French-Romanian Proposal for Capture of Requirements and
Expression of Properties in E-LOT0OS Modules*

Version 1.0

Radu MATEESCU Hubert GARAVEL
INRIA Rhone-Alpes
VERIMAG — Miniparc-ZIRST
rue Lavoisier
38330 MONTBONNOT ST MARTIN
FRANCE

May 1996

Abstract

It has been agreed by the E-LoT0s Committee that ACTONE algebraical equations should be
kept in the E-LoTOs modules language to express the properties of the entities declared in the
data part. This document proposes a similar scheme to express properties of the entities declared
in the behaviour part. Our proposal is based on two state-of-the-art techniques for expressing
such properties: equivalences and preorder relations between Labelled Transition Systems and
temporal logics. This extension will provide E-LoTos with powerful capabilities for capturing
requirements in the specification phase and expressing properties to be checked by verification

tools.
Contents
1 Introduction 2
2 Data and behaviour properties in functions, processes, and modules 3
3 Algebraical equations for data properties 3
4 Equivalences and preorders for behaviour properties 4
5 Temporal logic and p-calculus for behaviour properties 5
5.1 The model of an E-LOTOS program o 5
5.2 Syntax and semantics of action formulas00 6
5.3 Syntax and semantics of p-calculus formulas00 6
5.4 ActL formulas 7
6 Conclusions 8

*This work has been supported in part by the Commission of the European Communities, under project ISC-CAN-65
“EUCALYPTUS-2: A European/Canadian LoTos Protocol Tool Set”.

1 Introduction

This paper proposes a mechanism allowing to express requirements in E-LoT0Ss descriptions. Our
proposal 1s based upon the following considerations:

o It has been agreed by the E-LoT0s Committee that ACTONE algebraical equations should be
kept in the E-LoT0s modules language to express the properties of the entities declared in the
data part. Syntactically, these equations could occur as an optional part, either in function
declarations, e.g.:

function F [...1 (...) : ... is

eqns
<equations>
endfunc

or in module signatures and/or implementations, e.g.:

module M ... is
eqns

<equations>
endmod

It has also been decided that, in the formal definition of E-LoTo0s, these equations should be
considered as “comments”, which do not affect the dynamic semantics of E-L0oT0s descriptions
in which they occur. However, the equations should be checked, with respect to syntax and
static semantics. Some tools may even want to go further, by (trying to) prove that the invariant
properties expressed by the equations are valid.

Such equations are helpful for capturing requirements in the specification phase. For instance,
it 1s possible to specify the expected properties of a function before implementing this function
actually. In other words, one should be able to specify “what” must be done before “how” it
can be done. This approach is well-known in “literate programming” context.

e It has also been agreed that the data part and the behaviour part of E-LoT0s should exhibit,
whenever it is possible, a nice symmetry. For instance, it was agreed that E-LoTo0s modules
should embody process definitions, as well as type and function definitions. Some recent propos-
als for defining the “core language” semantics even suggest a syntactic and semantic unification
between the data and behaviour part.

For symmetry, it would be very suitable to provide means for expressing properties on behaviour
expressions and processes. Although they wouldn’t affect the dynamic semantics of E-LoT0S
programs, such requirements could be extracted and checked automatically using specialized
verification tools.

e We must notice that such features are already present in other FDTs, for example SDL. Indeed,
the SDL definition [IT92] comes with a graphical language called Msc (for Message Sequence
Charts) to express requirements about SDL descriptions. The Msc descriptions define execution
sequences and can be used by SDL verification tools to check whether the SDL descriptions can
perform such execution sequences.

Therefore, it 1s mandatory for E-LoT0s to offer, at least, the same capabilities as SDL. We
believe that E-LoTos should even go further than Mscs by embodying state-of-the-art tech-
niques for expressing such properties. Assuming that E-LoTos semantics (as LOTOs semantics)
will be based upon the Labelled Transition System model (LTs for short), we naturally propose

the use of the two most popular formalisms for specifying LTs properties: equivalences (and
preorder) relations, and temporal logics.

The paper is structured as follows. Section 2 defines the places where properties could be allowed in
E-LoTos. Section 3 discusses the algebraical equations used for expressing data properties. Section 4
discusses the use of equivalence and preorder relations for expressing behaviour properties. Section 5
proposes a complete solution, based on the propositional g-calculus and the branching-time temporal
logic AcTL. Finally, we give some concluding remarks.

2 Data and behaviour properties in functions, processes,
and modules

We propose to extend function definitions with an optional section (introduced by the “eqns” key-
word) containing algebraical equations. A precise syntax of the “<equations>’ symbol will be pro-
posed in Section 3.

function F [...1 (...) : ... is

eqns
<equations>
endfunc

We propose to extend process definitions with two optional sections introduced respectively by the

“rels”and “props” keywords'. A definition of the “<relations>” and “<properties>’ symbols will
be given in Sections 4 and 5 respectively.

process P [...]1 (...) : ... is

rels
<relations>
props
<properties>
endproc

Finally, we propose to extend modules with the three above sections, each of them being optional.

module M ... is
eqns
<equations>
rels
<relations>
props
<properties>
endmod

3 Algebraical equations for data properties

We believe that the “eqns” section should be highly compatible with existing ACTONE equations.

10ther keywords might be preferred, e.g., “laws”, “forms”, etc.

On the other hand, we must take into account the fact that value expressions might raise exceptions.

We therefore propose the following syntax for the “<equations>” symbol referenced in Section 2:

<equations> ::= [ofsort S| Ey ;
| [ofsort S| By = Ey ;
| [ofsort S| Ey raises X [(Ey,...,En)] ;

where S is a type identifier, X is an exception identifier, and where FEy, ..., E, are value expressions.
Square brackets denote optional syntactic elements. These three lines have respectively the following,
informal meanings:

1. Ey is equal to true
2. Fy and F5 are equal

3. the evaluation of Ej raises exception X with actual parameters Ey, ..., E},.

The precise meaning of the above constructs will rely upon the design choices made for the data
language.

4 Equivalences and preorders for behaviour properties

We propose the following syntax for the “<relations>” symbol referenced in Section 2:

Bs mod R ;
Bs mod R ;
Bs mod R ;

<equations> = DB
| B
| B

v A

where By and By are behaviour expressions, and where R is the name of an equivalence or preorder
relation. Informally, these constructs express the fact that the Lrs of B; is equivalent (respectively
included in, or includes) the Ls of B; modulo R.

We may think of various relations R (some of which are already defined in an Annex of the existing
LoTos standard):

e strong equivalence [Par81]

¢ observational equivalence [Mil80]
e branching bisimulation [vGW89]
e 7.4 bisimulation [Mou92]

e safety equivalence [BFGT91]

e ctc.

and/or the corresponding preorders.
For example, it may be useful to specify properties of the form:

P [A, B] = P [B, A] mod strong_equivalence ;

P [A, A] = A ; stop mod strong_equivalence ;

P [G] (0) = stop mod observation_equivalence ;

PROTOCOL [SEND, RECEIVE] = SERVICE [SEND, RECEIVE] mod branching_equivalence ;

MSC [SEND, RECEIVE] < PROTOCOL [SEND, RECEIVE] mod safety_preorder ;

This approach is straightforward, since equivalences and preorders have been extensively studied over
the past years. We may wish to restrict some equivalences to the case where the LTs are finite or
finitely branching.

5 Temporal logic and pu-calculus for behaviour properties

Alternatively, temporal logic formulas are often convenient to express behaviour properties of systems.
A wide range of temporal logics have been proposed in the literature. Given the specificities of LoT0S
Lrss and assuming that LoTos Lrss will be kept unchanged in E-L.OTOS, we suggest to use a logical
formalism based on the modal p-calculus [Koz83] and the ACTL temporal logic [NV90].

We propose the following syntax for the “<properties>” symbol referenced in Section 2:
<properties> 1= B |[= I ;

where B is a behaviour expression, and where F' is a formula of the propositional p-calculus (from
which we can derive the AcTL temporal logic as a collection of shorthand notations). In the following
sections, we formally define the syntax and semantics of the formulas.

5.1 The model of an E-LOTOS program
Our formulas are interpreted over the LTs model corresponding to an E-LoTo0s description. Formally,
an LTs is defined as a 4-tuple (@, A, T, qo) where:

e () is a set of states of the E-LoT0S program. A state ¢ € @ 1s characterized by the values of
the program variables, which are of no interest here;

e Ais aset of actions performed by the E-LoTo0S program. An action a € A is a tuple GV1, ..., Vj,
where G is a gate and V1, ..., V,, (n > 0) are the E-LoTos values exchanged (i.e. sent or received)
during the rendez-vous on (. For the silent action 7, the value list must be empty;

o T CQ x AxQ is the transition relation. A transition {(qi1, a, ¢2) € 7' means that the program
can pass from the state ¢; to the state g2 by performing the action a;

® qo € () 18 the wnitial state of the program.

In the sequel, we assume the existence of an E-LoTos program model M = (@, A, T, qp) on which
the temporal logic formulas are interpreted.

5.2 Syntax and semantics of action formulas

In order to express predicates on the program actions, a small auxiliary logic of actions similar to the
one in [NV90] is introduced. The formulas ¢ of this logic have the following syntax:

¥ o= true
| {GOy, ..,0,[E]}
| mot ¥
| ¢1 and 4
The construction { G Oy, ..., O [E] } denotes an action pattern where: G is a gate name, F is a

boolean expression, and O; (1 <i < n, n > 0) are offers of the form:

0; == E;
| ?X;:5;
E; are E-LoTo0s value expressions and X; are maiching variables of E-L0OTOS sorts S;. The matching
variables X; occurring in the offers O, ..., O, are visible inside the boolean expression E of the action
pattern.

Of course, the usual derived boolean operators are also allowed:

false = not true

1 or s = not (not ¢; and not ¢s)

Yy implies ¥, = not ¥y or ¥»

Py iff s = (¢ implies ¢3) and (¢, implies ¢)
Y1 Xor ¥y = mot (¢ iff ¢s)

All the binary operators above are left-associative. The not operator has the highest precedence,
followed in order by and, or and xor, implies, iff.

Let A be the set of action formulas. The semantics of an action formula ¢ € A over the set of actions
A of a model M is given by the interpretation function [[.]],, : A — 24 defined inductively as follows:

([bruell,, "
[{G O, .., 0, [E1}lsy = {a€ A|a has the form GVi, ..., Vp;
for each offer O; of the form 'E;, V; = F;;
for each offer O; of the form 7.X;:5;, the sort of V; is .S
(this also has the side-effect of assigning V; to Xj;);
if present, the boolean expression E evaluates to true};
AN [
[Tlys O [l

[not ¥]],,
[[v1 and]y,

5.3 Syntax and semantics of p-calculus formulas

The p-calculus formulas have the following syntax:

true

X

not ¢,

wo and @,

<Y >

lfp X . o1 (X)

X; (1 < X < n) are propositional variables. The construction pX.p1(X) denotes the least fix-point
of 1 (X). All the occurrences of a propositional variable X in a subformula lfpX.p(X) are said to be
bound. All other occurrences are free. We write ¢(X) to explicitly indicate that all the occurrences
of X in ¢ are free.

To ensure the well-definedness of the fix-point formulas, we require that every occurrence of a propo-
sitional variable X bounded by an lfp operator falls under an even number of negations.

In addition to the usual derived boolean operators false, or, implies, iff, xor (defined as in sec-

tion 5.2), we also allow the following derived modal and fix-point operators:

Lyl = not < >not ¢
gfp X .9 (X) = mnotlp X .noty (not X)

The construction gfpX.p(X) stands for the greatest fix-point of ¢(X). The unary operators lfp,
gfp, <.>, and [.] have the same level of precedence as the not operator.
A wvaluation V = (Vi,..., V) assigns the sets of states V; € 29 to the free propositional variables X;.

Let F be the set of p-calculus formulas. The semantics of a p-calculus formula ¢ € F over a model
M is given by the interpretation function [[.]],; : F x (29)" — 29 defined inductively as follows:

true]]M_’(f/’) = Q;
Xl = w
] = Q\[lplly (V /);

[l (V) 0 {2l (V); B
{pe @ 3ae¥lly,3q € [[elly (V) such that (p,a,q) € T};

[
UpX.o(X)]y (V) = n{Q CQ (@) (V) S QT

A p-calculus formula ¢ without free variables is called a sentence. A state ¢ € () of a model M
satisfies a p-calculus sentence ¢ if 1t 1s contained in the interpretation of ¢ over M:

q ¢ iff ¢ € [[¢]ly

5
o
=
Qu
A
.,
E s
SL
[l

5.4 AcTL formulas

The practice of specifying temporal logic properties in the p-calculus has shown that in most cases,
the full power of the formalism is not needed. For example, as pointed out in [CPS89], the users of
the Concurrency Workbench tool prefer to define in g-calculus a set of usual temporal logic operators
as “macros” and use only these operators to express program properties.

As the models of E-LoTo0Ss programs are LTss in which the important information is contained in
the actions rather than the states, it is appropriate to use a temporal logic interpreted over actions.

A useful temporal logic to reason about programs in terms of actions is ACTL [NV90]. We propose
here a simplified variant of ACTL operators to be included in our temporal logic.

The basic ACTL operators are given below. They can be defined in the p-calculus, but since we don’t

provide any mechanism to define new operators, we include them as “built-in” operators.

EX_A (¢, ¢) = <Y>p

AX_A (¢, ¢) = [v¥]1 ¢ and [not ¢] false

EU_A (1, ¢, p2) = Utp X . (p2 or ¢; and EX_A (¢, X))

AUA (p1,¢, p2) = Up X . (p2 or ¢; and < true > true and AX_A (¢, X))

We also allow the usual derived operators:

EU_A B (p1, ¥1, ¥2, 2)
AU_A B (p1, ¥1, ¥a, 92)

EU_A (@1, 1/)1a 1 and EX_A (1/)2a @2))
AU_A (o1, ¥1, ¢1 and < true > true and AX_A (¢2, ¢2))
(

EF_A (¢, ¢) = EU_A (true, ¢, o)

EF (y) = EF_A (true, ¢)

AF_A (¢,) = AU_A (true, ¢, @)

AF (¢) = AF_A (true, ¢)

EG_A (¢, ¢) = not AU_A (true, ¢, not ¢)
EG (v) = EG_A (true, ¢)

AG_A (¢, ¢) = not EU_A (true, ¢, not ¢)
AG (p) = AG_A (true, p)

The AcTL operators are sufficiently expressive to describe useful properties like safety and liveness.
For example, a protocol ensuring mutual exclusion between two processes P; and P» must satisfy the
following properties:

o safety property (mutual exclusion) “after the process P, has entered the critical section (action
OPEN_1), the process P» cannot do the same (action OPEN_2) unless P; leaves the critical section
(action CLOSE_1)”, expressed in ACTL as follows:

[{OPEN_1 }] not EF_A (not { CLOSE1 }, < { OPEN_2 } > true)

e liveness property (fairness) “if a process P; (¢ = 1,2) wants to enter the critical section, it
eventually succeeds”, written in ACTL as:

[{OPENi }] EF (< { CLOSE_i } > true)

6 Conclusions

Having a mechanism for requirement capture and property expression is vital in a Formal Description
Technique such as E-LoTo0s. Competitor languages such as SDL already embody similar features,
although in a primitive form.

Taking into account the Committee’s decision to keep algebraical equations for the data part, we
propose a symmetric approach for the behaviour part. We suggest the use of two complementary
formalisms: equivalences and preorder relations, and modal p-calculus with its derived logic, ACTL.

Our proposal is based upon well known, state-of-the-art concepts and will allow verification tools to
be applied directly to E-LoTo0s descriptions.

Our proposal should be easily combined into E-LoT0s module language, which is still under design.
Among possible extensions, one may wish to consider the possibility of naming p-calculus formulas
by defining “functions for formulas” with names and formal parameters.

References

[BFG*91] Ahmed Bouajjani, Jean-Claude Fernandez, Susanne Graf, Carlos Rodriguez, and Joseph

[CPS89)]

[1T92]

[Koz83]

[Mil80]

[Mou92]

[NV0]

[Par81]

[VGW8Y]

Sifakis. Safety for Branching Time Semantics. In Proceedings of 18th ICALP, Berlin, July
1991. Springer Verlag.

R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench. In J. Sifakis,
editor, Proceedings of the 1st Workshop on Automatic Verification Methods for Finite
State Systems (Grenoble, France), volume 407 of Lecture Notes in Computer Science,
pages 24-37, Berlin, June 1989. Springer Verlag.

ITU-T. Specification and Description Language (SDL). ITU-T Recommendation Z.100,
International Telecommunication Union, Genéve, 1992.

D. Kozen. Results on the Propositional p-calculus. Theoretical Computer Science, 27:333—
354, 1983.

Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer Verlag, Berlin, 1980.

Laurent Mounier. Méthodes de vérification de spécifications comportementales : étude et
mise en euvre. Thése de Doctorat, Université Joseph Fourier (Grenoble), January 1992.

R. De Nicola and F. W. Vaandrager. Action versus State based Logics for Transition
Systems. In Proceedings Ecole de Printemps on Semantics of Concurrency, volume 469 of
Lecture Notes in Computer Science, pages 407-419. Springer Verlag, 1990.

David Park. Concurrency and Automata on Infinite Sequences. In Peter Deussen, editor,
Theoretical Computer Science, volume 104 of Lecture Notes in Computer Science, pages

167-183, Berlin, March 1981. Springer Verlag.

R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstraction in Bisimula-
tion Semantics (extended abstract). CS R8911, Centrum voor Wiskunde en Informatica,
Amsterdam, 1989. Also in proc. IFIP 11th World Computer Congress, San Francisco,
1989.

