
A Wish List for the Behaviour Part of LOTOS

Version ���

Hubert GARAVEL�

INRIA Rh�one�Alpes
VERIMAG � Miniparc�ZIRST

rue Lavoisier
����� MONTBONNOT ST MARTIN

FRANCE
Tel � �	��
 �� � � ��
Fax � �	��
 �� �� �� ��

E�mail � hubert�garavel�imag�fr

December ��

Abstract

This document supersedes a previous Afnor contribution dated from June ���� and entitled
�Six improvements to the process part of Lotos�� We propose nineteen changes� which a�ect
the syntax� static semantics and	or dynamic semantics of the behaviour part of Lotos� These
changes aim at solving several problems found in Lotos and making the behaviour part of
E�Lotos expressive� simple� symmetric with the data part of E�Lotos� and compatible with the
usual notations found in major programming languages�

Introduction

This document supersedes a previous Afnor contribution� dated from June ����� entitled �Six
improvements to the process part of Lotos� �Gar��b�	

This paper proposes nineteen modi
cations of the Formal Description Technique Lotos �ISO stan�
dard �� �ISOb��	 The proposed changes are listed below and will be presented in the following
sections�

�	 Giving a printable name to the ��� gate

�	 Turning the speci
cation identi
er into an ordinary process identi
er

�	 Turning the reserved keyword �i� into a prede
ned gate identi
er

�	 Introducing two �case� operators

�	 Introducing an �if� operator

�This work has been supported in part by the Commission of the EuropeanCommunities� under project ISC�CAN���
�EUCALYPTUS��� A European�Canadian Lotos Protocol Tool Set	

�

�	 Extending the �let� operator

�	 Introducing a �rename� operator

	 Removing the �choice� and �par� operators on gate lists

�	 Using a bracketed syntax

��	 Introducing a �par� operator on
nite value domains

��	 Introducing �n among m� synchronization

��	 Unifying the ��� and ���� operators syntactically

��	 Unifying the ��� and ���� operators semantically

��	 Introducing exceptions in the behaviour part

��	 Introducing iterators in the behaviour part

��	 Removing the �where� clause from process de
nitions

��	 Simplifying process de
nitions

�	 Abbreviating gate parameters lists

��	 Abbreviating value parameters lists

In the present document� all these modi
cations are presented separately one from each other� so that
each section can be read independently	 If one modi
cation relies upon another one� the dependence
is explicitly stated	

� Giving a printable name to the ��� gate

The dynamic semantics of Lotos makes use of a special gate� the termination gate noted ��� in the
ISO standard	 Due to the �exit� operator� the ��� gate is never used explicitly in Lotos descriptions	
However� when an �exit� is executed� a rendez�vous on the � gate is performed	 At this point� a
problem arises because ��� is not a printable name using Latin character sets	 For this reason� Lotos
tools usually replace ��� by a printable identi
er� �d�� �delta�� �Delta�� �exit�� etc	

To promote inter�operability between Lotos tools� one should agree upon a printable identi
er for
the ��� gate	 The �exit� identi
er seems to be a good candidate for at least two reasons�

� It is the most intuitive solution� an �exit� operator in the Lotos description leads to an �exit�
rendez�vous in the corresponding labelled transition system	

� It prevents name clashes with user�de
ned gate identi
ers� �exit� is already a reserved keyword
in Lotos� users are not allowed to declare gates with the name �exit�	

There are two di�erent ways to implement the proposed change in the revised Lotos standard�

�	 The
rst solution would consist in adding a note stating that� whenever the ��� gate is to
be read or written using a Latin character set� then the name �exit� has to be used for this
purpose	

�	 A simpler solution would be to replace all occurrences of ��� by �exit� in the dynamic semantics	

Both proposed changes are fully upward compatible� in the sense that any valid Lotos description
under the existing standard would remain valid under the revised standard	

�

� Turning the speci�cation identi�er into an ordinary pro�

cess identi�er

Each Lotos description is given an identi
er �introduced by the �speci�cation� keyword�	 This
identi
er is very similar to process identi
ers �introduced by the �process� keyword� but not com�
pletely� as �ISOb� imposes several distinctions between speci
cation and process identi
ers�

� Speci
cation identi
ers and process identi
ers belong to distinct name spaces	 For a given
Lotos description� the speci
cation identi
er name space only contains a single element �the
name of the description�	

� There is no place in a Lotos description where the speci
cation identi
er can be used	

� Consequently� it is not allowed to use the speci
cation identi
er in place of a process identi
er	
In particular� the speci
cation identi
er cannot be used in a process instantiation �ISOb�
�	�	�	�	a�	 Therefore� a Lotos description cannot be directly recursive�

specification S �G� � noexit behaviour

G� S �G� �� illegal� identifier S cannot be used here ��

endspec

Recursion can only be expressed by introducing an auxiliary process�

specification S �G� � noexit behaviour

P �G�

where

process P �G� � noexit �	

G� P �G�

endproc

endspec

There is very little justi
cation for these constraints regarding speci
cation identi
ers	 One can only
think of one reason� by preventing the speci
cation identi
er from being a process identi
er� one
may wish to maintain a fair balance between data part and process part �avoiding the supremacy of
processes over types at the top level of a Lotos description�	 However� this is not true� since static
and dynamic semantics rules already consider the Lotos speci
cation as a special process	

We propose the following changes� in order to simplify the revised Lotos standard�

� The speci
cation identi
er should be a process identi
er	

� The speci
cation identi
er should be visible in the behaviour expression following the
�behaviour� �or �behavior�� keyword	

The proposed change is fully upward compatible	

� Turning the reserved keyword �i� into a prede�ned gate

identi�er

In standard Lotos� the identi
er of the invisible gate �i� is a reserved keyword	 Consequently� it is
not possible to declare any object �type� sort� operation� variable� process� or gate� named either �i�
or �I�	 This situation is annoying for several reasons�

�

� Identi
ers �i� and �I� are widely used in computer programs� due to traditions inherited from
common mathematical practice and early programming languages such as FORTRAN	 The
prohibition of these identi
ers in Lotos is confusing to most users	

� There are some situations where the �i� identi
er would be especially appropriate� for instance
when dealing with complex numbers� matrix indexes� etc	 For example� the following type
de
nition is rejected�

type CHARACTER is

sorts CHAR

opns

A � �� CHAR B � �� CHAR C � �� CHAR

D � �� CHAR E � �� CHAR F � �� CHAR

G � �� CHAR H � �� CHAR I � �� CHAR �� defining �I� is illegal ��

J � �� CHAR K � �� CHAR L � �� CHAR

M � �� CHAR N � �� CHAR O � �� CHAR

P � �� CHAR Q � �� CHAR R � �� CHAR

S � �� CHAR T � �� CHAR U � �� CHAR

V � �� CHAR W � �� CHAR X � �� CHAR

Y � �� CHAR Z � �� CHAR

endtype

This problem could be easily solved by applying the following changes to the existing Lotos standard�

�	 Terminal symbols �i� and �I� should be removed from Lotos BNF syntax and� therefore�
should loose their status of reserved keywords	 Practically� the two grammar rules below should
be deleted�

internal�event�symbol� ��	 �I� �

action�denotation� ��	
internal�event�symbol� �

�	 The revised standard should introduce one prede
ned gate identi
er noted �i� �also equivalent
to �I��	

�	 The use of the prede
ned gate �i� should be restricted by introducing static semantics con�
straints� in order to maintain compatibility with existing Lotos	

Currently� due to syntax rules� the use of the �i� gate is strictly restricted	 The idea is to
shift these restrictions from syntax to static semantics	 The revised standard should therefore
contain the following static semantics constraints�

� The �i� gate cannot occur in any gate de
nition context �i	e	 binding occurrence�� meaning
that it is forbidden to declare any gate of name �i�	 The following constructs are therefore
prohibited�

hide i in

choice i in ��

par i in ��

process P �� i� �

� The �i� gate cannot occur in any gate de
nition context �i	e	 place�marking occurrence��
except on the left�hand side of an action�pre
x operator without experiment�o�er	 The

�

following constructs are therefore prohibited��

choice in �� i� �

par in �� i� �

P �� i� �

i � �

i � �

�	 Since name spaces are considered to be distinct in Lotos� identi
ers �i� and �I� would be
prede
ned only for gates� but would remain available for types� sorts� variables� operations� and
processes	

This change is fully upward compatible	

� Introducing two �case� operators

The output document of the Ottawa meeting �JGL���� agreed that it would be desirable to enforce a
symmetry between the data part and the behaviour part of E�Lotos	 According to the recommen�
dations of Section �	�	� and Section �	� of �JGL����� we propose to introduce a �case� operator in
the behaviour part	

We base our proposal on the proposal for the E�Lotos data type language made in �SG���	 In the
sequel� let�s assume the following de
nitions�

� B�B�� B��� B�� B�� B�� ��� denote behaviour expressions of the behaviour language	

� E�E�� E��� E�� E�� E�� ��� denote value expressions of the data type language	

� P� P �� P ��� P�� P�� P�� ��� denote pattern expressions of the data type language	

� M�M ��M ���M��M��M�� ��� denote match expressions of the data type language	 Match expres�
sions have the following syntax�

M ��� E��P

j M where E

j M� and M�

j M� or M�

The proposal made in �SG��� contains two �case� operators� the general �case� operator and the
usual �case� operator	

� Three new keywords have to be added� �case�� �otherwise�� and �endcase�	

� For the general case operator� the following rule has to be added to the BNF grammar�

�Unrestricted use of the �i	 gate would lead to subtle problems� such as action denotations of the form
�i �v� ��� �vn	� which are not handled in the existing dynamic semantics of Lotos

�

B ��� case

M� � B�

���

Mn � Bn

�otherwise Bn���

endcase

As stated in �JGL���� and �SG���� the evaluation of a �case� operator is sequential and deter�
ministic	 The match expressions Mi are evaluated in turn�

� If it exists� the smallest i such that Mi �matches� is selected� and the corresponding Bi is
executed	

� If no Mi matches and if the �otherwise� clause if present� then Bn�� is executed	

� If no Mi matches and if the �otherwise� clause if absent� then several semantics are
possible�

� One could say that nothing happens� i	e	� behave as if an �otherwise stop� clause
was present	

� Another approach is to avoid this problem by making the �otherwise� clause manda�
tory	

� However� the two above semantics are not symmetric with the data language� in which
incomplete �case� operators are used to describe partial functions and provoke �run
time� errors	 One could therefore say that a missing case in the behaviour part either
causes the whole behaviour to be unde
ned �the so�called �core dump� semantics� or
raises an exception	

The �otherwise Bn��� clause is a shorthand which can be expanded to �true��true� Bn���	

� For the usual case operator� the following rule has to be added to the BNF grammar�

B ��� case E in

P �
� j���jP

�
m�
�where E��� B�

���

Pn
� j���jP

n
mn
�where En�� Bn

�otherwise Bn���

endcase

Remark

The �case���in� syntax was preferred to the �case���of� syntax found in PASCAL in order to
avoid a parsing con�ict� Lotos expressions may already contain �of� operators	 �

The usual case operator is merely a shorthand� which can be expanded as follows to a general
case operator�

�

case

E��P �
� or ��� or E��P �

m�
�where E��� B�

���

E��Pn
� or ��� or E��Pn

mn
�where En�� Bn

�otherwise Bn���

endcase

or� if one wants �for e�ciency reasons� to evaluate expression E only once� by introducing a
variable X whose type T is the type of E�

case

E��X�T �

case

X��P �
� or ��� or X��P �

m�
�where E��� B�

���

X��Pn
� or ��� or X��Pn

mn
�where En�� Bn

�otherwise Bn���

endcase

endcase

Remark

The guard operator ��E�� B� that exists in Lotos can be expressed as a particular form of �case�
operator�

case E in

true� B

false� stop

endcase

�

Remark

Reciprocally� it is not possible to reduce �case� operators to a combination of guards and non�
deterministic choices� because of the variable bindings resulting from pattern�matching	 �

It is clear that �case� operators cannot be reduced to existing Lotos operators� pattern�matching
brings new expressiveness� which does not directly exists in Lotos	 For instance� the use of pattern�
matching will highly simplify the frequent situation in which a protocol receives a packet and makes
di�erent actions depending upon the packet type and the value of the packet
elds	 Pattern�matching
will allow packet type recognition and packet
eld extractions all at once	

Also� the �case� operator should improve run�time e�ciency� since when the type of a packet has
been recognized� it is not necessary to check for the other possible packet types	

�

This extension is upward compatible� except for those existing Lotos programs that use the new
reserved keywords	 For those programs� a renaming of con�icting identi
ers would be needed	

	 Introducing an �if� operator

Due to its process algebra origins� Lotos uses only two primitives �guards and non�deterministic
choice� to express conditionals	 This imposes a speci
cation style that is not intuitive �novice users
are not familiarwith �guarded commands� and usually prefer the classical �if�then�else� constructs��
tedious to write� di�cult to read �guarded commands are more verbose than their �if�then�else�
equivalents�� and error�prone	

For these reasons� we propose to extend Lotos with an �if� operator�	 The following changes should
be introduced in the revised Lotos standard�

� Five new keywords have to be added� �if�� �then�� �else�� �elsif�� and �endif�	

� The following rule has to be added to the BNF grammar�

B ��� if E� then B�

elsif E� then B�

���

elsif En then Bn

�else Bn���

endif

Annex A gives a concrete syntax for the �if� operator and explains how it can be expanded into
standard Lotos �using combinations of guards and deterministic choices�	 But� assuming the
existence of the general �case� operator� the translation scheme suggested in �SG��� is much
simpler�

case

E���true� B�

E���true� B�

���

En��true� Bn

�otherwise Bn���
endcase

This translation is likely to be implemented more e�ciently than the one given in Annex A�
because the expressions Ei are evaluated only if necessary	 But� if run�time errors �e	g	� excep�
tions� are introduced in the behaviour part� then the evaluation of expressions Ei may raise a
run�time error	 In such case� the two translation schemes are not equivalent� and the one given
above should be preferred� as it expresses the �if� semantics adequately	

This extension is upward compatible� except for those existing Lotos descriptions that contain
identi
ers with the same spelling as the new reserved keywords	 For those descriptions� renaming the
con�icting identi
ers would be needed	

�This operator has exactly the same syntax and semantics as in Ada

 Extending the �let� operator

The output document of the Ottawa meeting �JGL���� agreed that it would be desirable to enforce
a symmetry between the data part and the behaviour part of E�Lotos	 According to the recom�
mendations of Section �	� of �JGL����� we propose to extend the expressiveness of the existing �let�
operator to allow pattern�matching	

We base our proposal on the proposal for the E�Lotos data type language made in �SG���	

� No new keyword must be added	

� The existing BNF grammar should be modi
ed� the existing de
nition of the �let� operator
should be replaced with the following rule�

B ��� let P��	E�� ���� Pn�	En in B�

Like the �if� operator� the �let� construct is merely a shorthand for notational convenience�
which can be expanded to a general �case� operator�

case

E���P� and ��� and En��Pn � B�

endcase

This modi
cation is �almost� upward compatible with existing Lotos because E�Lotos patterns
include variable declarations �V � T� as a particular form of patterns	 To translate a Lotos �let�
operator into an E�Lotos �let� operator� two changes have to be performed�

�	 Variable lists of the form �V�� ���� Vn�T� must be �attened� i	e	� replaced with �V� � T� ��� Vn � T�	
However� such variables are seldom used in Lotos programs because it is not very useful to
de
ne several variables with di�erent names and the same value	

�	 The �	� symbols used in Lotos �let� operators must be replaced with ��	� symbols	

� Introducing a �rename� operator

We suggest to introduce in E�Lotos a �renaming� operator which would allow to modify the gates
and�or the o�ers of the labels of the actions performed by a given behaviour	 The underlying
motivations for this change are the following�

�	 It is well�known that the parallel composition operators of Lotos are not enough to express
all possible forms of synchronization	 This is the case� for instance� of the circular ring of four
processes P�� ���� P� depicted below�

P� P�

P�P�

G

G

G

G

�

Renaming allows to express some networks of parallel processes� which could not otherwise
be obtained by simply using the parallel composition operators of Lotos	 For instance� by
introducing an auxiliary gate G�� which is later renamed in G� the ring can be described as
follows�

rename G� �	 G in

�
�P��G�� G� ��G�� P��G�G� ��G�� P��G�G��
��G���

P��G�G
��

�

�	 Renaming is also needed for reusability purpose	 Let�s consider two Lotos behaviours B�

and B� that� for some reason� we are not allowed to modify or to duplicate� and have to take
�as is� instead	 This situation will occur if B� and B� belong to a library whose components
are reusable Lotos processes	 Let assume that B� and B� are to be assembled in a pipeline
structure� they are put in parallel and synchronized together on a common gate G	 Let�s assume
that B� sends messages on G which are received by B�	 A problem occurs if the messages sent
by B� are not in the same format as those expected by B�	 By example�

� B� could send messages of the form �G �E� and B� expect messages of the form
�G �E �f�E��� where f is a checksum function� for instance � or vice�versa	

� B� could send messages of the form �G �E� and B� expect messages of the form
�G �header �E �trailer� �according the layering principle of Osi� � or vice�versa	

� B� could send messages of the form �G �E� and B� expect messages of the form
�G �f�header � E� trailer��� where f is a packet�making function� for instance � or vice�
versa	

Using standard Lotos� the single solution to this problem is to introduce an �interface� be�
haviour between B� and B�� which is more or less a one�slot bu�er performing data conversion	
Although tractable� this approach reduces the e�ciency of the implementation �an auxiliary
process must be added in parallel� and auxiliary synchronizations and communications have
to be performed at run�time� and increases the number of states in the global system� thus
contributing to state explosion	

On the opposite� the renaming operator described below solves the problem� avoiding the in�
troduction of an �interface� process	 It also improves reusability� by allowing to de
ne multiple
�views� of an existing software component �for instance� process components such as bu�ers�
queues� �chaos� processes� etc	� could be reused easily� which is not the case currently in Lotos�	

�	 Renaming can be useful for veri
cation purpose� especially when using bisimulation relations	
In such case� one often wants to rename all visible actions of �no interest� for the property to
be veri
ed into some special action A	 Therefore� the renaming can be non�injective	 Hiding
is not su�cient for this goal if this action A must remain visible to be distinguished from the
internal action �i�	

�	 The dynamic semantics of standard Lotos already has a �relabelling� operator	 However� this
operator has two limitations�

� It allows to change the gate names in labels� but not the o�ers	

��

� It is �hidden� in the dynamic semantics and cannot be used directly� nor simply� in Lotos
descriptions	 To use this relabelling operator� one must de
ne a process and invoke this
process with di�erent gate parameters	 If G�G�� G��� G�� G�� G�� ��� are gates� the speci
er
cannot simply write�

rename G� �	 G�

�� ���� Gn �	 G�

n in B�

but has to write instead�

P �G�

�� ���� G
�

n�G��E�
where

process P �G�� ���� Gn�G��V��F �	

B�

endproc

where P is a �new� process name� G denotes the list of the visible gates in B� di�erent
from G�� ���� Gn� V denotes the list of variables used in B�� E denote the list of the values
to be assigned to the variables of V� and F denotes the functionality of process P 	

Making the renaming operator explicit will make the �substitution principle� valid for Lotos�
this principle states that every process instantiation can be replaced with the process de
nition�
modulo appropriate renamings	 In the case of Lotos� the following property will hold�

�
BBBB�

P �G�

�� ���� G
�

m��E�� ���� En�
where

process P �G�� ���� Gm��V� � T�� ���� Vn � Tn����
B

endproc

�
CCCCA
�

�
BBBBBBBB�

rename G� �	 G�

�� ���� Gm �	 G�

m in

let V� � T� � E�� ���� Vn � Tn � En in

B

where

process P �G�� ���� Gm��V� � T�� ���� Vn � Tn����
B

endproc

�
CCCCCCCCA

�	 Other process algebras� such as Acp or Ccs already have a renaming operator� which is very
general� any total function � mapping labels to labels can be used	 The corresponding dynamic
semantics is simple� when a label L is observed� it is replaced with ��L�	

Therefore� the result of the function may depend upon the value of the o�ers occurring in the
labels	 For instance� one can de
ne ��G �true� � A and ��G �false� � B	

However� we believe that such an unrestricted approach is not appropriate for Lotos� as it
would be di�cult to integrate in compilers using intermediate models based on Petri Nets or
Extended Finite State Machines	

We propose to restrict renaming to functions � whose e�ects are statically decidable	 More
precisely� if L is a label containing free variables� the value of ��L� should be computable at
compile�time	 Therefore� the de
nition of � should only rely on statically computable informa�
tions� the name of the gate� the number of o�ers and the type of the o�ers	

We introduce the following de
nitions�

� One new keyword has to be added� �rename�	

� The following rules have to be added to the BNF grammar�

B ��� rename R�� ���� Rn �Rn��� in B�

��

where R�� ���� Rn �� � i � n� are �renaming clauses� whose syntax is�

Ri ��� Gi �	 G�

i

j Gi �V �
i � T

�
i � ���� V

pi
i � T pi

i � �	 G�

i �E�
i � ���� E

qi
i �

and where Rn�� has the following syntax�

Rn�� ��� �	 G�

n��

j �	 G�

n���E
�
n��� ���� E

qn��
n�� �

� There are additional static semantic constraints	

For each renaming clause Ri� the list of types T �
i � ���� T

pj
i should be compatible with the types

of the experiment o�ers permitted for gate Gi �assuming that a gate typing mechanism is
introduced in E�Lotos�	

For each renaming clause Ri having a ������� clause �i	e	� the syntax of Ri is given by the second
rule of the above BNF grammar�� the variables V j

i �� � j � pi� are visible in the expressions
Ek
i �� � k � qi�	

The renaming clauses R�� ���� Rn should be pairwise disjoint� in order not to overlap	 If gates
are not overloaded� this can be simply expressed as�

��i� j � f�� ���� ng� i �� j �	 Gi �� Gj

If gates can be overloaded� this constraint is more complex�

��i� j � f�� ���� ng� i �� j �	
�Gi �� Gj�
 ��both Ri and Rj have a ����� clause� � �pi �� pj�
 ��k j T

k
i �� T k

j ��

� Informally� the dynamic semantics of the renaming operator is de
ned as follows�

� Renamings Ri of the form �Gi �	 G�

i� behave as the existing relabelling operator of
standard Lotos	 They apply to all labels whose gate is equal to Gi	 They modify these
labels by replacing Gi with G�

i	

� Renaming Ri of the form �Gi �V �
i � T �

i � ���� V
pi
i � T pi

i � �	 G�

i �E�
i � ���� E

qi
i �� apply to

all labels whose gate is equal to Gi and whose experiment o�ers have types T
i
i � ���� T

pi
i

respectively	 If these labels have the form Gi v�� ���� vpi� they are modi
ed as follows� Gi

is replaced with G�

i and the list of o�ers is replaced with the list of value expressions

E�
i � ���� E

qi
i in which all variables V

j
i are replaced with v

j
i respectively	

� If present� Rn�� plays the role of a default renaming� which applies to all labels that do
not match some Ri �� � i � n�	

Remark

The two renaming clauses �G �	 G�� and �G��� �	 G���� are not identical� the former applies
to all labels having gate G� the latter to all labels having gate G and no experiment o�ers	 �

��

� Formally� the dynamic semantics of the renaming operator is de
ned by the following rule�

B
L
� B�

�rename R�� ���� Rn �Rn��� in B�
��R������Rn�Rn�� �	L

� �rename R�� ���� Rn �Rn��� in B��

where the renaming function ��R�� ���� Rn� Rn��� is de
ned as follows�

��R�� ���� Rn� Rn����G v�� ���� vl� �def
if �i � f�� ���� ng j �Gi � G� � �Ri has no ����� clause� then
G�

i v�� ���� vl
else if �i � f�� ���� ng j �Gi � G� � �Ri has a ����� clause� �

�pi � l� � ��k � f�� ���� lg� �type�vk� � Tk� then
G�

i E
�
i �V� �� v�� ���� Vl �� vl�� ���� E

qi
i �V� �� v�� ���� Vl �� vl�

else if �Rn�� exists and has no ����� clause� then
G�

n��v�� ���� vl
else if �Rn�� exists and has a ����� clause� then
G�

n��E
�
i � ���� E

qi
i

else

G v�� ���� vl

We give some use examples of the renaming operator�

�	 simple gate renaming� rename G� �	 G�

�� ���� Gn �	 G�

n �	 G�

n�� in 			

�	 deletion of o�ers� rename G �V� � T�� V� � T�� V� � T�� �	 G�V�� in 			

�	 addition of o�ers� rename G �V � T � �	 G �header � V� trailer� in 			

�	 duplication of o�ers� rename G �V � T � �	 G �V� V � in 			

�	 alteration of o�ers� rename G �V � T � �	 G ��� in 			

�	 modi
cation of o�ers� rename G �V � T � �	 G �F �V �� in 			

�	 permutation of o�ers� rename G �V� � T�� V� � T�� �	 G �V�� V�� in 			

	 combination of o�ers� rename G �V� � T�� V� � T�� �	 G �F��V�� V��� F��V�� V��� in 			

Remark

The semantics of the �rename� operator implies that�

rename G �	 G� in �G � stop ��� G� � stop� � stop

because renaming is applied after trying to synchronize G and G�� which fails� because both gates do
not have the same name	 This is the post�renaming semantics� which is also that of the relabelling
operator of Lotos	

An alternative de
nition� the pre�renaming semantics� could be used instead� which applies renaming
before synchronization� this semantics is based on textual substitution of the renamed gates in the
behaviour expression	 Using this semantics� one would have�

rename G �	 G� in �G � stop ��� G� � stop� � G � stop

��

It is worth noticing that many compiler writers translating Lotos into Extended Finite State Ma�
chines or Extended Petri Nets �e	g	 Guether Karjoth and Carl Binding with the Loewe tool� Eric
Dubuis with the Colos tools� and the author of this article with the C�sar tool� have chosen to
deviate from Lotos by implementing pre�renaming instead of post�renaming	 The reasons for these
deviations should be considered for the design of E�Lotos	

Also� in the case where the relabelling function is injective �which often occurs in practice�� both
semantics are identical	 �

This proposal for introducing renaming in E�Lotos remains to be integrated with other proposals�
such as gate typing� communication pattern�matching� time� etc	

� Removing the �choice� and �par� operators on gate lists

We propose to remove the �choice� operators and �par� operators on gate lists� which currently
exist in standard Lotos�	 Our motivations are the following�

� We notice that these operators are not used in practice	 For instance� they are not used in the
formal descriptions in Lotos of the transport protocol� nor in the Ccr service and protocol�
nor in the description of the Osi�Tp protocol	

� These operators are merely shorthands which do not bring expressiveness	 There could be easily
replaced using the renaming operator for E�Lotos �see Section � above�	 For instance�

choice G in �G�� ���� Gn� �� B

could be expressed as�

rename G �� G� in B

��

���

��

rename G �� Gn in B

Remark

A process de
nition could also be used� in order to avoid the duplication of B several times	 �

Therefore� unless a convincing example of the practical usefulness of these two operators can be found�
we propose to remove them from E�Lotos� in order to keep the language as simple as possible	

 Using a bracketed syntax

As Lotos behaviour expressions are algebraic terms with nullary� unary� and binary operators� pars�
ing ambiguities naturally arise	 They are solved in two ways� by the de
nition of Lotos syntax� which
introduces priorities between behaviour operators� and by the speci
ers� who can use parentheses to
enclose behaviour expressions appropriately	

�We do not propose the removal of the �choice	 operator on value domains� because this operator is used very
often� for instance in the formal descriptions in Lotos of the transport protocol and Osi�Tp protocol

��

However� this scheme proves to be di�cult to many users	 For instance� the following behaviour
expression�

B� �� B� �� B�

is not parsed as�

�B� �� B�� �� B�

but�

B� �� �B� �� B��

Experienced users solve the problem by putting lots of parentheses� which makes the speci
cation
safer for them� but di�cult to read by someone else	 A similar problem also occurs when several
parallel operators are mixed in the same behaviour expression	

We could imagine that the BNF grammar could force the user to put parentheses where a behaviour
expression is ambiguous	 It seems that Lotos syntax tries to do so� at least for the unary operators
such as �choice�� �par�� �let�� etc	 But this results in strange syntactic constraints� which do not
avoid ambiguities	

In his thesis �Bri�� Ed Brinksma addresses this problem and suggest an elegant solution� which is
worth to be considered for the design of E�Lotos	 In his approach� a special syntax is introduced
to �bracket� the binary operators ����� ����� ����� �����	 We now consider in turn the various
bracketed operators proposed by Brinksma	

� The simplest one concerns the disable operator	 It is noted�

dis

B�

��

B�

enddis

and is equivalent to �B� �� B��	

� Another bracketed operator concerns the non�deterministic choice	 It is noted�

sel

B�

��

���

��

Bn

endsel

and is equivalent to �B� �� ��� �� Bn�	 Note� using �alt			endalt� rather than �sel			endsel�
would give a �avour of Occam	

��

� There are several forms of bracketed syntaxes for parallel composition	 The
rst form is noted�

par sync all

B�

��

���

��

Bn

endpar

and is equivalent to �B� �� ��� �� Bn�	 The second form is noted�

par �sync none�
B�

��

���

��

Bn

endpar

and is equivalent to �B� ��� ��� ��� Bn�	 The third form is noted�

par sync G�� ���� Gm in

B�

��

���

��

Bn

endpar

and is equivalent to �B� ��G�� ���� Gm�� ��� ��G�� ���� Gm�� Bn�	 There is also a fourth form
��sync common�� which should be left for further study� since it is highly context dependent	

� There is also a bracketed syntax for sequential composition	 It is noted�

seq

A�

�

���

�

An

�

B

endseq

and is equivalent to �A������An�B� where A�� ���� An are action denotations	 However� as
Brinksma also suggests to unify both operators ��� and ���� �this will be discussed in Section ��
below�� some Ai can also be replaced with behaviour expressions and �init� clauses	

��

� The syntax of the unary operator �choice� is changed into a bracketed syntax�

sel for iteration over gate list or value domain ��

B

endsel

� Similarly� the syntax of the unary operator �par� is changed into a bracketed syntax�

par for iteration over gate list or value domain sync ���

B

endpar

� The unary operators �let� and �hide� are kept unchanged� no keywords �endlet� and
�endhide� are added	

Note� It is not clear whether simple parentheses ����� are still allowed in Lotcal� or if only the
bracketed constructs are available	

Note� In the above list of operators� the guard operator is not mentioned	 In Lotcal� guards have a
special status determined by the BNF syntax	 They can be used only in arguments of �sel�� �dis��
�par�� etc	 For E�Lotos� it would be probably better to keep guards as �normal� �i	e	�
rst�class
citizen� operators	

Note� most of the new operators proposed for E�Lotos�e	g	� �case� and �if�� already have a brack�
eted syntax	

�� Introducing a �par� operator on �nite value domains

We propose to introduce a �par� operator on value domains� similar to the �choice� operator on
value domains	 This operator would be very useful to launch a set of processes in parallel� e	g	�

par V������� V��bool ��� P �G�� G���V�� V��

would be equivalent to�

P �G�� G����� false� ��� P �G�� G����� true�
���

P �G�� G����� false� ��� P �G�� G����� true�
���

P �G�� G����� false� ��� P �G�� G����� true�

However� this �par� operator is only well�de
ned if one iterates on
nite value domains	 Should
value domains be in
nite� this would lead to an unbounded number of rules in the de
nition of the
dynamic semantics	

If data types are de
ned using abstract data types without constructors� as it is the case in Lotos
with ActOne types� it is not possible to determine statically whether the domain �data carrier� of
type �sort� is
nite or not	 This was the reason why the �par� operator on value domains was not
introduced in Lotos	

��

However� Ed Brinksma decided to introduce a �par� operator on value domains in the Lotcal
language �Bri�� the speci
er has to ensure that the value domains are
nite� otherwise the meaning
of the Lotcal speci
cation is unde
ned	 Of course� this constraint cannot be checked statically	

But in the case of E�Lotos� if data types are de
ned constructively� as recommended in the output
document of the Ottawa meeting �JGL����� it is possible to decide statically whether a type is
nite
or not	 The algorithm is based on the following statement� a type is �nite if it is not recursive and if
all the types of all the arguments of all its constructors are themselves �nite	 By associating a boolean
variable �is �nite�T �� to each type T � one obtains a system of boolean equations which can be solved
iteratively	 For externally�de
ned types� the user would have to specify whether their domain is
nite
�the default choice� or in
nite	

�� Introducing �n among m� synchronization

Let�s consider a set of m concurrent processes P�� ���� Pm	 We want to specify a synchronization
scheme in which n �n � m� of these processes have to synchronize on a given gate G	 For n � �� this
means that any process Pi can synchronize and communicate with any other processes Pj �i �� j�
using binary rendez�vous	

In standard Lotos� specifying �n among m� synchronization is not always easy� nor even possible	
Just consider� for instance� the following network of communicating processes�

P� P�

P�P�

G

G

G

G

G

G

However� we believe that �n amongm� synchronization can be useful practically� especially for n � �	
We give two examples�

� In Odp systems� any object can potentially interact with any other object using binary rendez�
vous	

� �Problem solving� descriptions can be obtained by putting in parallel many components� each
component computing a part of the global solution and being potentially allowed to commu�
nicate with any other components	 An example of such constraint�oriented descriptions is the
�eight queens� problem described in Fp� by Philippe Schnoebelen	 In Lotos� it is di�cult to
describe a chessboard� each square of which is a parallel process being able to synchronize with
adjacent squares	

In both cases� communication between processes can be restricted by using experiment o�ers� accord�
ing to the value matching mechanism of Lotos	 A simple solution to the �eight queens� example
would consist in connecting all pair of squares� then restricting synchronization to pairs of adjacent
squares using appropriate o�ers and selection predicates	

Milner�s Ccs allows �� among m� communication� but does not allow multiway rendez�vous	

We propose to combine both approaches by generalizing Lotos parallel composition operators	 Ob�
viously� it does not seem possible to introduce the concept of �n among m� synchronization using

�

the binary operators ����� ������ and ���������	 We therefore use as a starting point the bracketed
syntax proposed by Ed Brinksma for the general �par� operator �see Section � above��

par sync G�� ���� Gp in

B�

��

���

��

Bm

endpar

where m � �	 We propose to extend this syntax as follows�

par sync G� � n�� ���� Gp � np in

B�

��

���

��

Bm

endpar

where n�� ���� np are integer numbers called degrees� whose values must be computable statically �i	e	�
at compile�time�� such that �� � n� � m� � ��� � �� � np � m�	

Informally� the semantics of this operator is the following	 The behaviour expressions B�� ���� Bm

execute concurrently	 The actions whose gate G does not belong to fG�� ���� Gpg are asynchronous�
they can be performed by some Bi without synchronization from the other processes Bj�j �� i�	 The
actions whose gate G is equal to some Gk are synchronous� they must be performed simultaneously
by nk behaviour expressions among B�� ���� Bm	 As in Lotos� the termination is synchronous� all
Bi�s synchronize on the ��� gate	

Remark

When �n� � m� � ��� � �np � m�� the original �par� operator of Brinskma is obtained as a particular
case	 �

Remark

Similarly� the general parallel composition operator of Lotos can be obtained as a shorthand�

B� ��G�� ���� Gp�� B� �def

�
BBBB�

par sync G� � �� ���� Gp � � in
B�

��

B�

endpar

�
CCCCA

�

Remark

If some ni is equal to �� it means that gate Gi is asynchronous	 It is therefore equivalent to have a
gate not mentioned in G�� ���� Gn or to have it in the list with degree �	 �

Remark

We do not require that G�� ���� Gp are pairwise di�erent gate identi
ers	 This allows di�erent degrees
of synchronization on the same gate	 For instance� the following network�

��

P�

G
P�

P�

G G

G

can be obtained as follows�

par sync G � �� G � � in
B�

��

B�

��

B�

endpar

In particular� when there are only two processes� such feature can be useful to simulate Ccs parallel
composition� in which parallel processes can either synchronize or evolve independently	 �

Given a list �G� � n�� ���� Gp � np�� we de
ne the predicate �has degree�G� d�� which is equal to
true i� gate G has degree d	 This predicate is de
ned as follows�

has degree�G� d� �def

��
�

if G � � then d � m

else if ��i� � f�� ���� pg j G � Gi then d � fnijG � Gig
else d � �

We can now de
ne the semantics of the proposed parallel composition operator with a single rule
�instead of three rules in the dynamic semantics of standard Lotos��

��L� ��B�

�� ���� B
�

m� ��I � f�� ����mg� has degree�gate�L�� card�I�� �

��i � I� �Bi
L
� B�

i� � ��i � f�� ����mg I� �B�

i � Bi��
BBBBBBBB�

par sync G� � n�� ���� Gp � np in

B�

��

���

��

Bm

endpar

�
CCCCCCCCA

L
�

�
BBBBBBBB�

par sync G� � n�� ���� Gp � np in

B�

�

��

���

��

B�

m

endpar

�
CCCCCCCCA

Remark

If we allow the case where� for some Gi� the corresponding degree ni is equal to �� the above rule will
prevent B�� ���� Bm from executing any action with gate Gi	 The same result could also be obtained
using standard Lotos operators� given a behaviour B� if one wants to forbid actions with gate Gi�
it is su�cient to write�

B ��Gi�� exit

�

��

Remark

The proposed �n among m� synchronization should be adapted to the �par� operator on value
domains described in Section ��	 �

Remark

We could also adopt another synchronization scheme� in which we associate to each gate Gi� not its
degree� but the set of indexes of the Bi�s which have to synchronize on this gate	 This would allow
to describe synchronization schemes such as this one�

P�P�

P�

G

G

which could be expressed as�

par sync G f�� �g� G f�� �� �g in
B�

��

B�

��

B�

endpar

�

�� Unifying the ��� and ���� operators syntactically

The distinction between the action pre
x operator ����� and the enabling operator ������ is often felt
troublesome by novice users and awkward by experienced users	 The former is asymmetric� because
its left argument cannot be a behaviour expression� the latter is symmetric and associative �unless
there are �accept� clauses�	

Other languages �for instance Esterel or Theoretical Csp� have symmetric sequential composition	
In his thesis �Bri�� Ed Brinksma addressed this problem and proposed to merge both operators ���
and ���� from a syntactical point of view	 In this section� we present an outline of his proposal	

Basically� the modi
cation consists in replacing the existing syntax of the enabling operator�

B� �� �accept V� � T�� ���� Vn � Tn in� B�

with�

B� �init V� � T�� ���� Vn � Tn� � B�

We make the following comments�

��

� This syntactic change has several consequences� the ��� operator becomes overloaded� it has
two possible pro
les� e	g	� �G � B�� and �B� � B��	 This may lead to syntactic ambiguities�
which have to be carefully avoided	

For instance� there is certainly an ambiguity between�

process�identifier� ���
gate�identifier� ��� ���
behaviour�expression�

and�

gate�identifier� ���
variable�identifier� ��� ���
behaviour�expression�

A simple solution to this problem would be to prohibit boolean guards in action denotations
when no o�ers are present	

� Also� like the ���� operator� the ��� operator is not associative� because of value passing and
variable scoping	 For instance�

B� init V� � T� � B� init V� � T� � B�

can be interpreted either as�

B� init V� � T� � �B� init V� � T� � B��

or as�

�B� init V� � T� � B�� init V� � T� � B�

in which case V� is not visible in B�	

In connection with his proposal for a bracketed syntax �see Section � above�� Ed Brinksma proposed a
syntax to support the uni
cation of the operators ��� and ����	 We give here a synthetic view of this
syntax� which intends to solve ambiguities and to make sequential composition be right�associative	
We use four di�erent non�terminals B � SeqB � NonSeqB � Block �

� The non�terminal B denotes the set of all behaviour expressions�

� The non�terminal SeqB denotes the set of all behaviour expressions that are sequential compo�
sition�

� The non�terminal NonSeqB denotes the set of all behaviour expressions that are not sequential
composition�

� The non�terminal Block denotes the set of �bracketed� behaviour expressions	

These non�terminals are de
ned using the following grammar �slightly adapted from �Bri���

B ��� NonSeqB

j SeqB

NonSeqB ��� stop

j exit ���

j dis B� �� B� enddis

��

j sel B� �� ��� �� Bn endsel

j par ���B� �� ��� �� Bn endpar

j hide ��� in B

j let ��� in B

j P ����������

SeqB ��� G��� � B

j Block �init V� � Tn� ���� Vn � Tn� � B

Block ��� NonSeqB

j seq SeqB endseq

This grammar is perhaps simpler to understand if we eliminate the SeqB non�terminal�

B ��� NonSeqB

j G��� � B

j Block �init V� � Tn� ���� Vn � Tn� � B

NonSeqB ��� �� unchanged ��

Block ��� NonSeqB

j seq G��� � B endseq

j seq Block �init V� � Tn� ���� Vn � Tn� � B endseq

or if we eliminate the Block non�terminal�

B ��� NonSeqB

j SeqB

NonSeqB ��� �� unchanged ��

SeqB ��� G��� � B

j NonSeqB �init V� � Tn� ���� Vn � Tn� � B

j seq SeqB endseq �init V� � Tn� ���� Vn � Tn� � B

�� Unifying the ��� and ���� operators semantically

The uni
cation of sequential composition operators proposed by Ed Brinksma �see Section ref ���
is purely syntactic� �Bri� keeps the existing semantics of the ���� operator	 However� we
nd a
number of problems in the existing semantics	

Even if both sequential composition operators are noted similarly �using ����� there is still an essential
di�erence between them� the enabling form involves a rendez�vous on the ��� gate� thus leading to an
�i� action when the enabling operator is used	 On the other hand whereas the action�pre
x operator
is atomic and does not generate �i� actions	

For instance� both expressions �G � B� and ��G � exit� � B� are not strongly equivalent� in the
latter� the G action is followed by an �i� action	

��

The generation of �i� actions has the unpleasant e�ect of increasing the size of the Labelled Transition
Systems generated from Lotos programs	 This creates	 or contributes to� state explosion without
any practical bene
t from the speci
er�s point of view	 This is a real problem in Lotos� for which
several solutions have been proposed�

� Some tool developers �e	g	� Guenther Karjoth and Carl Binding in the Loewe tool� have chosen
to deviate from the Lotos standard by not generating �i� transitions for ���� operators	

� In other implementations compatible with the Lotos standard� Lotos speci
ers are often
taught not to use the ���� operator �too much��

We propose to solve this problem by changing the semantics of the enabling operator� in order to
avoid the generation of �i� transitions	 In this approach� the passing of continuation is atomic in
both forms of sequential composition	 This proposal goes beyond the syntactic uni
cation described
in Section �� and achieves semantical uni
cation of both forms of sequential composition	

We propose a new dynamic semantics for the enabling operator�

�B�
L
� B�

�� � �L �� ��

�B� � B��
L
� �B�

� � B��

�B�
�
� stop� � �B�

L
� B�

��

�B� � B��
L
� B�

�

or� more generally� if value passing is involved�

�B�
L
� B�

�� � �gate�L� �� ��

�B� init V� � T�� ���� Vn � Tn � B��
L
� �B�

� init V� � T�� ���� Vn � Tn � B��

�B�
� v������vn
� stop� � �let V� � T� � v�� ���� Vn � Tn � vn in B�

L
� B�

��

�B� init V� � T�� ���� Vn � Tn � B��
L
� B�

�

Remark

The second rule for sequential composition assumes that B� can make a transition labelled with L	
What happens if B� cannot make such a transition� Using the proposed semantics� we have�

exit � stop � stop

More generally� for all B� we have�
exit � B � B

As the following property holds�
B � exit � B

we infer that �exit� is the neutral element of ���	 From a mathematical point of view� it is enjoyable
that ��� has a neutral element� this is not the case for the ���� operator of Lotos	 �

This new semantics solves the problems mentioned above and achieves a perfect symmetry between
both forms of sequential composition	 For instance� the following property holds�

�G � exit� � B � G � B

��

A strong argument for introducing the ��� operator in E�Lotos relies in the fact that this operator
is more primitive �i	e	� more general and more expressive� than the existing ���� operator of Lotos	
Indeed� using the proposed semantics� the existing ���� operator of Lotos can be obtained as a
shorthand�

B� �� �accept V� � T�� ���� Vn � Tn in� B� � B� �init V� � T�� ���� Vn � Tn� � �i � B��

Remark

To increase symmetry with the data language� one could replace variable de
nitions V� � T�� ���� Vn � Tn
with a list of patterns P�� ���� Pn	 �

�� Introducing exceptions in the behaviour part

There has been some discussion to introduce exceptions in the data part of E�Lotos	 An outline of
a SML�based proposal is given in �JGL���� and a complete proposal is given in �SG���	 We propose
here an exception mechanism for the behaviour part� compatible with the one given in �SG���	

In our approach� exceptions are not an entirely new concept by themselves	 They are rather an
extension of the existing behavioural semantics	 Exception identi
ers are simply gate identi
ers�
however� for convenience� we will note them X�X�� X��� X�� X�� ��� instead of G�G�� G��� G�� G�� ���	

We also extend the transition relation de
ning the behavioural semantics of Lotos	 Besides tran�

sitions of the form �B�
G v������vn
� B��� we allow transitions of the form �B�

X v������vn �

� B��� where
X is an exception identi
er and where ��� is a special symbol� which is used to distinguish between
ordinary rendez�vous and exceptions	 Notice that� in our approach� exceptions �as well as gates� can
carry typed values	

When we write �B�
L
� B��� the label L can be either of the form �G v�� ���� vn�� or of the form

�X v�� ���� vn ��	 In the latter case� B� should always be equal to stop	

Semantically� the �diamond� sign should be considered as an additional value o�er	 The existing
de
nition of label equality in Lotos is kept unchanged� two labels are equal if they have the same
gates �or exceptions� and the same o�ers	 This implies that� if two labels are equal� either both of
them have the ��� symbol� or none of them has this symbol	 In particular� this de
nition is useful
for deciding when concurrent processes synchronize	

We extend the de
nition of behaviour expressions by introducing two new operators�

B ��� ���

j raise X �E�� ���� En�

j trap

B�

handle

X� �V
�
� � T

�
� � ���� V

�
m�
� T �

m�
�� B�

���

Xn �V
n
� � T

n
� � ���� V

n
mn
� Tn

mn
�� Bn

endtrap

��

whose semantics is de
ned by the following rules�

�	 raise of an exception�

�eval �E�� � v�� � ��� � �eval �En� � vn�

raise X �E�� ���� En�
X v������vn�

� stop

�	 normal execution�

B�
G v������vn
� B�

��
BBBBBBBB�

trap

B�

handle

X� �V �
� � T

�
� � ���� V

�
m�
� T �

m�
�� B�

���

Xn �V n
� � T

n
� � ���� V

n
mn
� Tn

mn
�� Bn

endtrap

�
CCCCCCCCA

G v������vn
�

�
BBBBBBBB�

trap

B�

�

handle

X� �V �
� � T

�
� � ���� V

�
m�
� T �

m�
�� B�

���

Xn �V n
� � T

n
� � ���� V

n
mn
� Tn

mn
�� Bn

endtrap

�
CCCCCCCCA

�	 catch of an exception�

�B�
X v������vp �

� stop� �
��i � f�� ��� ng� �X � Xi� � �p � mi� � ��j � f�� ���� pg� �type�vj� � T i

j � �

�let V i
� � T

i
� � v�� ���� V

i
p � T

i
p � vp in Bi

L
� B�

i��
BBBBBBBB�

trap

B�

handle

X� �V
�
� � T

�
� � ���� V

�
m�
� T �

m�
�� B�

���

Xn �V
n
� � T

n
� � ���� V

n
mn
� Tn

mn
�� Bn

endtrap

�
CCCCCCCCA

L
� B�

i

�	 propagation of an uncaught exception�

�B�
X v������vp �

� stop� �
��i � f�� ��� ng� �X �� Xi�
 �p �� mi�
 ��j � f�� ���� pg� �type�vj� �� T i

j ��
BBBBBBBB�

trap

B�

handle

X� �V �
� � T

�
� � ���� V

�
m�
� T �

m�
�� B�

���

Xn �V
n
� � T

n
� � ���� V

n
mn
� Tn

mn
�� Bn

endtrap

�
CCCCCCCCA

X v������vp �

� stop

Remark

We make the following comments on this semantics�

� The �raise� operator is the only way to attach a ��� symbol to an action	 The standard
action�pre
x operator of Lotos does not generate ��� symbols	

��

� When an exception is catched� the control transfer is atomic� thus not visible form the outside	

� In non�deterministic choices� the proposed semantics gives no priority to exceptions versus
�ordinary� actions	 Especially� the following behaviour expression�

G � stop �� raise X

cannot be reduced to�
raise X

� The reason for which gates and exceptions are the same concept relies in the fact that we need
sometimes to synchronize several processes on an exception	 For instance� one may write�

raise X ��X�� raise X

which is equivalent to�
raise X

by applying Lotos rules for parallel composition	 This is especially useful in the case of the
��� gate�exception �see below�� on which all Lotos parallel composition operators synchronize�
the ��� gate expresses both synchronous termination of concurrent processes and continuation
passing	

� The proposed semantics allows both synchronous termination and asynchronous	 For instance�
the following expression speci
es synchronous termination on exception X�

B� ��X�� B�

because both behaviours B� and B� must do �raise X� simultaneously to terminate	 On the
other hand� the following behaviour expression speci
es asynchronous termination�

trap

B� ��� B�

handle

X� � B�

�

X� � B�

�

endtrap

For instance� if one behaviour Bi does �raise Xj�� then both processes B� and B� are aborted
and the control �ow is transferred to B�

j 	

� Reciprocally� gates and exceptions cannot be uni
ed completely� it would not be possible
to unify �raise X� and �X � stop �this is the reason why the ��� symbol is necessary to
distinguish these two di�erent behaviour expressions�	 For instance� let�s consider the following
behaviour expression�

trap

B

handle

X� � B�

endtrap

��

Should gates and exceptions be completely uni
ed� if B does a transition labelled with X� then
the above behaviour expression would be ambiguous� it would not be possible to decide whether
X is a normal action �in which case� the execution of B should continue normally� or whether
X is an exception �in which case� the execution of B should be aborted and X propagated to
the context outside� since X is not caught by the exception handler�	

� The proposed exception mechanism relies on dynamic scoping� if the body of a recursive Lotos
process contains a �trap			endtrap� operator� the latest exception handler will be used	 This
is similar to the �setjmp�longjmp� mechanism of the C language and di�erent from Ada�s
statically�scoped exceptions	

�

Semantically speaking� the proposed �raise� and �trap			endtrap� operators are very powerful	
They are primitive operators that allow to express several Lotos operators as derived cases �short�
hands��

�	 The �exit� operator of Lotos can be de
ned as�

exit �E�� ���� En� �def raise � �E�� ���� En�

�	 The ��� operator proposed in Section �� can be de
ned as�

B� �init V� � T�� ���� Vn � Tn� � B� �def

�
BBBB�

trap

B�

handle

� �V� � T�� ���� Vn � Tn�� B�

endtrap

�
CCCCA

�	 The ���� operator of Lotos can be de
ned as�

B� �� �accept V� � T�� ���� Vn � Tn in�B� �def

�
BBBB�

trap

B�

handle

� �V� � T�� ���� Vn � Tn�� i � B�

endtrap

�
CCCCA

Remark

It is not necessary to hide ���� because no ��event can be observed from the outside if the
exception is catched	 �

�	 The ���� operator of Lotos can be de
ned as�

B� �� B� �def

�
BBBB�

trap

B� ��� �exit �� raise ��
handle

� � B�

endtrap

�
CCCCA

where � is an exception identi
er	 This de
nition deserves a few comments� the exception � is
not synchronized by the parallel operator and therefore can be spontaneously triggered at any

�

time� if so� the execution of B� is aborted and the control �ow is transferred to B�� however�
B� can also execute normally� if B� reaches an �exit� statement �also proposed by the right
operand of the parallel process�� then the � exception is raised and propagated outside� since it
is not caught by the exception handler	

Remark

Omitting the �exit� alternative on the right hand�side of the parallel operator would prevent
B� from terminating successfully� as the ��� exception is synchronized by parallel composition	
�

Remark

It is not necessary to hide ���� because no ��event can be observed from the outside if the
exception is catched	 �

Remark

Notice that B� could be allowed to raise � by itself� thus passing the control to B� explicitly	
This possibility is also implicitly available in Lotos if� at some points� the behaviour of B�

stops �i	e	� becomes equivalent to �stop��	 �

Remark

Of course� the very useful watchdog construct ��B� �� B�� �� B�� can still be obtained as a
particular form of �trap�	 But the �trap� operator allows more general forms of watchdogs�
in which several events� leading to di�erent behaviours� can be used to escape the watchdog �in
Lotos� only the ��� event can be used�	 �

The following remarks are a topic for further work	

Remark

This proposal for introducing exceptions in E�Lotos should be compared and combined with existing
proposals for generalized termination	 It should also be compared with �Ber��� who de
nes the whole
semantics of the Esterel in terms of preemption �i	e	� interrupts�	 �

Remark

Adding an �otherwise� Bn��� clause before the �endtrap� keyword could be useful to catch all
exceptions but those explicitly listed �i	e	� X�� ���� Xn�	 It would catch any exception� without or with
attached values v�� ���� vp� however� in the latter case� these values could not be referenced in Bn��	
�

Remark

The proposed exception mechanism could also be used to catch exceptions generated by value ex�
pressions	 This would unify exception handling in both the behaviour and data part of E�Lotos	
�

Remark

To increase symmetry with the data language� one could replace variable de
nitions V i
� � T�� ���� V

i
ni
�

Tni with a list of patterns P�� ���� Pni	 �

Remark

Constraints could be added to the static semantics of E�Lotos in order to verify that exceptions are
used in a consistent way	 For instance�

� Exceptions could be declared together with the types of their parameters	 This would be similar
to the concept of �gate typing�	 The case of �overloaded� exceptions �similar to �overloaded�
gates� is left for further studies	

��

� Functionality rules could be extended in order to check statically that exceptions are caught
appropriately� with right number and the right types of o�ers	 Currently� functionality rules
only deal with the ��� exception	 They should be extended to deal with all exceptions	

� Process declarations could be annotated with a �raises X�� ���� Xn� clause indicating which
exceptions are raised by a given process	 A similar declaration exists in Ada	

� Also� functionality rules could ensure that exceptions are not propagated outside of the scope
of their declaration �a problem that arises in SML�	 This could be done by requiring that
exceptions are always caught at the level of their scope unless it is already done in nested
scopes	

�

�	 Introducing iterators in the behaviour part

Many reactive systems have a cyclical behaviour	 In most sequential languages� such behaviours can
be described using either iteration or recursion	 In Lotos� however� only recursion is available� all
cyclical behaviours have to be described using recursive processes	

We therefore propose to introduce an iterator in E�Lotos	 It is merely a shorthand notation� de
ned
using a recursive process and the exception mechanism de
ned in Section ��	

We
rst introduce a new Lotos operator� whose syntax is�

B ��� continue �E�� ���� En�

and which is equivalent to�

raise � �E�� ���� En�

where � is an exception identi
er	

We then introduce an iteration operator� whose syntax is�

B ��� loop �V� � T� �	 E�� ���� Vn � Tn �	 En in�

B�

endloop

and which is equivalent to�

P ������E�� ���� En�
where

process P ������V� � T�� ���� Vn � Tn����
trap

B�

handle

� V �

� � T�� ���� V
�

n � Tn � P ������V �

�� ���� V
�

n�
endtrap

endproc

��

In its simplest form� this operator can be used to repeat in
nitely a given behaviour	 The occurrence
of the �continue� operator triggers the next iteration	 For instance� a simple one�slot bu�er accepting
two di�erent types of data can be de
ned as�

loop

INPUT �V��DATA���

OUTPUT �V��

continue

��

INPUT �V��DATA���

OUTPUT �V��

continue

endloop

This operator also allows values to be transmitted from one iteration to the next one	 These values
are stored in variables V�� ���� Vn whose initial values are E�� ���� En respectively	 For instance� the
following cyclical behaviour receives a stream of values Xi on its INPUT gate and continuously emits
on its OUTPUT gate the sum� the minimum� and the maximum of all Xi�s received previously�

loop SUM�REAL �	 �� MIN�REAL �	 INFINITY� MAX�REAL �	 MINUS�INFINITY in

INPUT �Xi�REAL�

let NEW�MIN�REAL �	 if Xi
 MIN then Xi else MIN endif in

let NEW�MAX�REAL �	 if Xi � MAX then Xi else MAX endif in

OUTPUT ��SUM � Xi� �NEW�MIN �NEW�MAX�

continue �SUM � Xi� NEW�MIN� NEW�MAX�

endloop

Finally� the �exit� operator can be used to go out of the loop	 For instance� the following process
reads a stream of values on its INPUT gate until the sum of these values exceeds ���� �in which case�
it returns the number of values he has read��

loop COUNT�NAT �	 �� SUM�REAL �	 � in

INPUT �Xi�REAL�

if �SUM � Xi � ����� then

exit �COUNT � ��

else

continue �COUNT � �� SUM � Xi�

endloop

Remark

The extended functionality constraints mentioned in Section �� should ensure that the number and
types of values passed to a �continue� operator are compatible with the list of variables declared
after the �loop� keyword of the innermost loop construct	 This should be a simple application of
general rules for exceptions� rather than rules speci
cally tailored for loop constructs	 �

�
 Removing the �where� clause from process de�nitions

Lotos processes can contain local de
nitions of processes and types	 These de
nitions are introduced
by the �where� keyword	 We see a number of drawbacks to this possibility�

� It often obscures Lotos descriptions� as processes and types can be nested in processes at
arbitrary depths	

��

� It prevents reusability� as types de
ned in a process are not visible elsewhere and cannot be
reused	

� With respect to ActOne� it creates a dissymmetry between the behaviour part and the data
type part� as ActOne types cannot contain nested types �nor processes�	

� With respect to the data type language proposed for E�Lotos �JGL����� it creates dissymmetry
between the behaviour part and the data type part� as functions cannot contain nested functions
�nor processes�	

We believe that this possibility should be suppressed and transferred to the module system of
E�Lotos	 Syntactically� one should replace a process de
nition having local de
nitions�

process P���

B

where

local de�nitions
endproc

with a module having a �hidden� part� introduced by the �where� keyword� as in Brinksma�s thesis
�Bri� or as in the Lotosphere proposal�

module M is

process P���

B

endproc

where

local de�nitions
endmod

The local process de
nitions should themselves be ��attened� recursively� in order to eliminate nested
processes by putting them altogether at the same level� possibly using appropriate renamings to
guarantee unique names	

�� Simplifying process de�nitions

In order to make a clear symmetry between the behaviour part and the data type language proposed
in �SG���� we suggest several changes to the syntax of process de
nitions� especially with respect to
functionality declarations �in standard Lotos� functionality denotes the types of the results returned�
using the �exit� operator� by a process�	

Alan Je�rey suggested that the declaration of functionality for processes and the declarations of
function results should be somehow uni
ed	 He proposed to model functionality as an SML tuple
type	 However� for a number of reasons exposed in �GS���� we believe that using �out� parameters
for functions� instead of tuples� is highly preferable	

To ensure compatibility with the data type language proposed in �SG���� we suggest to introduce
�out� parameters in process de
nitions to replace functionality declarations	 We propose to replace
process de
nitions such as�

��

process P �G�� ���� Gn��V� � T�� ���� Vm � Tm� � exit �T
�

�� ���� T
�

p� �	

B

endproc

with�

process P �G�� ���� Gn��in V� � T�� ���� in Vm � Tm�out V �

� � T
�

�� ����out V
�

p � T
�

p� is
B�

endproc �P �

where V �

� � ���� V
�

p are new variable names	 At this point� three changes should be noticed�

� The �exit� clause was replaced with �in� and �out� attributes	 We believe that this new
syntax is more compatible with the major languages standardized by Iso�Iec Sc�� and also
the Idl language of Odp �see �GS��� for a discussion of interoperability�	

� The ��	� keyword was replaced with �is� according to the syntactic conventions proposed in
�SG���	

� The optional facility to recall the name of process P after the �endproc� keyword was added	
This also exists in Ada and would standardize current practice� many Lotos speci
ers add
��� P ��� after �endproc� �see for instance the Osi�Tp description�	

We now consider the cases of process de
nitions whose functionality is either �exit� or �noexit�	 In
both cases� we propose to replace such de
nitions with�

process P �G�� ���� Gn��V� � T�� ���� Vm � Tm� is
B�

endproc �P �

We make the following comments�

� All variables Vi could have been declared with the �in� attribute� but this is not mandatory
since there is no �out� attribute	

� The �noexit� keyword� which always seems cryptic to new Lotos users� disappears	

� Above all� we make no distinction between functionalities �exit� and �noexit�	 Anyway� the
distinction in Lotos is absolutely meaningless	 Functionality rules are designed to protect the
speci
er against potential mistakes in continuations	 However� they address an undecidable
problem �the halting problem� precisely� and therefore rely on rough approximations	 For
instance� the following behaviour expression�

�V �� stop

��

��V �� exit

has functionality �exit�� at �� � it could have functionality �noexit� as well� Similarly� the
following behaviour expressions�

�false�� exit

��

and�

�false�� exit�true� true�

have functionalities �exit� and �exit �bool � bool�� respectively� whereas they are equivalent to
�stop��

We propose to keep the functionality rules� but to relax them by getting rid of the subtle
distinction between �exit� and �noexit�	 By removing this distinction� it will no longer be
allowed to make unveri
able statements such as� this behaviour terminates or not	 It will also
lead to a more user�friendly syntax and a simpler static semantics	

The �exit� operator should be slightly modi
ed to take into account the names of the variable
declared with the �out� attribute	 For instance� it should be allowed to write �possibly with a
permutation��

exit �V �

� �	 E�

�� ���� V
�

p �	 E�

p�

Note� The treatment of �exit� is also closely linked to the problem of gate typing �Gar���� because
of the dual nature of �exit�� it is both a way to return values and also a rendez�vous on the ��� gate	

�� Abbreviating gate parameters lists

In many Lotos descriptions� process de
nitions tend to have large lists of gate parameters	 This
situation has several drawbacks�

� Large lists of gate parameters are tedious to write and di�cult to read	

� More often than not� the actual gate parameters of a process instantiation are identical to
the formal parameters of the process de
nition	 In such case� actual parameter lists carry no
relevant information� but their �syntactic noise� obscures Lotos descriptions	

� Large lists of gate parameters are error�prone	 Omitted or extra parameters are detected during
static semantics checking	 But permuted gate parameters are not� although they introduce
subtle semantic errors	

� Finally� adding or deleting a gate parameter from a process P is usually tedious� because it is
necessary to modify all instantiations of P � as well as the de
nitions and instantiations of many
processes transitively called by P 	

We believe that these problems could often be solved by the adoption of shorthand notations for
formal and actual gate parameter lists	

The proposed modi
cations require the introduction of a new keyword ��	

���� Abbreviated formal gate parameter lists

Note� this section is technically incompatible with the proposal to remove nested processes made in
Section �� above	 It should be ignored if the proposal of Section �� is accepted	

The de
nition of non�terminal symbol
gate�parameter�list� in the BNF syntax of Lotos should
be modi
ed as follows�

��

gate�parameter�list� ��	

���
gate�identifier�list� ���

� ��� ���

� ���
gate�identifier�list� �� ���

� ��� ��
gate�identifier�list� ���

� ���
gate�identifier�list� ��
gate�identifier�list� ��� �

Remark

This de
nition is still valid even if there are no formal gate parameters� in which case� according to
the syntactic de
nition of Lotos� the non�terminal symbol
gate�parameter�list� is not used	 �

The semantics of an abbreviated formal gate parameter list is simple� if the �� keyword is present
in the formal gate parameter list of some process P � this keyword has to be replaced by the list of
formal gate parameters of the process containing P �i	e	� the smallest process in the de
nition of
which the de
nition of P is nested�	 Consequently� this abbreviation is not allowed for the formal
gate parameter list of the speci
cation itself	

For instance� the following fragment�

process P� �G�� G�� � noexit �	

stop

where

process P� �G� G�� G�� � noexit �	

stop

where

process P� �� � noexit �	

stop

endproc

endproc

endproc

is equivalent to�

process P� �G�� G�� � noexit �	

stop

where

process P� �G�� G�� G�� G�� G�� � noexit �	

stop

where

process P� �G�� G�� G�� G�� G�� � noexit �	

stop

endproc

endproc

endproc

���� Abbreviated actual gate parameter lists

The de
nition of non�terminal symbol
actual�gate�list� in the BNF syntax of Lotos should be
modi
ed as follows�

actual�gate�list� ��	 ���
gate�identifier�list� ���

� ��� �� ���

� ���
gate�substitutions� ���

��

� ���
gate�substitutions� �� ��� �

gate�substitutions� ��	
gate�substitution�

�
gate�substitution� ���
gate�substitutions� �

gate�substitution� ��	
formal�gate� ��	�
actual�gate� �

formal�gate� ��	
gate�identifier� �

actual�gate� ��	
gate�identifier� �

Remark

This de
nition is still valid even if there are no actual gate parameters� in which case� according to
the syntactic de
nition of Lotos� the non�terminal symbol
actual�gate�list� is not used	 �

The semantics of abbreviated actual gate parameter lists is de
ned as follows	 Let�s consider the
instantiation of some process P �

�	 An
actual�gate�list� of the form ���
gate�identifier�list� ��� has the same mean�
ing as in standard Lotos	

�	 An
actual�gate�list� of the form ��� �� ��� has to be replaced by the formal gate
parameter list of P 	 For instance� the following fragment�

process P� �G�� G�� � noexit �	

G�� P� ��

��

G�� P� ��

endproc

process P� �G�� G�� � noexit �	

G�� G�� P� ��

endproc

is equivalent to�

process P� �G�� G�� � noexit �	

G�� P� �G�� G��

��

G�� P� �G�� G��

endproc

process P� �G�� G�� � noexit �	

G�� G�� P� �G�� G��

endproc

�	 Let�s consider an
actual�gate�list� of the form ���
gate�substitutions� ���	 Let
G�� ���� Gn be the formal gate parameter list of P 	 Then
gate�substitutions� must sat�
isfy the following constraint� each Gi must occur once and only once on the left�hand side of a
��	� symbol in
gate�substitutions�	

actual�gate�list� has to be replaced by the gate list G�

�� ���� G
�

n such that� for each i �
f�� ���� ng� �Gi �	 G�

i� belongs to
gate�substitutions�	

Remark

It is therefore necessary to extend scope rules in order to allow formal gate parameters of Lotos
processes to be visible in process instantiations �on the left�hand side of ��	� symbols only�	 �

��

Remark

As a consequence of the above replacement rule� all gates occurring on the right�hand side of a
��	� symbol in
gate�substitutions� must be visible at the point of the Lotos description
where P is instantiated	 �

Remark

gate�substitutions� determines a total function that maps the formal gate parameters of
P onto the actual ones	 This function is not necessarily injective� there can exist i� and i� and
a gate G such that
gate�substitutions� contains both �Gi� �	 G� and �Gi� �	 G�	 �

For instance� the following fragment�

process P� �G�� G�� � noexit �	

G�� P� �G��	G�� G��	G��

��

G�� P� �G��	G�� G��	G��

endproc

process P� �G�� G�� � noexit �	

G�� G�� P� �G��	G�� G��	G��

endproc

is equivalent to�

process P� �G�� G�� � noexit �	

G�� P� �G�� G��

��

G�� P� �G�� G��

endproc

process P� �G�� G�� � noexit �	

G�� G�� P� �G�� G��

endproc

�	 Let�s consider an
actual�gate�list� of the form ���
gate�substitutions� �� ���	
Let G�� ���� Gn be the formal gate parameter list of P 	 Then
gate�substitutions� must
satisfy the following constraint� each Gi may occur at most once on the left�hand side of a ��	�
symbol in
gate�substitutions�	

actual�gate�list� has to be replaced by the gate list G�

�� ���� G
�

n such that� for each i �
f�� ���� ng� either �Gi �	 G�

i� belongs to
gate�substitutions�� or
� �G�

i � Gi�	

Remark

gate�substitutions� determines a partial function that maps the formal gate parame�
ters of P onto the actual ones �explicit parameters�	 All formal gates not mentioned in

gate�substitutions� are kept unchanged �implicit parameters�	 This function is not neces�
sarily injective	 �

Remark

The �� symbol is allowed even if
gate�substitutions� contains as many substitutions
as the number of formal gate parameters of P � i	e	 even if all actual parameters are explicit
parameters	 �

For instance� the following fragment�

�this is an exclusive �or	

��

process P� �G�� G�� � noexit �	

G�� P� �G��	G� �

��

G�� P� �G��	G� �

endproc

process P� �G�� G�� � noexit �	

G�� G�� P� �G��	G� �

endproc

is equivalent to�

process P� �G�� G�� � noexit �	

G�� P� �G�� G��

��

G�� P� �G�� G��

endproc

process P� �G�� G�� � noexit �	

G�� G�� P� �G�� G��

endproc

The proposed modi
cation is upward compatible� except for those existing Lotos descriptions that
contain operation identi
ers with the same spelling as the new reserved keyword ��	 For those
descriptions� renaming the con�icting identi
ers would be needed	

Reciprocally� any Lotos description with abbreviated gate parameter lists can be translated into
standard Lotos by expanding the �� symbols	

Remark

The proposed modi
cation
ts well with another proposal for the introduction of typed gates in
Lotos �Gar��a�	 The syntactic notations and underlying semantics are similar in both proposals	 �

Remark

An alternative approach for abbreviating gate parameter lists would be the possibility to de
ne
identi
ers for �formal and actual� gate parameter lists	 These identi
ers could be used in place of
the �� notation	 It is not clear� however� if this alternative approach is worth its complexity and
if it can be extended to value parameter lists �see next section� and incomplete action denotations
�Gar��a�	 �

� Abbreviating value parameters lists

Similarly� it is desirable to shorten the large list of value parameters	 This can be achieved with the
same mechanism as the one proposed for gate parameters	 The only di�erence comes from the fact
that formal parameters are value identi
ers whereas actual parameters are value expressions	

Therefore� only the proposed new syntax is given� together with examples illustrating the use of the
abbreviated constructions	

���� Abbreviated formal value parameter lists

Note� this section is technically incompatible with the proposal to remove nested processes made in
Section �� above	 It should be ignored if the proposal of Section �� is accepted	

�

The proposed modi
ed syntax is the following�

value�parameter�list� ��	

���
identifier�declarations� ���

� ��� �� ���

� ���
identifier�declarations� �� ���

� ��� ��
identifier�declarations� ���

� ���
identifier�declarations� ��
identifier�declarations� ��� �

For instance� the following fragment�

process P� �G� �X� � BOOL� X� � NAT� � noexit �	

stop

where

process P� �G� �X� � NAT X� � BOOL� � noexit �	

stop

where

process P� �G� �� � noexit �	

stop

endproc

endproc

endproc

is equivalent to�

process P� �G� �X� � BOOL� X� � NAT� � noexit �	

stop

where

process P� �G� �X� � NAT� X� � BOOL� X� � NAT� X� � BOOL� � noexit �	

stop

where

process P� �G� �X� � NAT� X� � BOOL� X� � NAT� X� � BOOL� � noexit �	

stop

endproc

endproc

endproc

���� Abbreviated actual value parameter lists

The proposed modi
ed syntax is the following�

actual�parameter�list� ��	 ���
value�expression�list� ���

� ��� �� ���

� ���
value�substitutions� ���

� ���
value�substitutions� �� ��� �

value�substitutions� ��	
value�substitution�

�
value�substitution� ���
value�substitutions� �

value�substitution� ��	
formal�value� ��	�
actual�value� �

formal�value� ��	
value�identifier� �

��

actual�value� ��	
value�expression� �

For instance� the following fragment�

process P �G� �X� Y � NAT� �	

�X
 ��� ��

P �G� �X �	 X � � �

��

��X �	 ��� and �Y
 ���� ��

P �G� �Y �	 Y � � �

��

��X �	 ��� and �Y �	 ���� ��

P �G� �X �	 �� Y �	 ��

endproc

is equivalent to�

process P �G� �X� Y � NAT� �	

�X
 ��� ��

P �G� �X � �� Y�

��

��X �	 ��� and �Y
 ���� ��

P �G� �X� Y � ��

��

��X �	 ��� and �Y �	 ���� ��

P �G� ��� ��

endproc

Remark

The proposed abbreviated notation introduces an assignment notation �using the ��	� symbol� that
carries� more or less� the usual meaning of assignment	 This proves to be useful when translating
into Lotos some descriptions written in languages with explicit assignments �e	g	� Sdl �CCI� or
Estelle �ISOa��	

It is to be mentioned that the assignment notation is merely a syntactic facility and does not subvert
the semantics of Lotos as a functional language	 �

Remark

Compared to the existing process instantiation in standard Lotos� the proposed abbreviation has
one major advantage� it lays the emphasis on �what is changing� and indicates clearly which variables
are modi
ed	 �

The bene
ts of the two improvements proposed in Sections � and �� are demonstrated in Annexes B
and C	

Conclusion

Nineteen changes have been proposed to improve the behaviour part of Lotos	

Some of these changes only concern syntactic and static semantic aspects� most of them are easy to
implement and fully upward compatible� the others are upward compatible if identi
ers in con�ict
with new keywords are renamed	

Some other changes also a�ect the existing dynamic semantics� especially when new operators are

��

introduced	 We believe that the advantages of the proposed improvements su�ce to justify the change
from existing Lotos	

All these proposals have been presented more or less independently	 Further work is needed to
integrate them together	

Acknowledgements

Acknowledgements are due to Arnaud F!evrier� Alain Kerbrat� Laurent Mounier� Elie Najm and
Jacques Sincennes for their useful comments on version �	� of this document	

Acknowledgements are due to Radu Mateescu for his useful comments on version �	� of this docu�
ment	

References

�Ber��� G!erard Berry	 Preemption and Concurrency	 In Proceedings of FSTTCS 	
� volume ���
of Lecture Notes in Computer Science� pages ��"��� Berlin� ����	 Springer Verlag	

�Bri� Ed Brinksma	 On the Design of Extended LOTOS� a Speci�cation Language for Open
Distributed Systems	 PhD thesis� University of Twente� November ��	

�CCI� CCITT	 Speci
cation and Description Language	 Recommendation Z	���� International
Consultative Committee for Telephony and Telegraphy� Gen#eve� March ��	

�Gar��a� Hubert Garavel	 On the Introduction of Gate Typing in E�LOTOS	 Rapport
SPECTRE ����� VERIMAG� Grenoble� February ����	 Annex D of ISO�IEC
JTC��SC���WG� N���� Revised Draft on Enhancements to LOTOS and Annex C of
ISO�IEC JTC��SC���WG� N���� Working Draft on Enhancements to LOTOS	

�Gar��b� Hubert Garavel	 Six improvements to the process part of LOTOS	 Rapport SPECTRE
����� VERIMAG� Grenoble� June ����	 Annex K of ISO�IEC JTC��SC���WG� N����
Working Draft on Enhancements to LOTOS	

�Gar��� Hubert Garavel	 On the Introduction of Gate Typing in E�LOTOS	 In Piotr Dembinski
and Marek Sredniawa� editors� Proceedings of the �th IFIP International Workshop on
Protocol Speci�cation� Testing and Veri�cation �Warsaw� Poland�� London� June ����	
IFIP� Chapman $ Hall	

�GS��� Hubert Garavel and Mihaela Sighireanu	 French�Romanian Comments regarding some
Proposed Features for E�LOTOS Data Types	 Rapport SPECTRE ������ VERIMAG�
Grenoble� December ����	 Input document �xxx� of the ISO�IEC JTC��SC���WG�Meet�
ing on Enhancements to LOTOS ��	��	��	�	��� Li#ege �Belgium�� December� �"��� ����	

�ISOa� ISO�IEC	 ESTELLE � A Formal Description Technique Based on an Extended State
Transition Model	 International Standard ����� International Organization for Standard�
ization � Information Processing Systems � Open Systems Interconnection� Gen#eve�
September ��	

�ISOb� ISO�IEC	 LOTOS � A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour	 International Standard ��� International Organization for

��

Standardization � Information Processing Systems � Open Systems Interconnection�
Gen#eve� September ��	

�JGL���� Alan Je�rey� Hubert Garavel� Guy Leduc� Charles Pecheur� and Mihaela Sighireanu	 To�
wards a proposal for datatypes in E�LOTOS	 Annex A of ISO�IEC JTC��SC���WG�
Second Working Draft on Enhancements to LOTOS	 Output document of the edition
meeting� Ottawa �Canada�� July� ��"��� ����� October ����	

�SG��� Mihaela Sighireanu and Hubert Garavel	 A Proposal for the Data Type Part of E�LOTOS
Applicable to the Formal Description of OSI and ODP Standards	 Rapport SPECTRE
������ VERIMAG� Grenoble� December ����	 Input document �xxx� of the ISO�IEC
JTC��SC���WG� Meeting on Enhancements to LOTOS ��	��	��	�	��� Li#ege �Belgium��
December� �"��� ����	

A Expressing the �if� operator in standard LOTOS

We give here a concrete syntax for the �if� operator de
ned in Section ��

behaviour�expression� ��	

�if�
value�expression� �then�
behaviour�expression�

� �elsif�
value�expression� �then�
behaviour�expression� ��

� �else�
behaviour�expression� �

�endif�

where �������� denotes a repeated occurrence zero or more times �meaning that there can be zero
or more �elsif� clauses� and where ������� denotes an optional occurrence �meaning that the �else�
clause is optional�	 An equivalent syntactic de
nition is the following�

behaviour�expression� ��	

�if�
value�expression� �then�
behaviour�expression�
elsif�part�list� �

elsif�part�list� ��	
elsif�part�
elsif�part�list�

�
else�part� �

elsif�part� ��	 �elsif�
value�expression� �then�
behaviour�expression� �

else�part� ��	 �else�
behaviour�expression�
endif�part�

�
endif�part� �

endif�part� ��	 �endif� �

The semantics of the �if� operator is expressed using a transformation function ����� that expands �if�
operators into combinations of guards and non�deterministic choices	 Therefore� any description with
�if� constructs can be translated into standard Lotos using a macro�processor that implements the
expansion function �����	 This function is de
ned as follows	 If B is a behaviour expression of the form�

��

if E� then B�

elsif E� then B�

elsif E� then B�

���

elsif En then Bn

else Bn��

endif

then ��B�� is equal to�

�

�E�� �� ���B����
��

�not �E�� and �E��� �� ���B����
��

�not �E�� and not �E�� and �E��� �� ���B����
��

���

��

�not �E�� and not �E�� and not �E�� ��� and not �En��� and �En�� �� ���Bn���
��

�not �E�� and not �E�� and not �E�� ��� and not �En��� and not �En�� �� ���Bn�����
�

Remark

If the �elsif� and�or �else� parts are missing in B� the corresponding expanded parts have to be
removed from ��B��	 �

This expansion scheme is not optimal because it generates multiple occurrences of expressions
E�� ���� En� therefore leading to multiple evaluations of the same expressions

�	

A better expansion scheme is shown below	 It stores the results of guard evaluation into �n % ��
boolean variables X�� ���� Xn �the names of which being di�erent from the names of all free variables
contained in E�� ���� En and B�� ���� Bn���	 In this improved scheme� ��B�� is equal to�

�Unless Lotos tools are smart enough to optimize those situations� which does not seem to be the case now

��

�

let X��bool 	 E� in

�

�X�� �� ���B����
��

�not �X��� ��

let X��bool 	 E� in

�

�X�� �� ���B����
��

�not �X��� ��

let X��bool 	 E� in

�

�X�� �� ���B����
��

�not �X��� ��

���

let Xn�bool 	 En in

�

�Xn� �� ���Bn���
��

�not �Xn�� �� ���Bn�����
�

���

�

�

�

�

Remark

There is another� equivalent way to de
ne the improved expansion function �����	 The expansion can
be performed in two successive steps�

� Step �� �if� operators with �elsif� parts are expanded into nested �if� operators without
�elsif� part� i	e	 the following behaviour expression�

if E� then B�

elsif E� then B�

elsif E� then B�

���

elsif En then Bn

else Bn��

endif

is expanded into�

��

if E� then B�

else

if E� then B�

else

if E� then B�

else

���

if En then Bn

else Bn��

endif

���

endif

endif

endif

� Step �� �if� operators without �elsif� part are translated into guarded commands� i	e	 the
following behaviour expression�

if E then B�

else B�

endif

is expanded into�

�

let X�bool 	 E in

�

�X� �� ���B����
��

�not �X�� �� ���B����
�

�

�

B A simpli�ed transport service

The example below is a highly simpli
ed description of a transport service written in Basic Lotos	
The original description is given
rst� followed by a much more concise description making use of
abbreviated gate parameter lists �see Section ��	

��

specification TRANSPORT�SERVICE �A�CONREQ� A�CONIND� A�CONRESP� A�CONCONF� A�DISREQ� A�DISIND�

B�CONREQ� B�CONIND� B�CONRESP� B�CONCONF� B�DISREQ� B�DISIND� � noexit

behaviour

hide CR� CI� DR� DI in

�

TRANSPORT�ENTITY �A�CONREQ� A�CONIND� A�CONRESP� A�CONCONF� A�DISREQ� A�DISIND� CR� CI� DR� DI�

��CR� CI� DR� DI��

TRANSPORT�ENTITY �B�CONREQ� B�CONIND� B�CONRESP� B�CONCONF� B�DISREQ� B�DISIND� CI� CR� DI� DR�

	

where

process TRANSPORT�ENTITY �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI� � noexit �

IDLE �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

where

process IDLE �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI� � noexit �

CONREQ�

CR�

�

WAIT �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

��

CI�

CONCONF�

OPEN �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

	

��

CI�

CONIND�

�

WAIT �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

��

CONRESP�

CR�

OPEN �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

	

endproc

process WAIT �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI� � noexit �

DISREQ�

DR�

FROZEN �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

��

DI�

DISIND�

DR�

IDLE �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

endproc

process OPEN �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI� � noexit �

WAIT �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

endproc

process FROZEN �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI� � noexit �

CI�

FROZEN �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

��

DI�

IDLE �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

endproc

endproc

endspec

��

specification TRANSPORT�SERVICE �A�CONREQ� A�CONIND� A�CONRESP� A�CONCONF� A�DISREQ� A�DISIND�

B�CONREQ� B�CONIND� B�CONRESP� B�CONCONF� B�DISREQ� B�DISIND� � noexit

behaviour

hide CR� CI� DR� DI in

�

TRANSPORT�ENTITY �A�CONREQ� A�CONIND� A�CONRESP� A�CONCONF� A�DISREQ� A�DISIND� CR� CI� DR� DI�

��CR� CI� DR� DI��

TRANSPORT�ENTITY �B�CONREQ� B�CONIND� B�CONRESP� B�CONCONF� B�DISREQ� B�DISIND� CI� CR� DI� DR�

	

where

process TRANSPORT�ENTITY �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI� � noexit �

IDLE �����

where

process IDLE ����� � noexit �

CONREQ�

CR�

�

WAIT �����

��

CI�

CONCONF�

OPEN �����

	

��

CI�

CONIND�

�

WAIT �����

��

CONRESP�

CR�

OPEN �����

	

endproc

process WAIT ����� � noexit �

DISREQ�

DR�

FROZEN �����

��

DI�

DISIND�

DR�

IDLE �����

endproc

process OPEN ����� � noexit �

WAIT �����

endproc

process FROZEN ����� � noexit �

CI�

FROZEN �����

��

DI�

IDLE �����

endproc

endproc

endspec

��

C A simpli�ed sliding window protocol

The example below is a simpli
ed sliding window protocol	 For conciseness purpose� the abstract data
type de
nitions are omitted	 The original description is given
rst� followed by a shorter description
making use of �if� constructs� abbreviated gate parameter lists and abbreviated value parameter lists
�see Sections �� �� and ���	

specification SLIDING�WINDOW�PROTOCOL �PUT� GET� � noexit

behaviour

hide SDT� RDT� RACK� SACK in

�

�

TRANSMITTER �PUT� SDT� SACK� �ZERO	

���

RECEIVER �GET� RDT� RACK� �ZERO	

	

��SDT� RDT� RACK� SACK��

�

LINE �SDT� RDT� �EMPTY	

���

LINE �RACK� SACK� �EMPTY	

	

	

where

process LINE �INPUT� OUTPUT� �R�REG	 � noexit �

INPUT N�NUM�

�

LINE �INPUT� OUTPUT� �INSERT �R� N		

��

LINE �INPUT� OUTPUT� �SHIFT �R		

	

��

�

choice E�ELM ��

�

let N�XNUM
 VALUE �R� E	 in

�not �VOID �N		� ��

OUTPUT ��CONV �N		�

�

LINE �INPUT� OUTPUT� �DELETE �R� E		

��

LINE �INPUT� OUTPUT� �R	

	

	

	

endproc

process TRANSMITTER �PUT� SDT� SACK� �BASE�NUM	 � noexit �

TRANSMIT �PUT� SDT� SACK� �BASE� �	

where

process TRANSMIT �PUT� SDT� SACK� �BASE�NUM� SIZE�NAT	 � noexit �

�SIZE � TWS� ��

PUT ��BASE � SIZE	�

SDT ��BASE � SIZE	�

TRANSMIT �PUT� SDT� SACK� �BASE� SIZE � �	

��

SACK N�NUM�

�

let OK�BOOL
 WINDOW �N� BASE� SIZE	 in

�

�

�OK� ��

TRANSMIT �PUT� SDT� SACK� �N � �� SIZE � ��N � �	 � BASE		

��

�not �OK	� ��

TRANSMIT �PUT� SDT� SACK� �BASE� SIZE	

	

	

��

�

choice N�NUM ��

�WINDOW �N� BASE� SIZE	� ��

i�

RETRANSMIT �PUT� SDT� SACK� �N� SIZE � �N � BASE		

	

endproc

process RETRANSMIT �PUT� SDT� SACK� �BASE�NUM� SIZE�NAT	 � noexit �

�SIZE � �� ��

SDT �BASE�

RETRANSMIT �PUT� SDT� SACK� �BASE � �� SIZE � �	

��

�SIZE

 �� ��

TRANSMIT �PUT� SDT� SACK� �BASE� SIZE	

endproc

endproc

process RECEIVER �GET� RDT� RACK� �BASE�NUM	 � noexit �

RECEIVE �GET� RDT� RACK� �BASE� RESET	

where

process RECEIVE �GET� RDT� RACK� �BASE�NUM� RECEIVED�TAB	 � noexit �

RDT N�NUM�

�

let OK�BOOL
 not �TEST �RECEIVED� N		 and WINDOW �N� BASE� RWS	 in

�

�OK� ��

DELIVER �GET� RDT� RACK� �BASE� SET �RECEIVED� N		

��

�not �OK	� ��

RACK ��ZERO � �BASE � ONE		�

RECEIVE �GET� RDT� RACK� �BASE� RECEIVED	

	

endproc

process DELIVER �GET� RDT� RACK� �BASE�NUM� RECEIVED�TAB	 � noexit �

let OK�BOOL
 TEST �RECEIVED� BASE	 in

�

�OK� ��

GET �BASE�

DELIVER �GET� RDT� RACK� �BASE � �� UNSET �RECEIVED� BASE		

��

�not �OK	� ��

RACK ��ZERO � �BASE � ONE		�

RECEIVE �GET� RDT� RACK� �BASE� RECEIVED	

	

endproc

endproc

endspec

��

specification SLIDING�WINDOW�PROTOCOL �PUT� GET� � noexit

behaviour

hide SDT� RDT� RACK� SACK in

�

�

TRANSMITTER �PUT� SDT� SACK� �ZERO	

���

RECEIVER �GET� RDT� RACK� �ZERO	

	

��SDT� RDT� RACK� SACK��

�

LINE �SDT� RDT� �EMPTY	

���

LINE �RACK� SACK� �EMPTY	

	

	

where

process LINE �INPUT� OUTPUT� �R�REG	 � noexit �

INPUT N�NUM�

�

LINE ����� �R �
 INSERT �R� N		

��

LINE ����� �R �
 SHIFT �R		

	

��

�

choice E�ELM ��

�

let N�XNUM
 VALUE �R� E	 in

�not �VOID �N		� ��

OUTPUT ��CONV �N		�

�

LINE ����� �R �
 DELETE �R� E		

��

LINE ����� ����	

	

	

	

endproc

process TRANSMITTER �PUT� SDT� SACK� �BASE�NUM	 � noexit �

TRANSMIT ����� �BASE� �	

where

process TRANSMIT ����� ���� SIZE�NAT	 � noexit �

�SIZE � TWS� ��

PUT ��BASE � SIZE	�

SDT ��BASE � SIZE	�

TRANSMIT ����� �SIZE �
 SIZE � � ���	

��

SACK N�NUM�

if WINDOW �N� BASE� SIZE	 then

TRANSMIT ����� �N �
 N � �� SIZE �
 SIZE � ��N � �	 � BASE		

else

TRANSMIT ����� ����	

endif

��

�

choice N�NUM ��

�WINDOW �N� BASE� SIZE	� ��

i�

��

RETRANSMIT ����� �BASE �
 N� SIZE �
 SIZE � �N � BASE		

	

endproc

process RETRANSMIT ����� ���� SIZE�NAT	 � noexit �

�SIZE � �� ��

SDT �BASE�

RETRANSMIT ����� �BASE �
 BASE � �� SIZE �
 SIZE � �	

��

�SIZE

 �� ��

TRANSMIT ����� ����	

endproc

endproc

process RECEIVER �GET� RDT� RACK� �BASE�NUM	 � noexit �

RECEIVE ����� �BASE� RESET	

where

process RECEIVE ����� ���� RECEIVED�TAB	 � noexit �

RDT N�NUM�

if not �TEST �RECEIVED� N		 and WINDOW �N� BASE� RWS	 then

DELIVER ����� �BASE� SET �RECEIVED� N		

else

RACK ��ZERO � �BASE � ONE		�

RECEIVE ����� ����	

endif

endproc

process DELIVER ����� ���� RECEIVED�TAB	 � noexit �

if TEST �RECEIVED� BASE	 then

GET �BASE�

DELIVER ����� �BASE �
 BASE � �� RECEIVED �
 UNSET �RECEIVED� BASE		

else

RACK ��ZERO � �BASE � ONE		�

RECEIVE ����� ����	

endif

endproc

endproc

endspec

��

