A Proposal for Coroutines in E-LOTOS*

Hubert Garavel, Mihaela Sighireanu

July 1997

Abstract

This paper proposes a coroutine operator for E-L0oT0S. The syntax, the static semantics, and the
dynamic semantics of the operator are provided. We show by several examples that the coroutine
operator is adequate to express suspension and resuming. Moreover, it is more general and simpler
than the suspend-resume operator.

1 Introduction

The importance of coroutines as a programming paradigm is recognized. The GR3 [GS96] input
document of the Grenoble meeting provides an overview of the coroutine mechanism in programming
languages and a rationale for introducing a coroutine operator in E-LOT0s. Also, it proposes a
concrete syntax, a static semantics, and a dynamic semantics for a such operator.

Although the utility of the coroutine operator has been recognized at the Grenoble meeting, some
remarks have been raised about its proposed syntax and semantics:

e The syntax proposed in GR3 for the coroutine operator is:

exec [ng on | [urgent] Gy : T1, ..., [urgent] G, : T, in
G%,...,G;nl — Bl

GL,..,G" — B,
endexec

This syntax is too complex, because it did: (1) the declaration of the gates used for control
passing between coroutines, Gy, ..., Gn,; (2) the type (urgent or not) of each gate; (3) the list of
gates used to suspend or resume each coroutine.

e The static constraints are too complex. For example, it was required that each gate G €
{G1,...,Gy } appears at least in two gate lists { G}, ...,G" }.

e Due to the complexity of the syntax, the dynamic semantics is also complex: it provides the
urgency only on gates declared urgent and the simultaneous aging of all coroutines. Moreover,
the treatment of urgency is not compatible with the E-LOTOS principles: although the operator

*This work has been supported in part by the European Commission, under project ISC-CAN-65 “EUCALYPTUS-2:
An European/Canadian Lotos Protocol Tool Set”.

declares gates (as a hide operator), these gates are visible outside its scope and may be urgent
or not.

All these lacks are overtaken by the operator we propose in this paper. Moreover, the actual pro-
posal is a real concurrent for the suspend/resume operator actually included in the Committee Draft
document.

2 Requirements for the coroutine operator

We list below the main features that must be considered for a coroutine operator:

e Determinism: The coroutines were introduced in sequential languages to bring a “flavour of
concurrency” by allowing computations to be interleaved (i.e., executed in pseudo-parallelism),
according to a demand-driven scheduling strategy.

Compared to the concurrency offered by a language like LOTOS, coroutines may be useful
to specify a limited (i.e., deterministic) form of parallel composition. There are examples
[GH93, GH94| where coroutines should be preferred to asynchronous parallel composition. This
is typically the case for embedded systems, the code of which has to be deterministic in order
to match certification requirements from the certification authorities.

¢ Suspend/Resume capabilities: The coroutine operator must provide at least the function-
alities offered by the suspend/resume operator.

e Simplicity: The syntax and the semantics of the operator must be simple. For this reason, we
consider that the operator must be concerned only with the control passing and not with hiding
and urgency of the actions. These last features are appropriately treated by the hide operator.

3 A new coroutine operator

3.1 Formal definition

Syntax
exec [ng] in ([G] — B)" endexec

The default initial coroutine number is 0. Some vocabulary: G are called special gates, B are called
coroutine behaviours, and B, is called the running (or active) coroutine.

Comment: Remark here that G # exit; if “exit” is a special gate, the problem of non-urgency of 6
appears and should be treated as in synchronization on termination in the parallel composition.

Static Semantics

CHFGy=>gately --- CHG,=gateT,
CHBy=exit(RT) --- CF B, = exit(RT)

CF (exec ng in [Go]l — By ... [G,] — B,) = exit(RT)

A similar rule must be introduced to compute the guardedness of the “exec” behaviour.

Comment: The premise Yi,j € 0.n. (i # j) = (G; # Gj) is added in order to avoid non-
determinism in control passing between coroutines. An alternative solution which allows this kind

of non-determinism may provide a determinism behaviour by choosing different names for the gates
Go, 'y G-

Untimed semantics

£+ B, "I pr

Vk € 0.n. (1 # Gr) A ((k #1i) = (Br = BY))
£+ (execiin [Gol — By ... [Gnl — Bn) "5 (exec i in [Gol — B} ... [Gnl — B.)

gl_B(‘(RN)B,
£ F (exec j in [Gol — By ... [Gu] — B,) "2 B!
£+ (exec i in [Gol — By ... [G]—»B)C(RN)B
gl_BG(RN)Bj
gl_B(’(RN)Bi
Vke0.n. (k#i)A(k+#j)= (By = B))
£ F (exec j in [Gol — By ... [Gnl — By) “EY (exec i in [Gol — Bl ... [Gn] — B)

Timed semantics

£+ B 8 B!
Vk€0.n. (k+#1i)=> (By=BL)
£+ (execiin [Gol — By ... [Gnl — B,) “2 (exec i in [Go] — B} ... [G,] — B.)

3.2 Remarks on semantics

e When the running coroutine exits, the “exec” behaviour exits.

e Since we cannot know who will exit, the static semantics rule is similar to the choice operator
rule.

e The first untimed rule defines the normal execution of the active coroutine. It states that the
active coroutine B; can execute freely any transition labelled with a gate (or a signal) p not
belonging to the set of special gates Gy, ..., G,,. After the transition, B; remains active and the
other coroutines do not evolve.

The second untimed rule defines control passing without synchronization. It applies when B; is
ready to execute a transition Gj (RN). In such case, B; is suspended before executing Gj (RN),
and the control is passed to Bj.

4

4.1

suspension

- - - - - =

resuming ~

B;

The third untimed rule defines control passing with synchronization. It applies when both
B; and B; are ready to execute a transition Gj(RN). In such case, B; and B; execute G
simultaneously and the control is passed from B; to B; (this models coroutine resumption as a
particular case).

Comment: Several behaviours B; may be able to synchronize on Gj. In this case, the non-
determinism appears.

According to the idea that the coroutines have to share the “processor” time, the aging is done
only for the active coroutine. In this case, the time captured by each coroutine is the running
time. The waiting time may be captured by synchronization with a global behaviour, as we will
show into the section 4.

Two examples

Scheduling

We show here how our coroutine operator may be used to describe scheduling processes. The example
chosen below was proposed in the LG9 [HF95] to illustrate the need for a suspend/resume operator.
It describes three independent tasks sharing the same processor till 5 time units each time. The
scheduling is done randomly and the scheduler centralizes the running time for each task.

The main behaviour is the following;:

hide Sch,Tky,Tko,Tks:none in
exec 0 in
[Sch]l — Scheduler [Tky,Tks,Tks](d; = 5,d> = 10,d3 = 15)
[Tki]l — (Tasklstart,end] ¢d=1,d=5)11I1CP[Tk1)
[Tky]l — (Tasklstart,end] (id=2,d=10) || |CP[Tk2]1)
[Tks] — (TaskLlstart,end] (id = 3,d=15) | | |ICP[Tk3])
endexec
endhide

Notice that the scheduler is distributed into two places: the Scheduler process which controls the
random allocation of the processor, and the CPs processes which measure the quota for each task.

The processes Scheduler, Task, and CP are defined as follows:

process Scheduler [Tky,Tks,Tks:nonel (d,ds, ds :time) :noexit is
if di > 0 then Tky; Scheduler[...]1(dy — 5,ds,d3) else stop endif

1

if dy > 0 then Tks; Scheduler[...](dy,d> — 5,d3) else stop endif

1

if d> > 0 then Tks; Scheduler[...](dy,d> — 5,d3) else stop endif
endproc

process Task [start,end:nat] (id:nat, d:time) : noexit is
start'id; wait(d) ; end!id; stop
endproc

process CP[Tk:nonel :noexit is
loop forever wait (5) ; Tk endloop
endproc

All the examples of scheduling processes given in LG9 [HF95] may be treated with the coroutine
operator.

4.2 Multilevel Interruption System

This example was also presented in LG9 [HF95]. It describes a processor running infinitely and having
accepting interruption from the environment by meaning of the Int gate. When an interruption is
raised, the processor will run the interruption task till either a higher level interruption is raised or
the task finishes. In the last case, the control is given back to the last interrupted task or to the
processor.

The main behaviour is the following:

hide ITy,IT5,IT3:none in
exec 0 in
[Pr]l — Processor[Int,ITy,ITs, T3]
LIT\]1 — ITask, [nt, IT,IT5,IT5]
[IT5] — ITasky [Int, ITy,IT5,IT5]
LIT5] — ITasks[Int, [Ty, Ty, T3]
endexec

endhide

where the processes Processor and ITask are defined as follows:

process Processor[Int:nat, T, T, IT5;:nonel :noexit is
loop forever (x the normal execution of the processor *) endloop
11
loop forever var it:nat in
Int7it;
if it =1 then IT]
elsif it = 2 then IT,
elsif it = 3 then IT3
endif
endloop
endproc

process [Tasky [Int:nat, [T, IT>,[T5:none] :noexit is
loop forever
hide end:none in
(* the normal execution of the IT1 *); end; IT)
| Lend] |
loop X var it:nat in
Int7it[it > 11; if it = 2 then [T, elsif it = 3 then IT3 endif
(1
end; break X
endloop
endhide
endloop
endproc

(* similar definitions for ITask, and [Tasks processes *)

5 Comparison with the suspend/resume operator

Operator arity Our operator is as general as possible, its arity being n (as the “trap” and “par”
operators). The suspend/resume operator is only a binary operator; the parallel composition operator
is needed to express a set of n tasks sharing the same processor.

Aging In our operator, only the active coroutine ages, all other suspended coroutines do not.

For the suspend /resume operator, the semantics is more complex. Consider the behaviour B; [X>Bs;
when Bj is running, the aging of B; demands the aging of Bs; when B; is suspended and By is
running, By does not age. This semantics is adopted only for compatibility with the disable operator.
Since the suspend/resume operator does not substitute the disable operator, we consider that it is not
reasonable to have a such odd semantics!

Value passing The value passing between the different coroutines is mandatory as long as corou-
tines are supposed to work together to produce information.

This problem is not solved in the suspend-resume operator of the Committee Draft document.

Our “exec” operator follows the message passing approach to solve this problem: the input/output
of values are modeled with the rendez-vous on the special gates. So our proposal unifies, in some
sense, the implicit (value passing) and explicit control passing.

Interruption There are two forms of interruption: (1) interruption due to an external event, and
(2) auto-interruption of a process. The suspend/resume operator may model only the first form of
interruption.

Our “exec” operator may model both forms: (1) the running process may be interrupted by an
external process by synchronization to the interruption event and after that self-suspension; (2) the
auto-interruption corresponds to the suspension at waiting synchronization at a special gate.

Suspend/resume actions In our proposal, the suspend and the resume actions are the same
action (the special gate of the called coroutine, e.g. G;). Moreover, this action is visible.

The suspend/resume operator considers only the resume action (the X signal), and this action cannot
be observed. The suspending is implicit. In this case, the synchronization on resuming or suspending
cannot be done.

6 Conclusion

We proposed the “exec” operator to provides a coroutine (and suspend/resume) mechanism in
E-LoTos. The operator has the following features:

e it is a n-ary operator with a simple syntax;

e its semantics is simple (2 rules for the static semantics and 5 rules for the dynamic semantics);

it does not need any auxiliary operator for its definition (as suspend/resume operator);

it allows value passing by the classical mechanism of rendez-vous;

the suspend/resume action is visible to the external environment;

e it can models external and self interruption mechanisms.

These features are illustrated by two examples: scheduling and task switching.

It results that the “exec” operator is simpler than the suspend/resume operator and can be used to
describe complex systems.

References

[GH93] Hubert Garavel and René-Pierre Hautbois. An Experiment with the Formal Description in
LOTOS of the Airbus A340 Flight Warning Computer. In Maurice Nivat, Charles Rattray,
Teodor Rus, and Giuseppe Scollo, editors, First AMAST International Workshop on Real-
Time Systems (Iowa City, Iowa, USA), November 1993.

[GH94] Hubert Garavel and René-Pierre Hautbois. Ezperimenting LOTOS in Aerospace Industry.

[GS96]

[HF95]

In Teodor Rus and Charles Rattray, editors, Theories and Ezperiences for Real-Time System
Development, volume 2 of Amast Series in Computing, chapter 11. World Scientific, 1994.

Hubert Garavel and Mihaela Sighireanu. A Proposal for Coroutines an Suspend/Resume
in E-LOTOS. Input document [GR3] to the ISO/IEC JTC1/SC21/WGT7 Meeting on En-
hancements to LOTOS (1.21.20.2.3), Grenoble, France, December, 12-17, 1996, December
1996.

C. Hernalsteen and A. Février. A suspend/resume operator for ET-LOTOS. Input document
[LGY] to the ISO/IEC JTC1/SC21/WGT Meeting on Enhancements to LOTOS (1.21.20.2.3),
Liége, Belgium, December, 19-21, 1995, December 1995.

