
French�Romanian Proposal for Capture of Requirements and

Expression of Properties in E�Lotos Modules�

Version ���

Radu MATEESCU Hubert GARAVEL

INRIA Rh�one�Alpes

VERIMAG � Miniparc�ZIRST

rue Lavoisier

����� MONTBONNOT ST MARTIN

FRANCE

May ���	

Abstract

It has been agreed by the E�Lotos Committee that ActOne algebraical equations should be

kept in the E�Lotos modules language to express the properties of the entities declared in the

data part� This document proposes a similar scheme to express properties of the entities declared

in the behaviour part� Our proposal is based on two state�of�the�art techniques for expressing

such properties� equivalences and preorder relations between Labelled Transition Systems and

temporal logics� This extension will provide E�Lotos with powerful capabilities for capturing

requirements in the speci�cation phase and expressing properties to be checked by veri�cation

tools�

Contents

� Introduction �

� Data and behaviour properties in functions� processes� and modules �

� Algebraical equations for data properties �

� Equivalences and preorders for behaviour properties �

� Temporal logic and ��calculus for behaviour properties �

��� The model of an E�Lotos program � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Syntax and semantics of action formulas � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Syntax and semantics of ��calculus formulas � � � � � � � � � � � � � � � � � � � � � � � � �
��� Actl formulas � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

� Conclusions 	

�This work has been supported in part by the Commission of the EuropeanCommunities� under project ISC�CAN���
�EUCALYPTUS��� A European�Canadian Lotos Protocol Tool Set	


�



� Introduction

This paper proposes a mechanism allowing to express requirements in E�Lotos descriptions� Our
proposal is based upon the following considerations


� It has been agreed by the E�Lotos Committee that ActOne algebraical equations should be
kept in the E�Lotos modules language to express the properties of the entities declared in the
data part� Syntactically� these equations could occur as an optional part� either in function
declarations� e�g�


function F ����� ����� � ��� is

���

eqns

�equations�

endfunc

or in module signatures and�or implementations� e�g�


module M ��� is

���

eqns

�equations�

endmod

It has also been decided that� in the formal denition of E�Lotos� these equations should be
considered as �comments�� which do not a�ect the dynamic semantics of E�Lotos descriptions
in which they occur� However� the equations should be checked� with respect to syntax and
static semantics� Some tools may even want to go further� by �trying to� prove that the invariant
properties expressed by the equations are valid�

Such equations are helpful for capturing requirements in the specication phase� For instance�
it is possible to specify the expected properties of a function before implementing this function
actually� In other words� one should be able to specify �what� must be done before �how� it
can be done� This approach is well�known in �literate programming� context�

� It has also been agreed that the data part and the behaviour part of E�Lotos should exhibit�
whenever it is possible� a nice symmetry� For instance� it was agreed that E�Lotos modules
should embody process denitions� as well as type and function denitions� Some recent propos�
als for dening the �core language� semantics even suggest a syntactic and semantic unication
between the data and behaviour part�

For symmetry� it would be very suitable to provide means for expressing properties on behaviour
expressions and processes� Although they wouldn�t a�ect the dynamic semantics of E�Lotos
programs� such requirements could be extracted and checked automatically using specialized
verication tools�

� We must notice that such features are already present in other FDTs� for example Sdl� Indeed�
the Sdl denition �IT��� comes with a graphical language called Msc �for Message Sequence
Charts� to express requirements about Sdl descriptions� TheMsc descriptions dene execution
sequences and can be used by Sdl verication tools to check whether the Sdl descriptions can
perform such execution sequences�

Therefore� it is mandatory for E�Lotos to o�er� at least� the same capabilities as Sdl� We
believe that E�Lotos should even go further than Mscs by embodying state�of�the�art tech�
niques for expressing such properties� Assuming that E�Lotos semantics �as Lotos semantics�
will be based upon the Labelled Transition System model �Lts for short�� we naturally propose

�



the use of the two most popular formalisms for specifying Lts properties
 equivalences �and
preorder� relations� and temporal logics�

The paper is structured as follows� Section � denes the places where properties could be allowed in
E�Lotos� Section � discusses the algebraical equations used for expressing data properties� Section �
discusses the use of equivalence and preorder relations for expressing behaviour properties� Section �
proposes a complete solution� based on the propositional ��calculus and the branching�time temporal
logic Actl� Finally� we give some concluding remarks�

� Data and behaviour properties in functions� processes�

and modules

We propose to extend function denitions with an optional section �introduced by the �eqns� key�
word� containing algebraical equations� A precise syntax of the ��equations�� symbol will be pro�
posed in Section ��

function F ����� ����� � ��� is

���

eqns

�equations�

endfunc

We propose to extend process denitions with two optional sections introduced respectively by the
�rels�and �props� keywords�� A denition of the ��relations�� and ��properties�� symbols will
be given in Sections � and � respectively�

process P ����� ����� � ��� is

���

rels

�relations�

props

�properties�

endproc

Finally� we propose to extend modules with the three above sections� each of them being optional�

module M ��� is

���

eqns

�equations�

rels

�relations�

props

�properties�

endmod

� Algebraical equations for data properties

We believe that the �eqns� section should be highly compatible with existing ActOne equations�

�Other keywords might be preferred� e
g
� �laws	� �forms	� etc


�



On the other hand� we must take into account the fact that value expressions might raise exceptions�

We therefore propose the following syntax for the ��equations�� symbol referenced in Section �


�equations� 

� �ofsort S� E� 	

j �ofsort S� E� 
 E� 	

j �ofsort S� E� raises X ��E�� ���� En�� 	

where S is a type identier� X is an exception identier� and where E�� ���� En are value expressions�
Square brackets denote optional syntactic elements� These three lines have respectively the following�
informal meanings


�� E� is equal to true

�� E� and E� are equal

�� the evaluation of E� raises exception X with actual parameters E�� ���� En�

The precise meaning of the above constructs will rely upon the design choices made for the data
language�

� Equivalences and preorders for behaviour properties

We propose the following syntax for the ��relations�� symbol referenced in Section �


�equations� 

� B� 
 B� mod R 	

j B� � B� mod R 	

j B� � B� mod R 	

where B� and B� are behaviour expressions� and where R is the name of an equivalence or preorder
relation� Informally� these constructs express the fact that the Lts of B� is equivalent �respectively
included in� or includes� the Lts of B� modulo R�

We may think of various relations R �some of which are already dened in an Annex of the existing
Lotos standard�


� strong equivalence �Par���

� observational equivalence �Mil���

� branching bisimulation �vGW���

� ���a bisimulation �Mou���

� safety equivalence �BFG����

� etc�

�



and�or the corresponding preorders�

For example� it may be useful to specify properties of the form


P �A� B� 
 P �B� A� mod strong�equivalence 	

P �A� A� 
 A 	 stop mod strong�equivalence 	

P �G� �� 
 stop mod observation�equivalence 	

PROTOCOL �SEND� RECEIVE� 
 SERVICE �SEND� RECEIVE� mod branching�equivalence 	

MSC �SEND� RECEIVE� � PROTOCOL �SEND� RECEIVE� mod safety�preorder 	

This approach is straightforward� since equivalences and preorders have been extensively studied over
the past years� We may wish to restrict some equivalences to the case where the Lts are nite or
nitely branching�

� Temporal logic and ��calculus for behaviour properties

Alternatively� temporal logic formulas are often convenient to express behaviour properties of systems�
A wide range of temporal logics have been proposed in the literature� Given the specicities of Lotos
Ltss and assuming that Lotos Ltss will be kept unchanged in E�Lotos� we suggest to use a logical
formalism based on the modal ��calculus �Koz��� and the Actl temporal logic �NV����

We propose the following syntax for the ��properties�� symbol referenced in Section �


�properties� 

� B �
 F 	

where B is a behaviour expression� and where F is a formula of the propositional ��calculus �from
which we can derive the Actl temporal logic as a collection of shorthand notations�� In the following
sections� we formally dene the syntax and semantics of the formulas�

��� The model of an E�Lotos program

Our formulas are interpreted over the Ltsmodel corresponding to an E�Lotos description� Formally�
an Lts is dened as a ��tuple hQ�A� T� q�i where


� Q is a set of states of the E�Lotos program� A state q � Q is characterized by the values of
the program variables� which are of no interest here�

� A is a set of actions performed by the E�Lotos program� An action a � A is a tuple GV�� ���� Vn
where G is a gate and V�� ���� Vn �n � �� are the E�Lotos values exchanged �i�e� sent or received�
during the rendez�vous on G� For the silent action � � the value list must be empty�

� T � Q� A �Q is the transition relation� A transition hq�� a� q�i � T means that the program
can pass from the state q� to the state q� by performing the action a�

� q� � Q is the initial state of the program�

�



In the sequel� we assume the existence of an E�Lotos program model M � hQ�A� T� q�i on which
the temporal logic formulas are interpreted�

��� Syntax and semantics of action formulas

In order to express predicates on the program actions� a small auxiliary logic of actions similar to the
one in �NV��� is introduced� The formulas � of this logic have the following syntax


� 

� true

j f G O�� ���� On �E� g
j not ��
j �� and ��

The construction f G O�� ���� On �E� g denotes an action pattern where
 G is a gate name� E is a
boolean expression� and Oi �� � i � n� n � �� are o�ers of the form


Oi 

� �Ei
j �Xi�Si

Ei are E�Lotos value expressions and Xi are matching variables of E�Lotos sorts Si� The matching
variablesXi occurring in the o�ers O�� ���� On are visible inside the boolean expression E of the action
pattern�

Of course� the usual derived boolean operators are also allowed


false � not true

�� or �� � not �not �� and not ���
�� implies �� � not �� or ��
�� i
 �� � ��� implies ��� and ��� implies ���
�� xor �� � not ��� i
 ���

All the binary operators above are left�associative� The not operator has the highest precedence�
followed in order by and� or and xor� implies� i
�

Let A be the set of action formulas� The semantics of an action formula � � A over the set of actions
A of a modelM is given by the interpretation function �����M 
 A � �A dened inductively as follows


��true��M � A�
��fG O�� ���� On �E�g��M � fa � A j a has the form GV�� ���� Vn�

for each o�er Oi of the form �Ei� Vi � Ei�
for each o�er Oj of the form �Xj�Sj � the sort of Vj is Sj
�this also has the side�e�ect of assigning Vj to Xj��
if present� the boolean expression E evaluates to trueg�

��not ���M � A n �����M �
���� and ����M � ������M � ������M �

��� Syntax and semantics of ��calculus formulas

The ��calculus formulas have the following syntax


�



� 

� true

j Xi

j not ��
j �� and ��
j � � � ��
j lfp X � �� �X�

Xi �� � X � n� are propositional variables� The construction lfpX����X� denotes the least x�point
of ���X�� All the occurrences of a propositional variable X in a subformula lfpX���X� are said to be
bound � All other occurrences are free� We write ��X� to explicitly indicate that all the occurrences
of X in � are free�

To ensure the well�denedness of the x�point formulas� we require that every occurrence of a propo�
sitional variable X bounded by an lfp operator falls under an even number of negations�

In addition to the usual derived boolean operators false� or� implies� i
� xor �dened as in sec�
tion ����� we also allow the following derived modal and x�point operators


� � � � � not � � � not �

gfp X � � �X� � not lfp X � not � �not X�

The construction gfpX���X� stands for the greatest x�point of ��X�� The unary operators lfp�
gfp� ���� and ��� have the same level of precedence as the not operator�

A valuation �V � hV�� ���� Vni assigns the sets of states Vi � �Q to the free propositional variables Xi�

Let F be the set of ��calculus formulas� The semantics of a ��calculus formula � � F over a model
M is given by the interpretation function �����M 
 F � ��Q�

n
� �Q dened inductively as follows


��true��M ��V � � Q�

��Xi��M��V � � Vi�

��not ���M ��V � � Q n �����M ��V ��

���� and ����M ��V � � ������M ��V � � ������M ��V ��

��������M��V � � fp � Q j 	a � �����M � 	q � �����M ��V � such that hp� a� qi � Tg�

��lfpX���X���M ��V � � �fQ� � Q j ����Q����M ��V � � Q�g�

A ��calculus formula � without free variables is called a sentence � A state q � Q of a model M
satises a ��calculus sentence � if it is contained in the interpretation of � over M 


q j� � i� q � �����M

��� Actl formulas

The practice of specifying temporal logic properties in the ��calculus has shown that in most cases�
the full power of the formalism is not needed� For example� as pointed out in �CPS���� the users of
the Concurrency Workbench tool prefer to dene in ��calculus a set of usual temporal logic operators
as �macros� and use only these operators to express program properties�

As the models of E�Lotos programs are Ltss in which the important information is contained in
the actions rather than the states� it is appropriate to use a temporal logic interpreted over actions�

A useful temporal logic to reason about programs in terms of actions is Actl �NV���� We propose
here a simplied variant of Actl operators to be included in our temporal logic�

The basic Actl operators are given below� They can be dened in the ��calculus� but since we don�t

	



provide any mechanism to dene new operators� we include them as �built�in� operators�

EX A ��� �� � � � � �

AX A ��� �� � � � � � and � not � � false

EU A ���� �� ��� � lfp X � ��� or �� and EX A ��� X��
AU A ���� �� ��� � lfp X � ��� or �� and � true � true and AX A ��� X��

We also allow the usual derived operators


EU A B ���� ��� ��� ��� � EU A ���� ��� �� and EX A ���� ����
AU A B ���� ��� ��� ��� � AU A ���� ��� �� and � true � true and AX A ���� ����
EF A ��� �� � EU A �true� �� ��
EF ��� � EF A �true� ��
AF A ��� �� � AU A �true� �� ��
AF ��� � AF A �true� ��
EG A ��� �� � not AU A �true� �� not ��
EG ��� � EG A �true� ��
AG A ��� �� � not EU A �true� �� not ��
AG ��� � AG A �true� ��

The Actl operators are su�ciently expressive to describe useful properties like safety and liveness�
For example� a protocol ensuring mutual exclusion between two processes P� and P� must satisfy the
following properties


� safety property �mutual exclusion� �after the process P� has entered the critical section �action
OPEN ��� the process P� cannot do the same �action OPEN �� unless P� leaves the critical section
�action CLOSE ���� expressed in Actl as follows


� f OPEN � g � not EF A �not f CLOSE � g� � f OPEN � g � true�

� liveness property �fairness� �if a process Pi �i � �� �� wants to enter the critical section� it
eventually succeeds�� written in Actl as


� f OPEN i g � EF �� f CLOSE i g � true�

� Conclusions

Having a mechanism for requirement capture and property expression is vital in a Formal Description
Technique such as E�Lotos� Competitor languages such as Sdl already embody similar features�
although in a primitive form�

Taking into account the Committee�s decision to keep algebraical equations for the data part� we
propose a symmetric approach for the behaviour part� We suggest the use of two complementary
formalisms
 equivalences and preorder relations� and modal ��calculus with its derived logic� Actl�

Our proposal is based upon well known� state�of�the�art concepts and will allow verication tools to
be applied directly to E�Lotos descriptions�

Our proposal should be easily combined into E�Lotos module language� which is still under design�
Among possible extensions� one may wish to consider the possibility of naming ��calculus formulas
by dening �functions for formulas� with names and formal parameters�

�



References

�BFG���� Ahmed Bouajjani� Jean�Claude Fernandez� Susanne Graf� Carlos Rodr��guez� and Joseph
Sifakis� Safety for Branching Time Semantics� In Proceedings of ��th ICALP� Berlin� July
����� Springer Verlag�

�CPS��� R� Cleaveland� J� Parrow� and B� Ste�en� The Concurrency Workbench� In J� Sifakis�
editor� Proceedings of the �st Workshop on Automatic Veri�cation Methods for Finite
State Systems �Grenoble� France	� volume ��	 of Lecture Notes in Computer Science�
pages ����	� Berlin� June ����� Springer Verlag�

�IT��� ITU�T� Specication and Description Language �SDL�� ITU�T Recommendation Z�����
International Telecommunication Union� Gen�eve� �����

�Koz��� D� Kozen� Results on the Propositional ��calculus� Theoretical Computer Science� �	
����
���� �����

�Mil��� Robin Milner� A Calculus of Communicating Systems� volume �� of Lecture Notes in
Computer Science� Springer Verlag� Berlin� �����

�Mou��� Laurent Mounier� M
ethodes de v
eri�cation de sp
eci�cations comportementales � 
etude et
mise en �uvre� Th�ese de Doctorat� Universit�e Joseph Fourier �Grenoble�� January �����

�NV��� R� De Nicola and F� W� Vaandrager� Action versus State based Logics for Transition
Systems� In Proceedings Ecole de Printemps on Semantics of Concurrency� volume ��� of
Lecture Notes in Computer Science� pages ��	����� Springer Verlag� �����

�Par��� David Park� Concurrency and Automata on Innite Sequences� In Peter Deussen� editor�
Theoretical Computer Science� volume ��� of Lecture Notes in Computer Science� pages
��	����� Berlin� March ����� Springer Verlag�

�vGW��� R� J� van Glabbeek and W� P� Weijland� Branching�Time and Abstraction in Bisimula�
tion Semantics �extended abstract�� CS R����� Centrum voor Wiskunde en Informatica�
Amsterdam� ����� Also in proc� IFIP ��th World Computer Congress� San Francisco�
�����

�


