
A Proposal for Coroutines in E�LOTOS�

Hubert Garavel� Mihaela Sighireanu

July ����

Abstract

This paper proposes a coroutine operator for E�Lotos� The syntax� the static semantics� and the
dynamic semantics of the operator are provided� We show by several examples that the coroutine
operator is adequate to express suspension and resuming� Moreover� it is more general and simpler
than the suspend�resume operator�

� Introduction

The importance of coroutines as a programming paradigm is recognized� The GR� �GS��� input
document of the Grenoble meeting provides an overview of the coroutine mechanism in programming
languages and a rationale for introducing a coroutine operator in E�Lotos� Also� it proposes a
concrete syntax� a static semantics� and a dynamic semantics for a such operator�

Although the utility of the coroutine operator has been recognized at the Grenoble meeting� some
remarks have been raised about its proposed syntax and semantics	

� The syntax proposed in GR� for the coroutine operator is	

exec �n� on � �urgent� G� � T�� ���� �urgent� Gm � Tm in
G�
�� ���� G

m�

� � B�

���

G�
n� ���� G

mn
n � Bn

endexec

This syntax is too complex� because it did	 
�� the declaration of the gates used for control
passing between coroutines� G�� ���� Gm
 
�� the type 
urgent or not� of each gate
 
�� the list of
gates used to suspend or resume each coroutine�

� The static constraints are too complex� For example� it was required that each gate G �
fG�� ���� Gm g appears at least in two gate lists fG�

i � ���� G
mi

i g�

� Due to the complexity of the syntax� the dynamic semantics is also complex	 it provides the
urgency only on gates declared urgent and the simultaneous aging of all coroutines� Moreover�
the treatment of urgency is not compatible with the E�Lotos principles	 although the operator

�This work has been supported in part by the European Commission� under project ISC�CAN��� �EUCALYPTUS���
An European�Canadian Lotos Protocol Tool Set	


�



declares gates 
as a hide operator�� these gates are visible outside its scope and may be urgent
or not�

All these lacks are overtaken by the operator we propose in this paper� Moreover� the actual pro�
posal is a real concurrent for the suspend�resume operator actually included in the Committee Draft
document�

� Requirements for the coroutine operator

We list below the main features that must be considered for a coroutine operator	

� Determinism	 The coroutines were introduced in sequential languages to bring a ��avour of
concurrency� by allowing computations to be interleaved 
i�e�� executed in pseudo�parallelism��
according to a demand�driven scheduling strategy�

Compared to the concurrency o�ered by a language like LOTOS� coroutines may be useful
to specify a limited 
i�e�� deterministic� form of parallel composition� There are examples
�GH��� GH��� where coroutines should be preferred to asynchronous parallel composition� This
is typically the case for embedded systems� the code of which has to be deterministic in order
to match certi�cation requirements from the certi�cation authorities�

� Suspend�Resume capabilities	 The coroutine operator must provide at least the function�
alities o�ered by the suspend�resume operator�

� Simplicity	 The syntax and the semantics of the operator must be simple� For this reason� we
consider that the operator must be concerned only with the control passing and not with hiding
and urgency of the actions� These last features are appropriately treated by the hide operator�

� A new coroutine operator

��� Formal de�nition

Syntax

exec �n�� in ��G� � B�� endexec

The default initial coroutine number is �� Some vocabulary	 �G are called special gates� �B are called
coroutine behaviours� and Bn� is called the running 
or active� coroutine�

Comment	 Remark here that G �� exit� if �exit� is a special gate� the problem of non�urgency of �
appears and should be treated as in synchronization on termination in the parallel composition�

Static Semantics

C � G� � gate T� � � � C � Gn� gate Tn
C � B� � exit�RT� � � � C � Bn� exit�RT�

�i� j � ���n� �i �� j� �� �Gi �� Gj�
C � �exec n� in �G�� � B� � � � �Gn� � Bn�� exit�RT�

�� 	 n� 	 n�

A similar rule must be introduced to compute the guardedness of the �exec� behaviour�

�



Comment	 The premise �i� j � ���n� �i �� j� �� �Gi �� Gj� is added in order to avoid non�
determinism in control passing between coroutines� An alternative solution which allows this kind
of non�determinism may provide a determinism behaviour by choosing di�erent names for the gates
G�� ���� Gn�

Untimed semantics

E � Bi
��RN�

� B�

i

�k � ���n� �� �� Gk� � ��k �� i� �� �Bk � B�

k��

E � �exec i in �G�� � B� � � � �Gn� � Bn�
��RN�

� �exec i in �G�� � B�

� � � � �Gn� � B�

n�

E � Bi

Gj�RN�

� B�

i

E � �exec j in �G�� � B� � � � �Gn� � Bn�
G�RN�

� B�

E � �exec i in �G�� � B� � � � �Gn� � Bn�
G�RN�

� B�

E � Bj

Gj�RN�

� B�

j

E � Bi

Gj�RN�

� B�

i

�k � ���n� �k �� i� � �k �� j� �� �Bk � B�

k�

E � �exec j in �G�� � B� � � � �Gn� � Bn�
G�RN�

� �exec i in �G�� � B�

� � � � �Gn� � B�

n�

Timed semantics

E � Bi
��d�

� B�

i

�k � ���n� �k �� i� �� �Bk � B�

k�

E � �exec i in �G�� � B� � � � �Gn� � Bn�
��d�

� �exec i in �G�� � B�

� � � � �Gn� � B�

n�

��� Remarks on semantics

� When the running coroutine exits� the �exec� behaviour exits�

� Since we cannot know who will exit� the static semantics rule is similar to the choice operator
rule�

� The �rst untimed rule de�nes the normal execution of the active coroutine� It states that the
active coroutine Bi can execute freely any transition labelled with a gate 
or a signal� � not
belonging to the set of special gates G�� ���� Gn� After the transition� Bi remains active and the
other coroutines do not evolve�

The second untimed rule de�nes control passing without synchronization� It applies when Bi is
ready to execute a transitionGj�RN�� In such case� Bi is suspended before executing Gj�RN��
and the control is passed to Bj �

�



Gj

Gj

suspension

Bi Bj

resuming

The third untimed rule de�nes control passing with synchronization� It applies when both
Bi and Bj are ready to execute a transition Gj�RN�� In such case� Bi and Bj execute Gj

simultaneously and the control is passed from Bj to Bi 
this models coroutine resumption as a
particular case��

Comment	 Several behaviours Bi may be able to synchronize on Gj � In this case� the non�
determinism appears�

� According to the idea that the coroutines have to share the �processor� time� the aging is done
only for the active coroutine� In this case� the time captured by each coroutine is the running
time� The waiting time may be captured by synchronization with a global behaviour� as we will
show into the section ��

� Two examples

��� Scheduling

We show here how our coroutine operator may be used to describe scheduling processes� The example
chosen below was proposed in the LG� �HF��� to illustrate the need for a suspend�resume operator�
It describes three independent tasks sharing the same processor till � time units each time� The
scheduling is done randomly and the scheduler centralizes the running time for each task�

The main behaviour is the following	

hide Sch� Tk�� T k�� T k��none in

exec � in

�Sch� � Scheduler�Tk�� T k�� T k���d� � �� d�� 	�� d�� 	��

�Tk�� � �Task�start� end��id� 	� d� �����CP�Tk���

�Tk�� � �Task�start� end��id� 
� d� 	�����CP�Tk���

�Tk�� � �Task�start� end��id� �� d� 	�����CP�Tk���

endexec

endhide

Notice that the scheduler is distributed into two places	 the Scheduler process which controls the
random allocation of the processor� and the CPs processes which measure the quota for each task�

�



The processes Scheduler � Task � and CP are de�ned as follows	

process Scheduler�Tk�� T k�� T k��none��d�� d�� d��time��noexit is

if d� � � then Tk�� Scheduler������d� 
 �� d�� d�� else stop endif

��

if d� � � then Tk�� Scheduler������d�� d� 
 �� d�� else stop endif

��

if d� � � then Tk�� Scheduler������d�� d� 
 �� d�� else stop endif

endproc

process Task�start� end�nat��id�nat� d�time��noexit is

start�id� wait�d�� end�id� stop

endproc

process CP�Tk�none��noexit is

loop forever wait���� Tk endloop

endproc

All the examples of scheduling processes given in LG� �HF��� may be treated with the coroutine
operator�

��� Multilevel Interruption System

This example was also presented in LG� �HF���� It describes a processor running in�nitely and having
accepting interruption from the environment by meaning of the Int gate� When an interruption is
raised� the processor will run the interruption task till either a higher level interruption is raised or
the task �nishes� In the last case� the control is given back to the last interrupted task or to the
processor�

The main behaviour is the following	

hide IT�� IT�� IT��none in

exec � in

�Pr� � Processor�Int� IT�� IT�� IT��

�IT�� � ITask��Int� IT�� IT�� IT��

�IT�� � ITask��Int� IT�� IT�� IT��

�IT�� � ITask��Int� IT�� IT�� IT��

endexec

endhide

where the processes Processor and ITask are de�ned as follows	

�



process Processor�Int�nat� IT�� IT�� IT��none��noexit is

loop forever �	 the normal execution of the processor 	� endloop

���

loop forever var it�nat in

Int
it�

if it � 	 then IT�

elsif it � 
 then IT�

elsif it � � then IT�
endif

endloop

endproc

process ITask��Int�nat� IT�� IT�� IT��none� �noexit is

loop forever

hide end�none in

�	 the normal execution of the IT� 	�� end� IT�

��end��

loop X var it�nat in

Int
it�it � 	�� if it � 
 then IT� elsif it � � then IT� endif

��

end� break X

endloop

endhide

endloop

endproc

�	 similar definitions for ITask� and ITask� processes 	�

� Comparison with the suspend�resume operator

Operator arity Our operator is as general as possible� its arity being n 
as the �trap� and �par�
operators�� The suspend�resume operator is only a binary operator
 the parallel composition operator
is needed to express a set of n tasks sharing the same processor�

Aging In our operator� only the active coroutine ages� all other suspended coroutines do not�

For the suspend�resume operator� the semantics is more complex� Consider the behaviour B��X�B�

when B� is running� the aging of B� demands the aging of B�
 when B� is suspended and B� is
running� B� does not age� This semantics is adopted only for compatibility with the disable operator�
Since the suspend�resume operator does not substitute the disable operator� we consider that it is not
reasonable to have a such odd semantics	

Value passing The value passing between the di�erent coroutines is mandatory as long as corou�
tines are supposed to work together to produce information�

�



This problem is not solved in the suspend�resume operator of the Committee Draft document�

Our �exec� operator follows the message passing approach to solve this problem	 the input�output
of values are modeled with the rendez�vous on the special gates� So our proposal uni�es� in some
sense� the implicit 
value passing� and explicit control passing�

Interruption There are two forms of interruption	 
�� interruption due to an external event� and

�� auto�interruption of a process� The suspend�resume operator may model only the �rst form of
interruption�

Our �exec� operator may model both forms	 
�� the running process may be interrupted by an
external process by synchronization to the interruption event and after that self�suspension
 
�� the
auto�interruption corresponds to the suspension at waiting synchronization at a special gate�

Suspend�resume actions In our proposal� the suspend and the resume actions are the same
action 
the special gate of the called coroutine� e�g� Gj�� Moreover� this action is visible�

The suspend�resume operator considers only the resume action 
the X signal�� and this action cannot
be observed� The suspending is implicit� In this case� the synchronization on resuming or suspending
cannot be done�

� Conclusion

We proposed the �exec� operator to provides a coroutine 
and suspend�resume� mechanism in
E�Lotos� The operator has the following features	

� it is a n�ary operator with a simple syntax


� its semantics is simple 
� rules for the static semantics and � rules for the dynamic semantics�


� it does not need any auxiliary operator for its de�nition 
as suspend�resume operator�


� it allows value passing by the classical mechanism of rendez�vous


� the suspend�resume action is visible to the external environment


� it can models external and self interruption mechanisms�

These features are illustrated by two examples	 scheduling and task switching�

It results that the �exec� operator is simpler than the suspend�resume operator and can be used to
describe complex systems�

References

�GH��� Hubert Garavel and Ren��Pierre Hautbois� An Experiment with the Formal Description in
LOTOS of the Airbus A��� Flight Warning Computer� In Maurice Nivat� Charles Rattray�
Teodor Rus� and Giuseppe Scollo� editors� First AMAST International Workshop on Real�
Time Systems 
Iowa City� Iowa� USA�� November �����

�



�GH��� Hubert Garavel and Ren��Pierre Hautbois� Experimenting LOTOS in Aerospace Industry�
In Teodor Rus and Charles Rattray� editors� Theories and Experiences for Real�Time System
Development� volume � of Amast Series in Computing� chapter ��� World Scienti�c� �����

�GS��� Hubert Garavel and Mihaela Sighireanu� A Proposal for Coroutines an Suspend�Resume
in E�LOTOS� Input document �GR�� to the ISO�IEC JTC��SC���WG� Meeting on En�
hancements to LOTOS 
������������� Grenoble� France� December� ������ ����� December
�����

�HF��� C� Hernalsteen and A� F�vrier� A suspend�resume operator for ET�LOTOS� Input document
�LG�� to the ISO�IEC JTC��SC���WG�Meeting on Enhancements to LOTOS 
�������������
Li�ge� Belgium� December� ������ ����� December �����

�


