
French�Romanian comments regarding

some proposed features for E�LOTOS data types�

Hubert Garavel Mihaela Sighireanu

INRIA Rh�one�Alpes

VERIMAG � Miniparc�ZIRST

rue Lavoisier

����� MONTBONNOT ST MARTIN

FRANCE

December ���	

Abstract

This report investigates some features that have been proposed as design choices for the
E�Lotos datatype language� Examples of these features are� polymorphism� type inference�
anonymous records� and functions�constructors having a single argument� We analyze the con�
sequences of these features and exhibit a number of defects a�ecting expressiveness� simplicity�
compatibility with existing Lotos� interoperability with other languages and e�ciency of im�
plementations� We therefore advise the E�Lotos Committee not to include such undesirable
features into the future E�Lotos addendum�

�This work has been partly supported by the European Commission� under project ISC�CAN��� �EUCALYPTUS���
A European�Canadian Lotos Protocol Tool Set	

�

Contents

� Introduction �

� About polymorphism �

� About overloading �

� About type inference �

� About anonymous records and single�argument functions �

��� No added expressiveness �

��� A limited and questionable convenience �

��� Lack of convenience� heavy record notations �

��� Lack of convenience� the 	���
 notation ��

��� Lack of convenience� selectors for union types ��

��� Lack of convenience� updaters for union types ��

�� Oddness of language constructs ��

��� Complexity of semantics ��

��� Subversion of software methodologies ��

���� Absence of compatibility with standard LOTOS ��

���� Absence of interoperability with other ISO languages ��

���� Ine�cient implementations ��

� Conclusion ��

�

� Introduction

This report is based upon two existing documents�

� Annex A of the output document of the E�Lotos meeting in Ottawa �JGL�����

� and an input contribution to the E�Lotos meeting in Li�ege �Jef����

The �rst document contains two main approaches for the E�Lotos datatype language� These two
approaches are de�ned in Sections �� �� and � of �JGL����� The essential di�erences between these
two approaches are the following�

� The �rst approach is compatible with current Lotos� It does not support polymorphism
�generic types are used instead� nor type inference� Tuples and records have to be named�
Constructors and functions can have zero� one or more arguments� Overloading is allowed�

� The second approach is based on SML� It includes polymorphism� type inference� tuples and
records as �rst�class citizen �anonymous records�� All functions and constructors have a single
argument� It forbids overloaded functions�

The second document �Jef��� develops and formalizes the second approach� with some modi�cations�
We focus here on the data type proposal given in �Jef��� and we leave other considerations �behavioural
language� data abstraction� and gates as �rst�class citizen� for further discussion�

In this report� we analyze the main di�erences between those two approaches and their practical
consequences�

� About polymorphism

A detailed criticism of polymorphism can be found in Section ������ �pages ������ of �JGL����� We
remind here the main arguments against introducing polymorphism in E�Lotos�

�� It would imply the suppression of overloading facilities that currently exist in Lotos �see below
in Section ��� It would go against the goal of compatibility with Lotos de�ned in the scope of
the New Work Item�

�� The existing type�checking algorithm for polymorphism is signi�cantly more complex than the
one for overloading ��� pages versus � pages in �ASU���� � pages versus � pages in �WM����� This
would increase the complexity of both E�Lotos static semantics and E�Lotos type�checkers�

�� Moreover� type�checking for overloading can be performed in linear�time� whereas type�checking
for polymorphism is exponential� There a risk that large� polymorphism�based protocol descrip�
tions could not be type�checked in a reasonable amount of time�

�� Apart from the languages of the ML family� polymorphism is not used in any major program�
ming or speci�cation language� Although interesting ML features �e�g�� union types� pattern�
matching� have been reused in recent languages� this is not the case with polymorphism�

�� Lack of polymorphism has not been a usual complaint heard from people actually working
with Lotos� In this respect� it is worth noticing that none of the proposals for E�Lotos
enhancements listed in Section � of �JGL���� suggest to enbody polymorphism as a desirable
feature� The reason for this is explained in the next items�

�� The genericity features of ActOne already cover most of the functionalities provided by poly�
morphism� by allowing the de�nition of sorts and functions parameterized by one or several

�

formal sorts� The same approach can be found in many algebraic languages� as well as in
functional languages like Opal� Although the ActOne syntax for actualization is not very
user�friendly� it could be improved� Such changes would rather a�ect the module system than
the type system of the core language itself�

� If polymorphism is included in E�Lotos� it is feared that it will be largely redundant with
genericity features� For instance� a speci�er wanting to de�ne a stack �or a �fo queue� of
parameterized items will be o�ered two possibilities� either declaring a polymorphic stack type�
or declaring a generic stack type �using ActOne�like generic modules or SML�like functors��

Having two di�erent mechanisms for the same concept will reduce reusability� as parts of code
written with one mechanism might not be reusable in a context where the other mechanism is
chosen�

Moreover� in such event� the prede�ned libraries of the base environment �e�g�� sets� bags� etc��
might be de�ned twice� a polymorphic version� or a generic version� or both� might be available�

�� The generic features providedActOne go beyond the scope of polymorphism� by allowing sorts
and functions to be parameterized by formal functions� This is also possible in SML� but not in
the polymorphism framework� two di�erent mechanisms �higher�order functions and functors�
are provided instead�

In SML� the redundancy issue mentioned in the previous item is all the more present� because
three di�erent approaches �polymorphism� higher�order functions� and functors� are available
for the same purpose �de�ning objects parameterized by other objects��

On the opposite� ActOne and similar languages deal with genericity in a single� uniform
approach� Formal sorts and formal functions are handled symmetrically� and the type system
remains simple�

We also want to point out two new considerations�

�� We observe that the latest SML�based proposal �Jef��� does not include polymorphism�

�� We notice that polymorphism cannot be simply extended to the behaviour part of Lotos�
If polymorphic functions are allowed� it would be suitable �for symmetry reasons� to have
polymorphic processes also� But this would create problems� as several values of di�erent types
can be sent on the same gate� For instance� one could imagine a polymorphic one�slot bu�er
de�ned as�

process BUFFER �INPUT� OUTPUT� � noexit ��

INPUT �X��T�

OUTPUT 	X�

BUFFER �INPUT� OUTPUT�

endproc

where X is a variable having the polymorphic type �T� However� trouble ensues if we connect
this bu�er in the following environment�

BUFFER �SEND� OUTPUT�

�SEND�

SENDER �SEND�

where

process SENDER �SEND� � noexit ��

SEND 	��

SEND 	false�

stop

�

endproc

Depending on the instant� the value sent on gate SEND can be either a natural number or a
boolean� Therefore the X variable of the bu�er has to be sometimes a boolean� and sometimes a
natural number� This contradicts the ML assumption that each expression has always a single
�mono�type and implies that type�checking has to be deferred until run�time�

Having polymorphic processes �such as the polymorphic bu�er� would not be compatible with
the decision of the E�Lotos Committee to have static type�checking�

� About overloading

The proposed SML�based approach would have the undesirable e�ect of removing overloading �which
already exists in the Lotos standard� from E�Lotos� A discussion about the implied drawbacks
can be found in Section ����� page �� of �JGL����� We reproduce here the main arguments�

�� Overloading is primarily intended for notational convenience� It is not obvious that removing
overloading fromE�Lotos is the right way to obtain 	a more user�friendly notation for datatype
descriptions
 �which is the goal de�ned in the scope of the new Work Item��

�� Overloading exists in most computer languages� Some languages �like Fortran� Algol� Pascal�
C� and SML� only allow overloading for built�in operators �e�g�� � on integers� and � on reals��

Some other recent languages �such as Ada� C��� Ei�el� Opal� etc�� have made overloading
uniformly available for both built�in and de�ned functions� This results in a greater convenience
for the programmer to exploit and fewer special cases to memorize�

�� User�de�ned� overloaded functions do not prevent type�checking from being done at compile
time �this was done for the �rst time in ���� for APL�� Overloading does not add much complex�
ity to languages and compilers� since overloading treatment is usually isolated in a well�de�ned
part of static semantics� without impact on dynamic semantics�

�� Well�known� e�cient algorithms exist to perform type�checking and solve overloading simulta�
neously �ASU���� These algorithms use either two passes �as in the case of Ada� or even a single
bottom�up pass �Bak����

�� We advocate that overloading supports compositionality� because it does not require that all
functions have di�erent names� thus reducing the risk of name clashes when importing new
modules� For instance� if two modules� a �fo queue module and a stack module� both of them
exporting an is empty function with di�erent pro�les� are imported simultaneously in a third
module� no name clash will occur� and both functions will be coexist and be accessible�

�� Overloading �ts well with generic modules� Let�s consider a generic FIFO queue module� ex�
porting a sort queue and a large collection of functions� among which a function is empty �

queue � bool�

With overloading� this module can be instantiated several times by simply actualizing the sort
queue� Doing so� all the functions exported by the module will be available by default with the
same identi�ers �with overloaded pro�les��

Without overloading� it is also necessary to actualize all these functions by giving them new
names �e�g�� is empty packet queue� is empty message queue� etc��� which is rather cumber�
some�

�

� Overloading is existing practice in Lotos� Forbidding overloading in E�Lotos would raise
di�cult compatibility issues with the current standard�� In such case� an algorithm should be
provided to translate existing Lotos descriptions into ones without overloading�

�� The 	rich�term syntax
 proposed by Charles Pecheur �Pec��� relies on the existence of over�
loading�

We also want to add the following new arguments�

�� We do not agree with Alan Je�rey�s statement that overloading is more or less incompatible
with type theory�

This is not a universal truth� although some theorem�provers like Hol and Coq do not accept
overloading� there exist other theorem�provers based on type theory� such as Pvs and Isabelle�
which support overloading very well�

�� From our own experience� we claim that most Lotos descriptions standardized by Iso make
plain use of overloading� It is worth noticing that both constructors and�or de�ned functions
�including selector functions� happen to be overloaded� We illustrate this fact by giving exam�
ples taken from the Ccr and Osi�Tp protocols�

� Example � �excerpt from Ccr protocol��

sorts general

opns

null �	 constructor � � �� general

succ �	 constructor � � general �� general

sorts key

opns

� �	 constructor � � �� key

succ �	 constructor � � key �� key

sorts user�data

opns

null �	 constructor � � �� user�data

succ �	 constructor � � user�data �� user�data

� Example � �excerpt from Ccr protocol��

get�bs � branch�identifier �� branch�suffix

get�bs � CPDU �� branch�suffix

get�aet � name �� ae�title

get�aet � name� ccr�ver� ae�title� ae�title �� ae�title

name �	 constructor � � ae�title �� name

name �	 constructor � � side �� name

get�aais � CSP �� atomic�action�suffix

get�aais � CPDU �� atomic�action�suffix

get�ud � CSP �� PDUqueue � User Data �

get�ud � ASP �� PDUqueue � User Data �

get�ud � PSP �� PDUqueue � User Data �

get�ud � CPDU �� user�data

�

get�rs � CSP �� requestor�recovery�state

get�rs � ASP �� result�source

get�rs � CPDU �� requestor�recovery�state

get�rr � CSP �� responder�recovery�state

get�rr � CPDU �� responder�recovery�state

sp �	 constructor � � CSP �� SP

sp �	 constructor � � ASP �� SP

sp �	 constructor � � PSP �� SP

� Example � �excerpt from Osi�Tp protocol��

suffix � atomic�action�identifier �� suffix

suffix � branch�identifier �� suffix

suffix �	 constructor � � OctetString �� suffix

suffix �	 constructor � � Integer �� suffix

no�reason�given �	 constructor �� �� service�user�diagnostic

no�reason�given �	 constructor �� �� service�provider�diagnostic

is�user� is�provider � PDU �� bool

is�user� is�provider � ServicePrim �� bool

is�user� is�provider � a�associate�result�source �� bool

is�user� is�provider � a�abort�source �� bool

tp�abort�ri �	 constructor � � tp�abort�type� PDUqueue �� PD

tp�abort�ri �	 constructor � � tp�abort�type� tp�P�abort�diagnostic �� PDU

purging �	 constructor � � nat� nat �� purge�sort

purging �	 constructor � � bool �� purge�sort

��� �	 constructor � � PDUlist� PDUkey �� PDUlist

��� � PDUkey� PDUkey �� PDUlist

��� �	 constructor � � PDU� PDUqueue �� PDUqueue

��� � PDUqueue� PDU �� PDUqueue

��� � PDU� PDU �� PDUqueue

���� �	 constructor � � nat� bool �� assignment

���� �	 constructor � � range� bool �� assignment

���� �	 constructor � � range� service�info �� assignment

���� �	 constructor � � nat� bool �� assignment

���� �	 constructor � � range� bool �� assignment

� Example � �excerpt from Osi�Tp protocol��

tp�begin�dialogue�ri �	 constructor � �

TPSU�title�Opt� TPSU�title�Opt� functional�units� bool�Opt�

tp�begin�dialogue�confirmation� nat� correlator�Opt� PDUqueue �� PDU

tp�begin�dialogue�ri �	 constructor � �

functional�units� nat� channel�utilization� correlator�Opt �� PDU

tp�begin�dialogue�rc �	 constructor � �

functional�units�Opt� tp�begin�dialogue�result�

tp�begin�dialogue�diagnostic�Opt� nat� PDUqueue �� PDU

tp�begin�dialogue�rc �	 constructor � �

tp�begin�dialogue�result� tp�begin�channel�diagnostic�Opt� nat �� PDU

� About type inference

�� As regards type inference� there is a persistent ambiguity in �JGL���� and �Jef��� Although it
is stated in the abstract of �Jef��� that the 	core functional language ����� is explicitly typed
and monomorphically typed
� the examples given page ��� ��� ��� ��� �� of �Jef��� rely on type
inference� which needs to be clari�ed�

�� Type inference is closely related to polymorphism� If polymorphism is not introduced� there is
no need for type inference�

�� As regards the consequences of type inference� we fully agree with the point of view expressed
in �Wat��� page �����

	ML adopts a laissez�faire� attitude to typing� The programmer can voluntarily state
the type of a declared entity� or leave the compiler to infer the type�

In longer pieces of program than �the two�line program given as example page ��� ��
however� it is unwise to rely too much on type inference� Consider a very large
function de�nition� written without any types being stated explicitly� A �human�
reader might have to scan pages simply to discover the type of the function� Even the
author of the function de�nition can get into di�culties� a slight programming error
in the function body might confuse the compiler� causing it to produce obscure error
messages� or even to infer a di�erent type from the one intended by the programmer�
So explicitly stating types� even if redundant� is good programming practice�

� About anonymous records and single�argument functions

There are other features in �Jef��� which desire to be closely examined�

� Records are �rst�class citizen� which means that it is possible to de�ne record types without
naming them explicitly�

� Functions have a single argument and a single result� Both the argument and the result can be
a record�

� Similarly� constructors have a single argument and a single result�

For a number of reasons exposed in the following sections� we believe that introducing such features
in E�Lotos would be a very poor design choice�

�

��� No added expressiveness

It should be clear that� from a purely theoretical point of view� introducing anonymous records in
E�Lotos does not add any extra expressiveness to the language�

As the number of anonymous records in a given description is necessarily �nite� it is always possible to
translate any description with anonymous records into an equivalent description in which all distinct
records types are given unique type identi�ers�

��� A limited and questionable convenience

From a practical point of view� one might see two advantages to anonymous records�

� Convenience for the users� which can use structured types without declaring them� this argu�
ment is a very questionable one� as it will be discussed in Section ����

� Possibility to declare easily functions that return several results� this argument is more convinc�
ing� as functions with multiple results do not directly exist in standard Lotos� If we consider
the example of a function that search an item in a table� it is easier to write�

function SEARCH�ITEM �I�ITEM� T�TABLE� � �FOUND�boolean� KEY�natural� is

if � exists K�natural such that T �K� � I �

then �true� K�

else �false� ��

endif

endfunc

rather than�

type RESULT�OF�SEARCH is

PAIR �FOUND�boolean� KEY�natural�

end

function SEARCH�ITEM �I�ITEM� T�TABLE� � RESULT�OF�SEARCH is

if � exists K�natural such that T �K� � I �

then PAIR �true� K�

else PAIR �false� ��

endif

endfunc

We believe that this convenience is perhaps the only justi�cation for introducing anonymous
records in Lotos� However� we will show in Section ���� that functions returning records
are not appropriate if we want E�Lotos to interoperate smoothly with other major computer
languages� including those standardized by Iso�

� Furthermore� we will explain in Sections ��� to ��� why the presence of anonymous records in
E�Lotos prevents from having convenient features �such as selectors and updaters for union
types� which have proven to be necessary in standardized Lotos descriptions of Iso protocols
and services�

��� Lack of convenience� heavy record notations

The notation for record values proposed in �Jef��� is cumbersome� because all �eld labels have to be
explicitly mentioned� For instance� let�s consider the following type de�nition�

�

datatype GEOMETRICAL�SHAPE ��

CIRCLE of �RADIUS�real�

 RECTANGLE of �LENGTH�real� WIDTH�real�

endtype

Every time the constructor RECTANGLE is invoked� it is necessary to recall the labels of its �elds� one
must write 	RECTANGLE fLENGTH���� WIDTH���g
 or 	RECTANGLE fWIDTH���� LENGTH���g
�

It is not possible to write 	RECTANGLE f��� ��g
 simply� because this would introduce an ambiguity
on the type of the record�

It is to be feared that speci�ers will shorten as much as possible the �eld labels in order to keep short
notations or even to remove these labels by using the SML 	tuple
 shorthand�

In both cases� the resulting speci�cations will be poorly documented �this problem has already been
discussed in Section ����� of �JGL������

��� Lack of convenience� the ����	 notation

The proposal made in �Jef��� does not contain the 	���
 notation in patterns �JGL����� This abbre�
viated notation allows to elide constructor arguments �i�e�� record �elds� which are of no interest in
the pattern� For instance� it can be useful for selecting the ��th and ��th bits of a ���bit word�

The 	���
 notation is trivial to implement using the �rst approach proposed in �JGL����� However�
in an SML�based approach� it raises the di�cult problem of 	polymorphic records
 mentioned in
Section ������ of �JGL����� This problem is not addressed in the simplistic semantics given in
�Jef����

Also� the 	���
 notation might be also necessary to write default values in constructor or function
calls� For instance� this could be useful to write a ���bits record whose ��th and ��th bits are equal
to �� the remaining bits being set to ��

Octet �B�� �� �� B�� �� �� ��� �� ��

��� Lack of convenience� selectors for union types

Moreover� having records as �rst�class citizen disallows 	extended selectors
� The selectors �or projec�
tion functions� proposed in Section ��� of �JGL���� allow to extract �elds of record types� However�
experience indicates that it is also necessary to extract �elds from union types� a problem that is not
addressed in �Jef���� For instance� given the following type de�nition�

type PACKET is

REQUEST �SOURCE�ADDRESS� TARGET�ADDRESS� CONTENTS�STRING�

 INDICATION �SOURCE�ADDRESS� TARGET�ADDRESS�

 DATA �SOURCE�ADDRESS� CONTENTS�STRING�

endtype

if P is a value of type PACKET� one may wish to write P�SOURCE or P�CONTENTS to extract the source
and contents �elds� the latter function is unde�ned if P is an indication� If selectors are only available
for record values� the extended selectors can be de�ned as follows�

P�SOURCE �� case P in

REQUEST X �� X�SOURCE

 INDICATION X �� X�SOURCE

 DATA X �� X�SOURCE

��

endcase

P�CONTENTS �� case P in

REQUEST X �� X�CONTENTS

 DATA X �� X�CONTENTS

endcase

However� for real speci�cations it is necessary to have extended selectors built in E�Lotos� For
instance� the Lotos description of the Ccr protocol has �� extended selectors� some of which require
up to �� equations� Similarly� the Lotos description of the Osi�Tp protocol has �� selectors� some
of which require up to �� equations�

The example below is taken from the Osi�Tp description� It shows the de�nition of the get ud

function that extracts �elds ud from a sort ServicePrim having �� constructors� this function is
de�ned for �� constructors only and unde�ned for the remaining ones�

get�ud � ServicePrim �� PDUqueue

forall

acn � application�context�name�

aais � suffix�

brid � branch�identifier�

bdc � tp�begin�dialogue�confirmation�

bdr � tp�begin�dialogue�result�

bddO � tp�begin�dialogue�diagnostic�Opt�

btO � bool�Opt �

hr � heuristic�report�

iapiO � API�id�Opt�

iaeiO � AEI�id�Opt�

iaeqO � AE�qual�Opt�

iaptO � AP�title�Opt�

ittO � TPSU�title�Opt�

map � mapping�

qosO � quality�of�service�Opt�

rapiO � API�id�Opt�

rapt � AP�title�

raeqO � AE�qual�Opt�

raeiO � AEI�id�Opt�

rbk � bool �

rsri � recovery�state�

rsrc � recovery�response �

rttO � TPSU�title�Opt�

sfu � functional�units�

ud � PDUqueue

ofsort PDUqueue

get�ud� TPBeginDialogueReq�

ittO� rapt� rapiO� raeqO� raeiO� rttO� sfu� qosO� acn� btO� bdc� ud�� �

ud	

get�ud� TPBeginDialogueInd�

iaptO� iapiO� iaeqO� iaeiO� ittO� sfu� btO� bdc� ud�� �

ud	

get�ud�TPBeginDialogueRsp�bdr� ud�� � ud	

get�ud�TPBeginDialogueCnf�fuO� bdr� bddO� ud� rbk�� � ud	

get�ud�TPUAbortReq�ud�� � ud	

get�ud�TPUAbortInd�ud� rbk�� � ud	

��

get�ud�

AFBeginDialogueReq�ittO� rttO� sfu� btO� bdc� dccO� lpiO� ud�� �

ud	

get�ud�AFBeginDialogueInd�ittO� rttO� sfu� btO� bdc� dccO� lpiO� ud�� � ud	

get�ud�AFBeginDialogueRsp�fuO� bdr� bddO� dccO� map� ud�� � ud	

get�ud�AFBeginDialogueCnf�fuO� bdr� bddO� dccO� map� ud�� � ud	

get�ud�AFAbortReq�user� map� ud�� � ud	

get�ud�AFAbortInd�user� map� ud�� � ud	

get�ud�AFAbortAndHeuristicReportReq�map� hr� ud�� � ud	

get�ud�AFAbortAndHeuristicReportInd�map� hr� ud�� � ud	

get�ud�CPrepareReq�ud�� � ud	

get�ud�CPrepareInd�ud�� � ud	

get�ud�CCommitReq�ud�� � ud	

get�ud�CCommitInd�ud�� � ud	

get�ud�CCommitRsp�ud�� � ud	

get�ud�CCommitCnf�ud�� � ud	

get�ud�CRollbackReq�ud�� � ud	

get�ud�CRollbackInd�ud�� � ud	

get�ud�CRollbackRsp�ud�� � ud	

get�ud�CRollbackCnf�ud�� � ud	

get�ud�CRecoverReq�rsri� aaid� brid� ud�� � ud	

get�ud�CRecoverInd�rsri� aaid� brid� ud�� � ud	

get�ud�CRecoverRsp�rsrc� aaid� brid� ud�� � ud	

get�ud�CRecoverCnf�rsrc� aaid� brid� ud�� � ud	

get�ud� PTokenGiveReq�ud�� � ud	

get�ud�PTokenGiveInd�ud�� � ud	

get�ud�PDataReq�ud�� � ud	

get�ud�PDataInd�ud�� � ud	

��
 Lack of convenience� updaters for union types

Similarly� the record updaters proposed in �Jef��� are not su�cient for real�life protocols�

� They are limited to record types� whereas they should also work for union types� In the case of
union types with multiple constructors� it is necessary to use an explicit 	case
 statement for
specifying the e�ects of updating on each constructor�

� They do not allow to reference the value of the �eld to be modi�ed� For instance� if one wants
to increment the �eld X of a record �or a union� P� if is not possible to write 	P�fX �� X��g

simply� one has to write 	P�fX �� P�X ��g
� which is only acceptable if P is a named value�

	Extended updaters
 are badly needed in real�life speci�cation� Let�s consider for instance� in the
Lotos description of the Lapb protocol� there is a makecorruptadr function that updates the �eld
address of a value f of type eframe� This function is de�ned as follows�

m �
� constructor
� � frame�inforr�corrlength�lesslength�abortf �� eframe

makecorruptadr � eframe �� eframe

forall f � eframe

ofsort eframe

is�i�get�f�f�� �� makecorruptadr�f� � m�make�iframe�flg��f��

corrupt�adr�adrs�f��� ctrl�f�� pack�f�� fcss�f��

flg�f��� get�infor�f�� get�c�f�� get�l�f�� get�a�f��	

is�rr�get�f�f�� �� makecorruptadr�f� � m�make�rr�flg��f��

corrupt�adr�adrs�f��� ctrl�f�� fcss�f��

��

flg�f��� get�infor�f�� get�c�f�� get�l�f�� get�a�f��	

is�rnr�get�f�f�� �� makecorruptadr�f� � m�make�rnr�flg��f��

corrupt�adr�adrs�f��� ctrl�f�� fcss�f��

flg�f��� get�infor�f�� get�c�f�� get�l�f�� get�a�f��	

is�rej�get�f�f�� �� makecorruptadr�f� � m�make�rej�flg��f��

corrupt�adr�adrs�f��� ctrl�f�� fcss�f��

flg�f��� get�infor�f�� get�c�f�� get�l�f�� get�a�f��	

is�sabm�get�f�f�� �� makecorruptadr�f� � m�make�sabm�flg��f��

corrupt�adr�adrs�f��� ctrl�f�� fcss�f��

flg�f��� get�infor�f�� get�c�f�� get�l�f�� get�a�f��	

is�sabme�get�f�f�� ��

makecorruptadr�f� � m�make�sabme�flg��f��

corrupt�adr�adrs�f��� ctrl�f�� fcss�f��

flg�f��� get�infor�f�� get�c�f�� get�l�f�� get�a�f��	

is�disc�get�f�f�� �� makecorruptadr�f� � m�make�disc�flg��f��

corrupt�adr�adrs�f��� ctrl�f�� fcss�f��

flg�f��� get�infor�f�� get�c�f�� get�l�f�� get�a�f��	

is�ua�get�f�f�� �� makecorruptadr�f� � m�make�ua�flg��f��

corrupt�adr�adrs�f��� ctrl�f�� fcss�f��

flg�f��� get�infor�f�� get�c�f�� get�l�f�� get�a�f��	

is�dm�get�f�f�� �� makecorruptadr�f� � m�make�dm�flg��f��

corrupt�adr�adrs�f��� ctrl�f�� fcss�f��

flg�f��� get�infor�f�� get�c�f�� get�l�f�� get�a�f��	

is�frmr�get�f�f�� �� makecorruptadr�f� � m�make�frmr�flg��f��

corrupt�adr�adrs�f��� ctrl�f�� reasfrmr�f�� fcss�f��

flg�f��� get�infor�f�� get�c�f�� get�l�f�� get�a�f��	

Using extended updaters� this function could be de�ned in a more readable� shorter� safer way�

function makecorruptadr �F� eframe� � eframe is

F��FR �� FR��A �� corrupt�adr�A���

endfunc

There are other examples in the Lapb protocol�

function makeundefctl �F� eframe� � eframe is

F��FR �� FR��C �� undef �C���

endfunc

function makecorruptfc �F� eframe� � eframe is

F��FR �� FR��FCC �� corrupt�fcs �FCC���

endfunc

function makenotcorrlength �F� eframe� � eframe is

F��C �� incorrect�

endfunc

function makelesslength �F� eframe� � eframe is

F��L �� less�

endfunc

and in the Osi�Tp protocol�

function inc�dcc �CO� correlator�Opt� � correlator�Opt is

CO��N �� N � ��

endfunc

��

function set�dccO �dcc�� correlator�Opt� SP� AF�ServicePrim� � AF�ServicePrim is

SP��DCCO �� dcc��

endfunc

function set�lpiO �lpi�� correlator�Opt� SP� AF�ServicePrim� � AF�ServicePrim is

SP��LPIO �� lpi��

endfunc

function set�map �map�� mapping� SP� AF�ServicePrim� � AF�ServicePrim is

SP��MAP �� map��

endfunc

function set�brid �BI� branch�identifier� E� assoc�entry� � assoc�entry is

E��BRIDO �� Opt �BI��

endfunc

function remove�SentRcvd �K� LookUpKey� E� assoc�entry� � assoc�entry is

E��SENT �� SENT � K�

endfunc

function remove�Pending �K� LookUpKey� E� assoc�entry� � assoc�entry is

E��PEND �� PEND � K�

endfunc

function change�pending�to�sent �K� LookUpKey� E� assoc�entry� � assoc�entry is

E��SENT �� SENT � get �K� PEND�� PEND �� PEND � x�

endfunc

function re�attach �SP� ServicePrim� E� assoc�entry� � assoc�entry is

E��SENT �� nilSP � SP� PEND �� nilSP�

endfunc

function add�SentRcvd �SP� ServicePrim� E� assoc�entry� � assoc�entry is

E��SENT �� SENT � SP�

endfunc

function add�Pending �SP� ServicePrim� E� assoc�entry� � assoc�entry is

E��PEND �� PEND � SP�

endfunc

function set�flag �B� bool� E� assoc�entry� � assoc�entry is

E��FLAG ��B�

endfunc

function detach �E� assoc�entry� � assoc�entry is

E��ATTACH �� false�

endfunc

function remove�commitSPs �E� assoc�entry� � assoc�entry is

E��SENT �� remove �commitSP� SENT�� PEND �� remove �commitSP� PEND��

endfunc

function end�purge �E� assoc�entry� � assoc�entry is

E��PURGE �� end �PURGE��

��

endfunc

function trans�init �E� assoc�entry� � assoc�entry is

E��SENT �� SENT � TPBeginTransactionReq� PURGE �� trans�init �PURGE��

endfunc

function inc�purge �E� assoc�entry� � assoc�entry is

E��PURGE �� inc �PURGE��

endfunc

function dec�purge �E� assoc�entry� � assoc�entry is

E��PURGE �� dec �PURGE��

endfunc

function TPDone�owing �TPPM� tppm�info� � tppm�info is

TPPM��TDO �� true�

endfunc

function TPDone�sent �TPPM� tppm�info� � tppm�info is

TPPM��TDO �� false�

endfunc

function add�SentRcvd �SP� ServicePrim� TPPM� tppm�info� � tppm�info is

TPPM��SENT �� SENT � SP�

endfunc

function change�pending�to�sent �K� LookUpKey� TPPM� tppm�info� � tppm�info is

TPPM��SENT �� SENT � get �K� PEND�� PEND �� PEND � K�

endfunc

function add�Pending �SP� ServicePrim� TPPM� tppm�info� � tppm�info is

TPPM��PEND �� PEND � SP�

endfunc

function remove�SentRcvd �K� LookUpKey� TPPM� tppm�info� � tppm�info is

TPPM��SENT �� SENT � K�

endfunc

function remove�Pending �K� LookUpKey� TPPM� tppm�info� � tppm�info is

TPPM��PEND �� PEND � K�

endfunc

function change�state �TS�� tppm�state� TPPM� tppm�info� � tppm�info is

TPPM��TS ��TS�� TDO �� is�dec�cmt �TS�� or is�dec�rbk �TS���

endfunc

function Qing �Info� sf�info� � sf�info is

Info��QING ��true�

endfunc

function TokOwed �Info� sf�info� � sf�info is

Info��TO ��true�

endfunc

��

function BidRspSent �Info� sf�info� � sf�info is

Info��BS ��true�

endfunc

function TokReq �Info� sf�info� � sf�info is

Info��CTRrue�

endfunc

function NoQ �Info� sf�info� � sf�info is

Info��QING ��false�

endfunc

function NotTokOwed �Info� sf�info� � sf�info is

Info��TO ��false�

endfunc

function NotTokReq �Info� sf�info� � sf�info is

Info��CTR ��false�

endfunc

function set�did �D� dc�id� Info� sf�info� � sf�info is

Info��DID ��D�

endfunc

function change�state �S� sacf�state� Info� sf�info� � sf�info is

if �S � FREE� then

Info��TO �� false� BS �� false� SKT �� false� CTR �� false� STATE �� S�

else

Info��STATE �� S�

endif

endfunc

function change�lbdsent �DCC� correlator�Opt� Info� sf�info� � sf�info is

Info��LBDSENT �� DCC�

endfunc

function change�lbdrec �DCC� correlator�Opt� Info� sf�info� � sf�info is

Info��LBDREC �� DCC�

endfunc

function inc�lbdsent �Info� sf�info� � sf�info is

Info��LBDSENT ��inc�dcc �LBDSENT��

endfunc

function inc�next�did �SI� service�info� � service�info is

SI��NEXT�DID �� inc �NEXT�DID��

endfunc

��� Oddness of language constructs

Although the idea of having functions and constructors with a single argument and a single result
might seem elegant at �rst sight� it turns out to introduce a lot of strange details� which are likely to
be confusing for potential E�Lotos users�

��

�� Although both the argument and the result of a function can be records� this is not the case
for constructors� the result of a constructor cannot be a record�

�� To express functions without parameters� it is necessary to introduce a new kind of objects� the
constants�

�� For practical use �e�g�� to write lists of actual parameters for a function�� records are not
appropriate� one has to introduce another concept� tuples� which are derived �but distinct�
from records�

�� Constructors without arguments are handled in di�erent ways� In �Jef���� these constructors are
considered to have a single parameter� the empty record� However� in SML� there is a special
case for 	nullary
 constructors� which are considered to be di�erent from constructors whose
argument is the empty record�

�� The same problem occurs for �in�x� binary operators� which break the rule of functions having
a single argument� In �Jef���� they are not considered� In SML� they are handled as a special
case of functions with two arguments�

�� If C is a constructor and E an expression� there is a subtle di�erence between terms 	C E

and 	C �E�
� in the former case� C is applied to the �scalar� expression E� in the latter� C
is applied to a tuple having expression E as its single component� Both expressions are not
identical with respect to type�checking�

Every time one wants to de�ne a one�argument constructor� one has to choose between either
a named parameter enclosed in a record�

datatype GEOMETRICAL�SHAPE ��

CIRCLE of �RADIUS�real�

 ���

endtype

or a 	�at
� anonymous parameter�

datatype GEOMETRICAL�SHAPE ��

CIRCLE of real

 ���

endtype

It does not seem possible to have a single �at� named parameter� However� if there are several
parameters� they must be named and enclosed in a record� Therefore� the fact of adding a new
parameter to a one�argument constructor may require tedious changes if a 	�at
 approach was
chosen initially�

� Similarly� if F is a function� both expressions 	F E
 and 	F �E�
 are not the same �

�� In record expressions� there is a shorthand that allows not to write 	L E
 if L and E are
syntactically identical� This allows to elide �eld denotations of the form 	L L
� However�
this notation is strangle because both L�s belong to distinct semantic identi�er classes� the left
one is a label identi�er� the right one is a variable identi�er�

�� According to �Jef���� it is possible to declare anonymous records� but it is not possible to give
names to them� For instance� one can declare two variables A and B whose type is the same
anonymous record�

A � �X�int� Y�bool�

B � �X�int� Y�bool�

�

but� surprisingly� it is not possible to write instead�

datatype S �� �X�int� Y�bool� endtype

A � S

B � S

because the declaration of S is syntactically illegal� One must introduce a constructor with a
unique name �since overloading is not allowed�� e�g�� pair� and write instead�

datatype S �� pair of �X�int� Y�bool� endtype

A � S

B � S

Besides the existence of anonymous types� there also exist �un�namable� types� i�e�� types which
can never be given a type identi�er� Such a bizarre feature denotes a non�orthogonal type
system�

We notice that this impressive collection of oddities is not justi�ed by any increased expressive power	

If included in E�Lotos
 it is to be feared that the �learning curve� of the language will be steep
 and

that teachers will spend their time trying to �nd an explanation for such unusual concepts	

��� Complexity of semantics

Introducing anonymous records would make the static and dynamic semantics of E�Lotos more
complex�

� It introduces the notion of type expressions� In standard Lotos� the type of each expression is
simply a sort identi�er� With anonymous records� the situation is di�erent� the type of each
expression is a type expression� a type expression being either a sort identi�er� or a record of
type expressions� Nested tupling is thus allowed�

� It introduces the notion of structure equivalence for type expressions� In standard Lotos� two
expressions have the same type i� their sort identi�ers are identical �this is name equivalence��
In SML� however� the situation is less simple� since a mixture of name equivalence and structure
equivalence is used� For instance� in the following example�

A � �X�int� Y��Z�bool� T�bool��

B � �X�int� Y��Z�bool� T�bool��

C � �Y��T�bool� Z�bool�� X�int�

datatype S �� pair of �X�int� Y��Z�bool� T�bool�� endtype

D � S

the three variables A� B� and C have the same type �which means that the compiler has to
identify nested records that di�er by �eld permutation�� whereas D doesn�t have the same type
as A� B� and C� because it has the named type S�

Replacing sort identi�ers with type expressions
 and name equivalence by a mixture of name and

structure equivalence might have side e�ects in the module part as well as in the behaviour part	

These potential side e�ects should be carefully investigated	

�� Subversion of software methodologies

We observe that anonymous records and structure equivalence go against the recommended method�
ologies for software design and programming�

��

It is to be feared that lazy programmers and speci�ers may take advantage of these features to
write poorly documented descriptions� in which complex data are structured in �nested� records
and manipulated by functions without naming the types of these data �as it is often seen in LISP
programs�� Such data turn out to be low�level concrete types rather than high�level abstractions�

This is a common concern for most programming languages designers� N� Wirth chose name equiv�
alence in Pascal for this reason� It is to be noticed that the same decision was made for algorithmic
languages like Ada� C� C��� etc�

Also� anonymous records and structure equivalence go against object�oriented methodologies for
designing complex systems� which recommend to give explicit names to every data structure �i�e��
object� manipulated by the software under design�

Finally� as �Jef��� does not allow to name anonymous records �see Section ���� re�engineering a
description with anonymous types is a tedious process� implying many modi�cations� For instance�
to document the following piece of code�

A � �X�int� Y�bool�

B � �X�int� Y�bool�

���

if �A � �X��� Y�false�� and �B � �X��� Y�true�� then ���

one must introduce a new constructor pair in many di�erent places�

datatype S �� pair of �X�int� Y�bool� endtype

A � S

B � S

���

if �A � pair �X��� Y�false�� and �B � pair �X��� Y�true�� then ���

���� Absence of compatibility with standard LOTOS

Compatibility of E�Lotos with respect to Lotos is an explicit requirement stated in the scope of
the New Work Item�

As the E�Lotos Committee decided to replace ActOne with a new datatype language� this com�
patibility requirement becomes the following� the description obtained by taking a valid Lotos
description and translating its data types into E�Lotos data types should be a valid E�Lotos
description�

This approach is exempli�ed in one of Afnor�s contributions to the Liege meeting� it should be
possible to update existing Lotos descriptions �such as those of the Ccr protocol� the Osi�Tp
protocol� the lapb protocol� etc�� by updating their data part only� leaving the behaviour part as is�

However� it is not sure that the approach presented in �Jef��� meets these requirements� since it makes
no provision to support�

� constructors and functions with several arguments� it seems that every constructor �or function�
call of the form C�E�� ���� En� has to be replaced with something like CfL� E�� ���� Ln Eng�

� in�xed functions� it seems that every constructor �or function� call of the form E� C E� has to
be replaced with something like CfL� E�� L� E�g�

� overloading �see Section � above��

Moreover� in standard Lotos� processes may have several gate parameters and several value pa�
rameters� Requiring that all functions have a single parameter would create a dissymmetry between

��

the data part and the behaviour part� unless the same requirement also applies to processes� Log�
ically� this would entail the introduction of �nested� gate records� this is all the more true if gates
are promoted to the status of 	�rst�class citizen
� Again� a clear migration path for existing Lotos
descriptions should be provided�

���� Absence of interoperability with other ISO languages

To be a successful and widely used language� E�Lotos should interoperate smoothly with other
main computer languages� We have to keep in mind the experience of the language Hermes devel�
oped from ���� through ���� at the IBM Research Center� Hermes designers identi�ed the 	lack of
interoperability
 as one of the fatal �aws of their language �KG����

	Calling C routines from Hermes processes� and vice versa� is di�cult� To call C� the
programmer must write arcane !C�Hermes� processes which need to be linked into the
Hermes run�time system� Because of the many details involved� an experienced C pro�
grammer might need two to six hours to write and debug his �rst C�Hermes processes
for a simple system call� Subsequent C�Hermes processes could be written more quickly�
but the programmer would still require about one hour to write a simple call� Cumber�
some interoperability with other languages was a major stumbling block to implementing
production programs in Hermes�

By considering all computer languages currently standardized within Iso�Iec Jtc��Sc�� " Ada�
APL� C� C��� Cobol� Fortran� LISP� Modula��� Pascal� and Prolog " we notice that all of them
�perhaps with the exception of APL� support functions with multiple arguments�

Similarly� the languages standardized within Iso�Iec Jtc��Sc�� such as Estelle� Lotos� and Idl
also allow functions with multiple arguments� This is also the case of the Itu�t language Sdl�

The decision of having functions with a single argument would make of E�Lotos a language di�erent

from all other Iso languages	 E�Lotos will not gain acceptance by selecting unusual features instead

of standard ones	

Also� selecting the approach proposed in �Jef��� would put serious restrictions on the interoperability
of E�Lotos with other languages�

�� First of all� the record type of SML and �Jef��� is essentially 	order�free
� it is de�ned as a
mapping from �eld labels to values� For instance� both record values fX �� Y �g and
fY �� X �g are equal �which implies that they have the same type��

We are afraid that order�free records might not map easily to external types �such as C�s
structures� in which the order of �elds is signi�cant� This problem occurs if one wants� in an
E�Lotos description� to import� modify� and export a data structure speci�ed externally �e�g��
structures handled by UNIX system calls��

�� Also� it would not be easy to implement in C� C��� Ada� etc� an 	external
 function whose
pro�le is speci�ed in E�Lotos� This would imply a run�time conversion from the E�Lotos
record of arguments to the list of arguments accepted by the external function� which is tricky
and slow�

As records are order�free� the order in which actual parameters are passed �through records�
to an E�Lotos function is not signi�cant� Therefore� problems would occur when interfacing
E�Lotos to other languages� in which the order of function arguments is meaningful� There
would be several possible translations from argument records to argument lists� The same
problem occurs� for instance� if one wants to invoke� from an E�Lotos program� a function
belonging to a library of C functions �e�g�� the mathematical library��

��

�� Also� the approach proposed in �Jef��� only allows parameters to be passed by value� whereas
most computer languages allow more general types of parameter passing� For instance� Idl�
C��� Ada� etc� allow 	in
� 	out
� and even 	inout
 parameters�

The lack of more such parameter modes will prevent to invoke� from an E�Lotos description�
routines de�ned in libraries of C functions� such as most of the UNIX system calls�

Moreover� it will not be possible to use E�Lotos to specify the behaviour of systems whose
interface is speci�ed in Idl� thus limiting the usefulness of E�Lotos for the description of Odp
systems�

Adopting the anonymous tupling and single�argument function paradigms for E�Lotos would make

of E�Lotos an isolated language
 unable to interoperate with computer languages like C
 C�� and

Ada used in real applications	 This would also make the �plug�in� approach impossible and would

prevent the interconnection with Idl	

���� Ine�cient implementations

As regards e�ciency of code generated by compilers� it is clear that having functions with 	out

parameters is better than functions returning records�

The latter solution requires that structures are put on the execution stack� thus implying an run�time
overhead in terms of memory� There is probably also a time overhead� as the called function must
assign the �elds of these structures and� later� the calling function must extract these �elds� 	out

parameters can be handled in a more e�cient way�

� Conclusion

For the reasons stated above� we conclude that the �rst approach advocated in �JGL���� is indeed
better that the second one�

We therefore advise the E�Lotos Committee not to include the following undesirable features�

� Polymorphism

� Type inference

� Anonymous tupling

� Single�argument constructor and functions

into the future E�Lotos addendum�

Acknowledgements

We would like to thank Radu Mateescu for his comments regarding this paper�

References

�ASU��� Alfred V� Aho� Ravi Sethi� and Je�rey D� Ullman� Compilers� Principles
 Techniques and

Tools� Addison�Wesley� Reading� Massachusetts� �����

��

�Bak��� T� P� Baker� A one�pass algorithm for overload resolution in Ada� ACM Transactions on

Programming Languages and Systems� ������������ April �����

�Jef��� Alan Je�rey� Semantics for a fragment of LOTOS with functional data and abstract
datatypes� ISO�IEC JTC��SC���WG������������ Enhancements to LOTOS� Input doc�
ument of the edition meeting� Li�ege �Belgium�� December �����

�JGL���� Alan Je�rey� Hubert Garavel� Guy Leduc� Charles Pecheur� and Mihaela Sighireanu� To�
wards a proposal for datatypes in E�LOTOS� Annex A of ISO�IEC JTC��SC���WG
Second Working Draft on Enhancements to LOTOS� Output document of the edition
meeting� Ottawa �Canada�� July� ������ ����� October �����

�KG��� Willard Korpfhage and Arthur P� Goldberg� Hermes Language Experiences� Software

Practice and Experience� �������������� April �����

�Pec��� Charles Pecheur� A proposal for data types for E�LOTOS� Technical Report� University
of Li�ege� October ����� Annex H of ISO�IEC JTC��SC���WG� N���� Working Draft on
Enhancements to LOTOS�

�Wat��� David A� Watt� Programming Language Concepts and Paradigms� International Series in
Computer Science� Prentice�Hall� New�York� �����

�WM��� R� Wilhelm and D� Maurer� Les compilateurs
 th�eorie
 construction
 g�en�eration� Manuels
informatiques Masson� Masson� Paris� �����

��

