” and “streams” for functional languages.

But, not many parallel languages include coroutines, mostly due to the fact that parallel com-
position operator already provide a non-deterministic solution to the need for coroutines.

However, there are examples where coroutines should be preferred to asynchronous parallel
composition. This is typically the case for embedded systems, the code of which has to be
deterministic in order to match certification requirements from the certification authorities.
For these applications, the parallel composition of LOTOS cannot be used, as it relies non-
determinism. Therefore, it would be useful to have a more limited form of cooperating processes
that does not introduce non-determinism. This is typically the reason for the success of the
synchronous languages (LUSTRE, ESTEREL, and SIGNAL) in the area of critical systems.

Moreover, the need for coroutines in real-time systems appears clearly from the description in
LOTOS of the Airbus A340 Flight Warning Computer [GH93, GH94], where LOTOS is unable

to describe the context switching between different tasks.

A comparative study of coroutines is done in [PS80]. Although, the details may vary from one
computer language to another, the various coroutine mechanisms present a number of similarities:

o A set of coroutines is a set of tasks that execute one at a time (presumably on a unique processor)
and cooperate to perform a computation. As stated in [PS80], a coroutine is a generalized pro-
cedure, in that execution of a coroutine can be temporarily suspended and subsequently resumed
at the place it was last active.

e Depending on the coroutine mechanism under study, there can exist an additional task (named
controller) that enforces a given discipline (scheduling) in the execution of these tasks. If this
controller exists, the coroutine scheme is said to be semi-symmetrical; otherwise it is said to be
symmetrical.

e The creation of the coroutines must be done before they are referenced and executed. The exe-
cution may start either automatically upon creation (as in SIMULA), or by an explicit command



(as in SL5). [PS80] state that the creation and immediate activation is the best solution for
implementation purpose.

o The suspension of the executing coroutine can be either implicit (when the coroutine executes an
input/output request, it is suspended and the control is passed to the other coroutine concerned
by the input-output operation), or explicit (when the control is passed to another coroutine or
to the controller, if any).

e the termination of the coroutines raises the question of the place where the control returns.
Some programming languages prohibit termination (as in SL5), but in general the control is
passed to the behaviour that created the set of coroutines.

4 Definition of the coroutine operator

Following the ideas behind the “trap” operator, we propose to introduce in E-LOTOS a coroutine
mechanism that can be seen as a generalization of the exception mechanism currently proposed for

E-LOTOS.

As for the “trap” operator proposed in [GS96], which only needs a single new behaviour operator
for introducing exceptions in LOTOS, our proposal only needs one additional beheaviour operator
(named “exec”) to introduce coroutines in E-LOTOS. No extra feature (especially, no new class of
identifiers) is required.

In the design of a coroutine mechanism for E-LOTOS, the main problem is not to model suspension
and resumption of coroutines. The control passing can be easily obtained by gates (in the same way
as for the “trap” operator or the suspend-resume operator of [Her96]).

The difficult problem is rather value passing between the different coroutine, which is mandatory as
coroutines are supposed to work together to produce information. For instance, this problem is not
solved in the suspend-resume operator proposed in [Her96], which does not allow values to be passed
from from the suspended/resumpted behaviours. On the other hand, an appropriate coroutine mech-
anism should be able to emulate the existing “trap” operator that allows the interrupted behaviour
to pass values to the exception handler using gate parameters.

There are two possible approaches:

Shared variables: as coroutines execute one at a time (in mutual exclusion), they could very well
communicate using global variables, shared by all the coroutines. A sufficient condition for
ensuring that these variables are always set before used would be to require that they are
syntactically initialized.

Although the shared variable paradigm is presumably sound, we do not consider it for E-
LOTOS, because it would be too far from the remainder of the language, which is based upon
communication by message passing (rendez-vous).

Moreover, the modeling of the existing “trap” operator using coroutines with shared variables
would be tricky as the interrupted behaviour passes information to the exception handler using
gate parameters, which should be somehow translated into global variable assignments.

Message passing: we will follow this approach which is compatible with the rendez-vous paradigm
of LoTos. Since input/outputs are modelled with rendez-vous in LoTos, our proposal unifies,
in some sense, the implicit and explicit control passing.



4.1 Notations

The following notations hold for the remainder of the paper.

G, 1, Go, ... denote observable gates; we note “6” the special gate generated by the “exit” operator
of LoTos.

I,T1,Ts, ... denote channels (i.e., gate types).

B, By, Bs, ... denote behaviour expressions.

S, 51, Sa, ... denote sorts, i.e., data domains (also called types in this paper).
V, V1, Va, ... denote variables.

V, Vi, Va, ... denote variable declarations, i.e., (possibly empty) lists of the form “(Vy : Sy, ..., V,, = Sn)”,
where each variable V; is declared to have the sort S;.

E Fq1, Esy, ... denote value expressions, i.e., algebraic terms that may contain variables.

€,e1,€a,... denote ground terms of the initial algebra, i.e., canonical representatives of the quotient
algebra. Ground terms are a subset of value expressions: they do not contain variables and play the
role of “constant” value expressions.

€,&1, €, ... denotes wvalue lists, i.e., (possibly empty) lists of the form “(eq, ..., e,)”.
“[6'/17] B’ denotes the behaviour expression B in which all variables of V are replaced with the

corresponding values of ¢ ((7 and € should have identical number of elements and the types of their
elements should be pairwise compatible).

T denotes the countable time domain which is the alphabet of time actions. T .o = T — {0, 00}.

4.2 Concrete and abstract syntax of the coroutine operator
The concrete syntax of the proposed coroutine operator is':

exec [ng on | [urgent] Gy : 'y, ..., [urgent] Gy, : Ty, in

G%, cey GTI -> B

1 n -
G,,...Gp~ => B,
endexec

with m >0, n >1,m >0, .., m, >0and 1 < nyg <n. The ny value is optional: if absent, one
assumes that ng = 1. The “urgent” keywords are optional.

4.3 Static semantics of the coroutine operator

In the definition of the the coroutine operator:

e The clauses “[urgent] G; : I';” are definition-occurrences?.. Each of them declares a gate G;

of type T';. In the sequel we will note u(G;) a boolean that is equal to true iff the “urgent” is
present before the declaration of Gj.

1The keyword “exec” might be replaced with another one, e.g., “exec”, “group” etc.

2also called binding occurrences in [ISO88]



e The clauses “G},...,G7"" ->" are use-occurrences. In each of them, the gates Gg should be

pairwise distinct and should belong to the set {G1, ..., G} of gates declared at the beginning
of the “exec” operator.

e In each behaviour expression B;, the gates {G}, ..., GI"*} are visible. The other gates belonging
to {G1,...,Gn} —{G},...,G7"} are not visible in B;. For each B; we will note ©(B;) the set of
gates {G}], ..., GI"*} associated to B;.

e One may require that each gate G € {G1, ..., G\ } appears at least in two O(B;) (or even exactly
in two ©(B;)).

4.4 Dynamic semantics of the coroutine operator

The intuitive semantics of this operator can be explained as follows:

e This operator creates and activates a set of n coroutines (represented by the behaviour expres-
sions By, ..., By). The coroutine scheme is symmetric: there is no extra controller.

e Only one coroutine is active (i.e., has the thread) at a time. ng is the index of the first coroutine
to be active. When the “exec” contruction is executed, the control is passed to By, .

e Control passing between two coroutines B; and B; (assuming that B; is active and B; is
suspended) means that B; will become active and B; suspended.

e Control passing between two coroutines can only be done using the “special” gates {G1, ..., G, }
that have been declared at the beginning of the “exec” operator.

e As for the generalized parallel composition operator of E-LOTOS, control passing only occurs
between coroutines that share common gates. More precisely, two coroutines B; and B; may
pass control on gate G iff G € O(B;) N O(B;).

Note: this explains why we require that all m;’s are strictly greater than zero, i.e., that each
O(B;) is not empty. Unless the trivial case where n = 1 (i.e., there is only one B; in the
coroutine), this situation would not make sense. Let us consider a B; such that O(B;) = ¢:
either B; is initially active (¢ = ng), in which case it cannot pass the control to another coroutine
or B; is initially inactive (i # ng), in which case it never receives the control.

Note: this also explain why we may wish to require that each gate GG occurs in exactly in two
O(B;). A gate G that occurs in no ©(B;) is useless and can be removed. A gate G that occurs
in a single ©(B;) will create a deadlock in the coroutine. A gate G that occurs in a more than
two O(B;) may create non-determinism when determining which process is to be resumed.

e In LOTOS, parallel composition involves “rendez-vous”: when two processes are synchronized
on a gate G, each of them has to perform a transition labelled with G and both trasitions must
be done simultaneously.

The proposed coroutine mechanism follows similar principles and achieves a “uniprocessor”
version of the LOTOS rendez-vous. If the active coroutine B; wants to execute a transition
labelled with a special gate GG shared by B; and another coroutine B;, then B; must pass the
control to B;, which will become active and will execute until it can also perform a transition
labelled with G. The following diagram illustrates this suspend/resume mechanism for two
coroutines:



B; B;

e During control passing on a gate G, typed values can be exchanged on this gate using experiment
offers in the same way as for ordinary LOTOS rendez-vous.

e As for the “trap” operator, control passing is atomic, in the sense that it creates no transition
(even a “1” transition) observable from the outside.

More formally, the dynamic semantics of the coroutine operator can be defined as follows. For
conciseness, we abbreviate the concrete syntax:

exec np on [urgent] Gy : Ty, ..., [urgent] G,, : T, in

G%, cey GTI -> B

1 n -
G,,...Gp~ => B,
endexec

as follows — in order to get rid from gate lists, which remain constant during the execution and
which will be considered implicitly through the predicates u(G;) and O(B;):

exec ng in By,..., B,

The value of ng is worth being kept in the concise notation, because this value denotes the index of
the active coroutine, which will vary during the execution. In the dynamic semantics rule, we will
note B; the active coroutine (where 7 is not necessarily equal to ng).

4.4.1 Untimed semantics

The first rule defines the normal execution of the active coroutine. It states that the active coroutine
B; can execute freely any transition labelled with a gate G not belonging to the set of special gates
of O(B;). After the transition, B; remains active and the other coroutine do not evolve.



G ¢0(B;) A B; <5 B

.. Gz ..
exec i in ..., B;,... — exec { in ..., B}, ...

Notice that, due to the static semantic constraints: G ¢ O(B;) <= G & {4, ..., Gy }; therefore if G
is not a special gate for B;, it is neither a special gate for another coroutine B;.

The two remaining rules concern the case of two coroutines B; (the active coroutine) and B; “con-
nected” with the same special gate G. They both deal with the case where B; wants to execute a
transition labelled (G €, G being a special gate and € a list of values. Two cases are to be distinguished,
depending whether B; is ready or not to execute a similar transition G €. In both cases, the control
is passed from B; to B; (provided that B; is able to progress).

The second rule defines control passing with synchronization. It applies when both B; and B; are
ready to execute a transition GG €. In such case, B; and Bj execute G simultaneously and the control
is passed from B; to B; (this models coroutine resumption as a particular case). The fact that € is
the same for B; and B; implicitly provides for value communication, because of pattern-matching of
experiment offers takes place exactly in the same way as for LOTOS parallel composition. Notice
that, because the control passing has to be atomic, one requires that B;, if active, can execute another
transition L after G €. From the “outside” of the coroutine, as a result of the whole evolution, only
the transition L will be observed.

i#j A GeO(B)NOB;) A B 5B A B SE B} A exec jin .., B, B, ..~ B

.. L
execiin ..,B; B;,... — B

The third rule defines control passing without synchronization. It applies when B; is ready to execute
a transition G &, where GG is the special gate but when Bj, if active, can do another action L. In
such case, B; is suspended before executing G €, and the control is passed to B;. The suspension is
atomic, in the sense that only the transition L will be observed from the outside.

iZ£j AGeOB)NOB;) A B S5 B! A exec jin .. By, B;,.. B

.. L
execiin ..,B; B;,... — B

By induction on the three rules, it is clear that the gate of the label L used in the second and third
rules is never equal to a special gate of the coroutine. This justifies our assertion that control passing
is atomic: no special gate can be observed “outside of” the coroutine.

4.4.2 Timed semantics

(Vj#1iB; N Bi) A B 4, B! refusing {2

.. d ..
exec {in ...Bj... — exec { in ...Bj...

j#i A GeEOB)NOMB) A B L5 Bl refusing Q — {G} A

B; “E B/ A execjin..B,B..-%B

.. d
execiin ..B; B;... — B



j#i A GEOB)NODB;) A B L2 B! refusing Q — {G} A

exec jin ...B;, B;... 4. B

exec tin ...B;, B;... 4. B
where € denotes the set of urgent gates (2 = {G; | u(G;) = true})
where B -1 B/ refusing {G}} is true iff:
I
vd' € [0,d] VL gate(L) € {Gx} A By /—
and where B <5 B/ refusing {G}} is true iff:

VL gate(L) e {Gy} AN B 7L>

5 Expressiveness of the proposed coroutine operator

To prove the interest of our proposed coroutine mechanism, we show that a number of E-LOTOS
behaviour operators can be expressed simply in terms of the proposed coroutine operator.

In particular, we show that suspend-resume and “trap” can both be derived from the coroutine mech-
anism.

Note: all the following is only achieved in the framework of an untimed semantics. However, we
believe (expect?) that these results could be extended to the timed framework. The freedom to
declare the coroutines are urgent or not should provide the desirable flexibility to achieve this result.

5.1 Suspend-resume

It is clear that the proposed coroutine mechanism allows to specify suspend-resume behaviour. For
instance, the behaviour depicted on the Figure of of Section 4.4 can be described as follows:

exec (7 : none in

G -> B;
G -> By
endexec

When comparing this solution to the existing proposals for suspend-resume [Her96], one can make
the following comments:

e There is a single action for suspend and resume, instead of two different actions in [Her96].
e Suspend and resume are both atomic. This 1s the most powerful scheme. If needed, one can

always add visible suspend/and resume. This can be done by replacing every gate G in By by
a sequential composition “SUSPEND; (7; RESUME”.

e Values can be passed between both processes, a feature that is mentioned in [Her96] but not
tackled satisfactorily.



e The overall mechanism is similar to the LOTOS rendez-vous: synchronization is realized in a
“uniprocessor” fashion; value communication is exactly the same as in LOTOS.

We give a few diagrams explaining some possible modes of value passing between coroutines.

In the first example, By wants to input a value on the special gate (G. It passes the control to another
coroutine Bs, which executes until it is ready to output the requested value on gate G. The value is
passed to By and Bj is resumed:
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In the second example, when B is suspended (gate S) and passes a value to By. Later, By is resumed
(gate R) and receives a value sent by Bs.
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5.2 Trap

The “trap” operator defined in [GS96]:

trap
G1 ( 1 1) -> Bl
Gn (_’n §n) -> Bn
in
B
endtrap
can be defined 1n terms of “exec”:
exec (1 : §1, ey Gy s S;;L in

Gl, cey G, > B
Gy > (G1 ViS5 Bl)
Gy => (G, 2V, S, By)
endexec

5.3 Hide

The “hide” operator:
hide G151, ...,G, : S, in B

11




can be defined 1n terms of “exec”:

exec G1§1, O §n in
Gi,....G, > B
G1 > loop i; Gy ?171 :§1 endloop

G, —>loop i; G, ?Vn :gn endloop
endexec

or also:
exec G1§1, ey Gy s §n in
Gi,....G, > B
Gi,....,Gp =>1loop i; (Gy ?V1:5, [0 ... [1 G, 7V, :S,) endloop
endexec
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