
A Proposal for Coroutines and Suspend�Resume in E�LOTOS�

Hubert Garavel� Mihaela Sighireanu

December ����

Abstract

The importance of coroutines as a programming paradigm is recognized� This paper proposes

to extend LOTOS with a coroutine operator� for which syntax� static semantics� and untimed

semantics are provided� We show that this coroutine mechanism generalizes several other op�

eratorrs� which exist in LOTOS or which have been proposed for E�LOTOS� including trap�

suspend�resume� and hiding�

Keywords

Coroutine� ET�Lotos� E�Lotos� Formal Description Techniques� Lotos� Process Algebra� Pro�

tocols�

� Comments about the existing core behaviour language

At present� the de�nition of E�Lotos� as provided by the Kansas City output document is far
advanced� However� some issues remain unsolved� especially in the behaviour part�

� The de�nition of the core behaviour language� as produced after the Kansas City meeting�
has introduced a new class of objects� exceptions� which can be felt as �similar to gates� but
di�erent��

Following the famous Occam razor principle� we must question ourselves about the need for
having two concepts� gates and exceptions�

If we only consider an �untimed semantics� point of view� it is clear that gates and exceptions
are much the same concept� and that we could replace exceptions by gates everywhere without
any problem� This approach advocated in �GS	
� brings simplicity� expressiveness and good
algebraic properties�

If we consider a �timed semantics� point of view� the major di�erence between gates and
exceptions is urgency� According to ET�LOTOS principles� urgency is only attached to hidden
gates
 visible gates are not urgent� This is not the case with exceptions� which are always
urgent�

We notice that this de�nition of exceptions as urgent �although motivated by semantic �tricks��
violates the ET�LOTOS principle stating that one cannot enforce urgency on visible events�
from the outside of a system� we can observe visible� urgent exceptions� which is is not allowed
for gates�

If accepted� this design choice will have the following consequence� Practically� when designing a
system in E�LOTOS� engineers will associate gates to non�urgent external events and exceptions

�This work has been supported in part by the EuropeanCommission� under project ISC�CAN��� �EUCALYPTUS���
An European�Canadian Lotos Protocol Tool Set	

�

to urgent external events� However� as gates and exceptiosn are not symmetric �for instance�
exceptions cannot be synchronized�� they will face limitations �e�g�� the impossibility of using
constraint�oriented style for urgent signals��

This semantics also has unpleasant e�ects� especially in the de�nition of the synchronized
termination �synchronization of two �exits� by parallel composition��

� We are also worried by the fact that exceptions are systematically urgent� although this is not
always necessary� For instance� if a process is programmed with sequential composition� it will
use an urgent action ��� that can be in con�ict with a truly urgent external event�

It is to be feared that a plain use of exceptions in real�time programs may create� as an arte�
fact� undesirable urgency constraints� therefore leading to unsuitable non�determinism or time
deadlocks�

One can worry about the complexity of the resulting language� since urgency occurs at di�erent
places� for hidden gates� for exceptions� in the �hide� operator� Having urgency disseminated
at many places and in di�erent contexts would not make of E�LOTOS and elegant and easy�to�
learn language� nor it would simplify the design and analysis of real�time programs with �true�
urgency constraints�

� The de�nition of the core behaviour language does not include a suspend�resume operator� As
it is now� E�LOTOS cannot be used for describing the behaviour of real�time systems with task
switching and coroutines� The need for such features has been pointed out in many places� e�g�
�GH	�� GH	�� in the case of avionics embedded software�

� Finally� the suspend�resume operator proposed in �Her	
� seems incompatible with the �trap�
operator of E�LOTOS� It would be better if the �trap� operator could be seen as a particular
case of a suspend that does not resume�

� Motivations and rationale

In order to solve the aforementioned problems� we suggest a re�ned design of the behaviour language�
based upon the following principles�

�� The practical need for suspend�resume operator� and more generally for task switching and
coroutines� should be addressed�

�� Urgency should be introduced in a single place� There should exist a unique operator to introduce
urgency� all possible uses of urgency being obtained as shorthands from this operator�

�� Currently� the reason for distinguishing gates and exceptions is urgency� In the proposed new
framework� this justi�cation should no longer hold� Gates and exceptions should be uni�ed� thus
leading to a great reduction in syntactic and semantic complexity�

�� Urgency should be made optional� The E�LOTOS speci�er should have the freedom to specify
when urgency is needed and when it is not �in opposite to the current de�nitions where urgency
is always a default� for hidden gates� for exceptions� etc�� This will allow a more accurate
description of timed behaviours� avoiding over�speci�cation issues in real�time constraints�

�� Trap and suspend�resume should be integrated� The �trap� operator should be equivalent to a
suspend operator without resumption� It would be even better the both the trap and suspend�
resume could be obtained as special cases of a more general mechanism�

�

� A quick overview of coroutines in programming languages

Coroutines allow to model a set of cooperating processes that execute in mutual exclusion� only one of
these processes being active at a time� We see coroutines as an intermediate step between sequential
and parallel programming�

� Introduced in sequential languages� coroutines bring a ��avour of concurrency� that allows
computations to be interleaved �i�e�� executed in pseudo�parallelism�� according to a demand�
driven scheduling strategy�

Coroutines were originally introduced by Conway �Con
�� as a natural paradigm in compiler
development� Several programming languages have incorporated the concept of a coroutine in
their de�nition� such as Simula and Modula���

Another approach was adopted for classical programming languages as Pascal and Fortran
for which coroutine extensions have been proposed as a mean to add missing concurrent capa�
bilities�

� Compared to the concurreny o�ered by a language like LOTOS� coroutines may be useful to
specify a limited form �e�g�� deterministic� form of parallel composition�

The importance of coroutines �combined with concurrency� for parallel languages has been
pointed out by Kahn and MacQueen �KM���� They proposed a coroutine mechanism to specify
networks of parallel processes interconnected by channels� as a part of theoretical work on �lazy
evaluators� and �streams� for functional languages�

But� not many parallel languages include coroutines� mostly due to the fact that parallel com�
position operator already provide a non�deterministic solution to the need for coroutines�

However� there are examples where coroutines should be preferred to asynchronous parallel
composition� This is typically the case for embedded systems� the code of which has to be
deterministic in order to match certi�cation requirements from the certi�cation authorities�
For these applications� the parallel composition of LOTOS cannot be used� as it relies non�
determinism� Therefore� it would be useful to have a more limited form of cooperating processes
that does not introduce non�determinism� This is typically the reason for the success of the
synchronous languages �LUSTRE� ESTEREL� and SIGNAL� in the area of critical systems�

Moreover� the need for coroutines in real�time systems appears clearly from the description in
LOTOS of the Airbus A��� Flight Warning Computer �GH	�� GH	��� where LOTOS is unable
to describe the context switching between di�erent tasks�

A comparative study of coroutines is done in �PS���� Although� the details may vary from one
computer language to another� the various coroutine mechanisms present a number of similarities�

� A set of coroutines is a set of tasks that execute one at a time �presumably on a unique processor�
and cooperate to perform a computation� As stated in �PS���� a coroutine is a generalized pro�
cedure� in that execution of a coroutine can be temporarily suspended and subsequently resumed
at the place it was last active�

� Depending on the coroutine mechanism under study� there can exist an additional task �named
controller� that enforces a given discipline �scheduling� in the execution of these tasks� If this
controller exists� the coroutine scheme is said to be semi�symmetrical
 otherwise it is said to be
symmetrical�

� The creation of the coroutines must be done before they are referenced and executed� The exe�
cution may start either automatically upon creation �as in Simula�� or by an explicit command

�

�as in Sl��� �PS��� state that the creation and immediate activation is the best solution for
implementation purpose�

� The suspension of the executing coroutine can be either implicit �when the coroutine executes an
input�output request� it is suspended and the control is passed to the other coroutine concerned
by the input�output operation�� or explicit �when the control is passed to another coroutine or
to the controller� if any��

� the termination of the coroutines raises the question of the place where the control returns�
Some programming languages prohibit termination �as in Sl��� but in general the control is
passed to the behaviour that created the set of coroutines�

� De�nition of the coroutine operator

Following the ideas behind the �trap� operator� we propose to introduce in E�LOTOS a coroutine
mechanism that can be seen as a generalization of the exception mechanism currently proposed for
E�LOTOS�

As for the �trap� operator proposed in �GS	
�� which only needs a single new behaviour operator
for introducing exceptions in LOTOS� our proposal only needs one additional beheaviour operator
�named �exec�� to introduce coroutines in E�LOTOS� No extra feature �especially� no new class of
identi�ers� is required�

In the design of a coroutine mechanism for E�LOTOS� the main problem is not to model suspension
and resumption of coroutines� The control passing can be easily obtained by gates �in the same way
as for the �trap� operator or the suspend�resume operator of �Her	
���

The di�cult problem is rather value passing between the di�erent coroutine� which is mandatory as
coroutines are supposed to work together to produce information� For instance� this problem is not
solved in the suspend�resume operator proposed in �Her	
�� which does not allow values to be passed
from from the suspended�resumpted behaviours� On the other hand� an appropriate coroutine mech�
anism should be able to emulate the existing �trap� operator that allows the interrupted behaviour
to pass values to the exception handler using gate parameters�

There are two possible approaches�

Shared variables� as coroutines execute one at a time �in mutual exclusion�� they could very well
communicate using global variables� shared by all the coroutines� A su�cient condition for
ensuring that these variables are always set before used would be to require that they are
syntactically initialized�

Although the shared variable paradigm is presumably sound� we do not consider it for E�
LOTOS� because it would be too far from the remainder of the language� which is based upon
communication by message passing �rendez�vous��

Moreover� the modeling of the existing �trap� operator using coroutines with shared variables
would be tricky as the interrupted behaviour passes information to the exception handler using
gate parameters� which should be somehow translated into global variable assignments�

Message passing� we will follow this approach which is compatible with the rendez�vous paradigm
of Lotos� Since input�outputs are modelled with rendez�vous in Lotos� our proposal uni�es�
in some sense� the implicit and explicit control passing�

�

��� Notations

The following notations hold for the remainder of the paper�

G�G�� G�� ��� denote observable gates
 we note ��� the special gate generated by the �exit� operator
of Lotos�

�������� ��� denote channels �i�e�� gate types��

B�B�� B�� ��� denote behaviour expressions�

S� S�� S�� ��� denote sorts� i�e�� data domains �also called types in this paper��

V� V�� V�� ��� denote variables�

�V � �V�� �V�� ��� denote variable declarations� i�e�� �possibly empty� lists of the form ��V� � S�� ���� Vn � Sn���
where each variable Vi is declared to have the sort Si�

E�E�� E�� ��� denote value expressions� i�e�� algebraic terms that may contain variables�

e� e�� e�� ��� denote ground terms of the initial algebra� i�e�� canonical representatives of the quotient
algebra� Ground terms are a subset of value expressions� they do not contain variables and play the
role of �constant� value expressions�

�e��e�� �e�� ��� denotes value lists� i�e�� �possibly empty� lists of the form ��e�� ���� en���

���e��V � B� denotes the behaviour expression B in which all variables of �V are replaced with the

corresponding values of �e ��V and �e should have identical number of elements and the types of their
elements should be pairwise compatible��

T denotes the countable time domain which is the alphabet of time actions� T��� � T � f���g�

��� Concrete and abstract syntax of the coroutine operator

The concrete syntax of the proposed coroutine operator is��

exec �n� on � �urgent� G� � ��� ���� �urgent� Gm � �m in

G�

�
� ���� Gm�

�
�� B�

���
G�

n� ���� G
mn

n �� Bn

endexec

with m � �� n � �� m� � �� ���� mn � � and � � n� � n� The n� value is optional� if absent� one
assumes that n� � �� The �urgent� keywords are optional�

��� Static semantics of the coroutine operator

In the de�nition of the the coroutine operator�

� The clauses ��urgent� Gi � �i� are de�nition�occurrences� �� Each of them declares a gate Gi

of type �i� In the sequel we will note u�Gi� a boolean that is equal to true i� the �urgent� is
present before the declaration of Gi�

�The keyword �exec	 might be replaced with another one� e
g
� �exec	� �group	 etc

�also called binding occurrences in �ISO��

�

� The clauses �G�

i � ���� G
mi

i ��� are use�occurrences� In each of them� the gates Gj
i should be

pairwise distinct and should belong to the set fG�� ���� Gmg of gates declared at the beginning
of the �exec� operator�

� In each behaviour expression Bi� the gates fG�

i � ���� G
mi

i g are visible� The other gates belonging
to fG�� ���� Gmg� fG

�

i � ���� G
mi

i g are not visible in Bi� For each Bi we will note ��Bi� the set of
gates fG�

i � ���� G
mi

i g associated to Bi�

� One may require that each gate G � fG�� ���� Gmg appears at least in two ��Bi� �or even exactly
in two ��Bi���

��� Dynamic semantics of the coroutine operator

The intuitive semantics of this operator can be explained as follows�

� This operator creates and activates a set of n coroutines �represented by the behaviour expres�
sions B�� ���� Bn�� The coroutine scheme is symmetric� there is no extra controller�

� Only one coroutine is active �i�e�� has the thread� at a time� n� is the index of the �rst coroutine
to be active� When the �exec� contruction is executed� the control is passed to Bn� �

� Control passing between two coroutines Bi and Bj �assuming that Bi is active and Bj is
suspended� means that Bj will become active and Bj suspended�

� Control passing between two coroutines can only be done using the �special� gates fG�� ���� Gmg
that have been declared at the beginning of the �exec� operator�

� As for the generalized parallel composition operator of E�LOTOS� control passing only occurs
between coroutines that share common gates� More precisely� two coroutines Bi and Bj may
pass control on gate G i� G � ��Bi� ���Bj ��

Note� this explains why we require that all mi�s are strictly greater than zero� i�e�� that each
��Bi� is not empty� Unless the trivial case where n � � �i�e�� there is only one Bi in the
coroutine�� this situation would not make sense� Let us consider a Bi such that ��Bi� � ���
either Bi is initially active �i � n��� in which case it cannot pass the control to another coroutine
or Bi is initially inactive �i �� n��� in which case it never receives the control�

Note� this also explain why we may wish to require that each gate G occurs in exactly in two
��Bi�� A gate G that occurs in no ��Bi� is useless and can be removed� A gate G that occurs
in a single ��Bi� will create a deadlock in the coroutine� A gate G that occurs in a more than
two ��Bi� may create non�determinism when determining which process is to be resumed�

� In LOTOS� parallel composition involves �rendez�vous�� when two processes are synchronized
on a gate G� each of them has to perform a transition labelled with G and both trasitions must
be done simultaneously�

The proposed coroutine mechanism follows similar principles and achieves a �uniprocessor�
version of the LOTOS rendez�vous� If the active coroutine Bi wants to execute a transition
labelled with a special gate G shared by Bi and another coroutine Bj � then Bi must pass the
control to Bj � which will become active and will execute until it can also perform a transition
labelled with G� The following diagram illustrates this suspend�resume mechanism for two
coroutines�

G

G

Bi
Bj

� During control passing on a gate G� typed values can be exchanged on this gate using experiment
o�ers in the same way as for ordinary LOTOS rendez�vous�

� As for the �trap� operator� control passing is atomic� in the sense that it creates no transition
�even a �i� transition� observable from the outside�

More formally� the dynamic semantics of the coroutine operator can be de�ned as follows� For
conciseness� we abbreviate the concrete syntax�

exec n� on �urgent� G� � ��� ���� �urgent� Gm � �m in

G�

�
� ���� Gm�

�
�� B�

���
G�

n� ���� G
mn

n �� Bn

endexec

as follows in order to get rid from gate lists� which remain constant during the execution and
which will be considered implicitly through the predicates u�Gi� and ��Bi��

exec n� in B�� ���� Bn

The value of n� is worth being kept in the concise notation� because this value denotes the index of
the active coroutine� which will vary during the execution� In the dynamic semantics rule� we will
note Bi the active coroutine �where i is not necessarily equal to n���

����� Untimed semantics

The �rst rule de�nes the normal execution of the active coroutine� It states that the active coroutine
Bi can execute freely any transition labelled with a gate G not belonging to the set of special gates
of ��Bi�� After the transition� Bi remains active and the other coroutine do not evolve�

�

G �� ��Bi� � Bi
G �e
�	 B�i

exec i in ���� Bi� ���
G �e
�	 exec i in ���� B�i� ���

Notice that� due to the static semantic constraints� G �� ��Bi�
� G �� fG�� ���� Gmg
 therefore if G
is not a special gate for Bi� it is neither a special gate for another coroutine Bj �

The two remaining rules concern the case of two coroutines Bi �the active coroutine� and Bj �con�
nected� with the same special gate G� They both deal with the case where Bi wants to execute a
transition labelled G �e� G being a special gate and �e a list of values� Two cases are to be distinguished�
depending whether Bj is ready or not to execute a similar transition G �e� In both cases� the control
is passed from Bi to Bj �provided that Bj is able to progress��

The second rule de�nes control passing with synchronization� It applies when both Bi and Bj are
ready to execute a transition G �e� In such case� Bi and Bj execute G simultaneously and the control
is passed from Bi to Bj �this models coroutine resumption as a particular case�� The fact that �e is
the same for Bi and Bj implicitly provides for value communication� because of pattern�matching of
experiment o�ers takes place exactly in the same way as for LOTOS parallel composition� Notice
that� because the control passing has to be atomic� one requires that Bj � if active� can execute another
transition L after G �e� From the �outside� of the coroutine� as a result of the whole evolution� only
the transition L will be observed�

i �� j � G � ��Bi� ���Bj � � Bi
G �e
�	 B�i � Bj

G �e
�	 B�j � exec j in ���� B�i� B

�
j � ���

L
�	 B

exec i in ���� Bi� Bj � ���
L
�	 B

The third rule de�nes control passing without synchronization� It applies when Bi is ready to execute
a transition G �e� where G is the special gate but when Bj � if active� can do another action L� In
such case� Bi is suspended before executing G �e� and the control is passed to Bj � The suspension is
atomic� in the sense that only the transition L will be observed from the outside�

i �� j � G � ��Bi� ���Bj� � Bi
G �e
�	 B�i � exec j in ���� Bi� Bj� ���

L
�	 B

exec i in ���� Bi� Bj � ���
L
�	 B

By induction on the three rules� it is clear that the gate of the label L used in the second and third
rules is never equal to a special gate of the coroutine� This justi�es our assertion that control passing
is atomic� no special gate can be observed �outside of� the coroutine�

����� Timed semantics

��j �� i Bj
d
�	 B�j� � Bi

d
�	 B�i refusing !

exec i in ���Bk���
d
�	 exec i in ���B�k���

j �� i � G � ��Bi� ���Bj � � Bi
G �e
�	 B�i refusing !� fGg �

Bj
G �e
�	 B�j � exec j in ���B�i� B

�
j���

d
�	 B

exec i in ���Bi� Bj���
d
�	 B

�

j �� i � G � ��Bi� ���Bj � � Bi
G �e
�	 B�i refusing !� fGg �

exec j in ���Bi� Bj���
d
�	 B

exec i in ���Bi� Bj���
d
�	 B

where ! denotes the set of urgent gates �! � fGi j u�Gi� � trueg�

where B
d
�	 B� refusing fGkg is true i��

�d� � ��� d� �L gate�L� � fGkg � Bd�

L

��	

and where B
G �e
�	 B� refusing fGkg is true i��

�L gate�L� � fGkg � B
L

��	

� Expressiveness of the proposed coroutine operator

To prove the interest of our proposed coroutine mechanism� we show that a number of E�LOTOS
behaviour operators can be expressed simply in terms of the proposed coroutine operator�

In particular� we show that suspend�resume and �trap� can both be derived from the coroutine mech�
anism�

Note� all the following is only achieved in the framework of an untimed semantics� However� we
believe �expect"� that these results could be extended to the timed framework� The freedom to
declare the coroutines are urgent or not should provide the desirable �exibility to achieve this result�

��� Suspend�resume

It is clear that the proposed coroutine mechanism allows to specify suspend�resume behaviour� For
instance� the behaviour depicted on the Figure of of Section ��� can be described as follows�

exec G � none in

G �� B�

G �� B�

endexec

When comparing this solution to the existing proposals for suspend�resume �Her	
�� one can make
the following comments�

� There is a single action for suspend and resume� instead of two di�erent actions in �Her	
��

� Suspend and resume are both atomic� This is the most powerful scheme� If needed� one can
always add visible suspend�and resume� This can be done by replacing every gate G in B� by
a sequential composition �SUSPEND� G� RESUME��

� Values can be passed between both processes� a feature that is mentioned in �Her	
� but not
tackled satisfactorily�

	

� The overall mechanism is similar to the LOTOS rendez�vous� synchronization is realized in a
�uniprocessor� fashion
 value communication is exactly the same as in LOTOS�

We give a few diagrams explaining some possible modes of value passing between coroutines�

In the �rst example� B� wants to input a value on the special gate G� It passes the control to another
coroutine B�� which executes until it is ready to output the requested value on gate G� The value is
passed to B� and B� is resumed�

Bi
Bj

G �X�nat

G ��

X��

In the second example� when B� is suspended �gate S� and passes a value to B�� Later� B� is resumed
�gate R� and receives a value sent by B��

��

Bi
Bj

S �� S �X�nat

X��R �Y�nat

R �	Y��

��� Trap

The �trap� operator de�ned in �GS	
��

trap

G� ��V� � �S�� �� B�

���

Gn ��Vn � �Sn� �� Bn

in

B
endtrap

can be de�ned in terms of �exec��

exec G� � �S�� ���� Gn � �Sn in

G�� ���� Gn �� B

G� �� �G� ��V� � �S� � B��
���

Gn �� �Gn ��Vn � �Sn � Bn�
endexec

��� Hide

The �hide� operator�

hide G�
�S�� ���� Gn � �Sn in B

��

can be de�ned in terms of �exec��

exec G�
�S�� ���� Gn � �Sn in

G�� ���� Gn �� B

G� �� loop i� G� ��V� � �S� endloop

���

Gn �� loop i� Gn ��Vn � �Sn endloop

endexec

or also�

exec G�
�S�� ���� Gn � �Sn in

G�� ���� Gn �� B

G�� ���� Gn �� loop i� �G� ��V� � �S� �� ��� �� Gn ��Vn � �Sn� endloop
endexec

References

�Con
�� M� E� Conway� Design of a separable transition�diagram compiler� Communications of the
ACM�
�����	
#���� July �	
��

�GH	�� Hubert Garavel and Ren$e�Pierre Hautbois� An Experiment with the Formal Description in
LOTOS of the Airbus A��� Flight Warning Computer� In Maurice Nivat� Charles Rattray�
Teodor Rus� and Giuseppe Scollo� editors� First AMAST International Workshop on Real�
Time Systems �Iowa City� Iowa� USA�� November �		��

�GH	�� Hubert Garavel and Ren$e�Pierre Hautbois� Experimenting LOTOS in Aerospace Industry�
In Teodor Rus and Charles Rattray� editors� Theories and Experiences for Real�Time System
Development� volume � of Amast Series in Computing� chapter ��� World Scienti�c� �		��

�GS	
� Hubert Garavel and Mihaela Sighireanu� On the Introduction of Exceptions in LOTOS�
In Reinhard Gotzhein and Jan Bredereke� editors� Proceedings of the Joint International
Conference on Formal Description Techniques for Distributed Systems and Communication
Protocols� and Protocol Speci�cation� Testing� and Veri�cation FORTE�PSTV	
� �Kaiser�
slautern� Germany�� pages �
	#���� IFIP� Chapman % Hall� October �		
�

�Her	
� Christian Hernalsteen� Remarks on the introduction of time and suspend�resume operator
in the core language� May �		
�

�ISO��� ISO�IEC� LOTOS A Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour� International Standard ����� International Organization for Stan�
dardization Information Processing Systems Open Systems Interconnection� Gen&eve�
September �	���

�KM��� G� Kahn and D� B� MacQueen� Coroutines and Networks of Parallel Processes� In Proc�
IFIP Congress

� pages 		�#		�� North�Holland� Amsterdam� �	���

�PS��� W� Pauli and M� L� So�a� Coroutine Behaviour and Implementation� Software�Practice
and Experience� ��������	#���� Mars �	���

��

