Contribution to the Design of Data Types in E-LOTOS

Version 1.0

Hubert GARAVEL*

INRIA Rhone-Alpes
VERIMAG — Miniparc-ZIRST
rue Lavoisier
38330 MONTBONNOT ST MARTIN
FRANCE
Tel : 4(33) 76 90 96 34
Fax : +(33) 76 41 36 20

E-mail : hubert.garavelQimag.fr

July, 17, 1995

Abstract

In the framework of the revision of the LoTos standard undertaken within ISO, we present
some considerations for improving the data type part of LoTos.

1 Introduction

E-LoTos users, as in most computer languages, one will have to specify two different things: data
structures, which define the types of values handled in the specifications, and algorithms, which
express computations involving these values.

Although some languages, like ASN.1, do not allow algorithms to be expressed, this is clearly not
acceptable for a formal description technique like E-LoTos.

In standard LoTos, due to the adoption of ACTONE, algorithms and data structures are not clearly
separated, which proves to confuse most users of the language. E-LoT0s should adopt a more prag-
matic style, closer to what exists in most computer languages. It is worth noticing that almost all
algebraic languages posterior to ACTONE (such as PLUss, Lra, etc.) carefully distinguish construc-
tors and defined functions.

2 Specification of data structures

When describing protocols, one needs, not only basic data types (bits, integers, etc.), but also so-
phisticated data structures, such as records, discriminated unions, lists, etc.

*This work has been supported in part by the European Commission, under project ISC-CAN-65 “EUCALYPTUS-2:
A European/Canadian LoTos Protocol Tool Set”.

Clearly, PASCAL-like types (as well as Ada-like or C-like types) are not appropriate for E-LoTos,
at least for two very strong reasons:

e As noticed during the COST 247 meeting in Warsaw (June 1995), nobody supports the in-
troduction of pointer types in E-LoTos, due to semantical issues such as: references to dead
objects, concurrent accesses to the same object by several parallel processes...

On the other hand, if pointers are forbidden, PASCAL-like without pointers are not sufficient
to express dynamic data structures, such as lists.

e Discriminated unions in PASCAL raise another painful semantic problem, when one tries to
access a field that does not correspond to the current value of the discriminant. Such violations
are a well-known way to subvert strong typing, thus compromising the correctness of the whole
specification.

In such case, the semantics of the field access 1s totally undefined. Clearly, such situations
should be prohibited, since they go against the functional style of the behaviour part of LoT0s
which — using appropriate syntactic and static semantic restrictions — always ensures that a
variable is initialized before it is accessed.

Ada improves on PASCAL by detecting these situations at the expense of run-time checking.
Unfortunately, this approach slows down the generated code.

The only solution for avoiding these semantic issues and preserving run-time efficiency is to use ML-
like recursive types or — which is equivalent — to use sorts generated by free constructors as in most
algebraic specification languages.

It is well-known that ML-like types with constructors are far superior to PASCAL-like records (see
for instance [Wat90, pp. 15 and 277]). Moreover, using such types seems to be the only way to achieve
a great degree of compatibility with existing ACTONE. This approach has already been promoted
for E-LoTos, for instance in [Pec94].

To express such sorts, several syntaxes (borrowed either from functional languages like ML or from
algebraic languages) are plausible. However, several common-sense requirements should be consid-
ered:

1. The constructors of a given sort should be declared together with this sort, in a close syntactic
proximity, instead of being disseminated in the whole LoTo0s description, as it is currently
permitted in LoTos.

This should improve the readability of E-LoTos descriptions. It would also forbid to modify
existing (or predefined) type libraries by adding new constructors to sorts that are already

defined.

2. Tt should be possible to name the arguments (i.e., formal parameters) of constructors, which
simply means that it should be possible to name the fields of records and discriminated unions.

This is not the case in standard LoTo0s, where the arguments of an operation are only defined
by their sorts. As LoTo0S is supposed to be a specification language, this is an clear drawback.
For instance, in the following example taken from the formal description in LoTo0Ss of the OSI95
enhanced transport service developed at the University of Liege, we see:

(*

The failure probability parameters have the following 4-tuple

structure: Failures = Prob x Prob x Prob x Prob, where the

arguments respectively represent the failure probabilities

termed TC establishment, transfer, TC resilience, and TC release

*)

type TCFailureProbabilities is Probability
sorts
Failures
opns
Failures : Prob, Prob, Prob, Prob -> Failures

endtype
in which the meaning of the four arguments of constructor Failures cannot been explained
but with a comment. The following declaration would be certainly preferable:

type TCFailureProbabilities is Probability
sorts
Failures
opns
Failures (TCEstablishment : Prob,
Transfer : Prob,
TCResilience : Prob,
TCRelease : Prob) —> Failures

endtype
Giving names to the formal parameters may allow to define implicitly projection functions,

which allow to consult or modify the fields of the record, as well as short-hand notations to
handle values of record types.

Moreover, this would also be closer to function declarations in most languages (either algorith-
mic or functional) and would also be aligned with process declarations in the behaviour part of
LoTos itself.

Keeping in mind these requirements, we have basically two possible syntaxes, as shown below in the
case of a boolean list. First, we may choose a ML-like syntax, similar to the one proposed in [Pec94]
but modified so as to name the formal parameters!:

sort LIST is
NIL |
CONS (ITEM:BOOL, NEXT:LIST)

Note: in this case, the equivalent ML syntax would be:

datatype LIST =
NIL of UNIT |
CONS of INT * LIST

Another possible syntax could be the following one, which is compatible with the syntax of process
definitions:
sort LIST is
constructor NIL : LIST
constructor CONS (ITEM:BOOL, NEXT:LIST) : LIST
endsort

If necessary for backward compatibility reasons, the old AcTONE syntax (with unnamed parameters)
could be also admitted in E-LoTos:

1The “|” symbol could be replaced with a “[1” symbol, in order to express a choice between several possibilities
and in order to avoid the introduction of a new keyword

sort LIST is

constructor NIL : -> LIST

constructor CONS : BOOL, LIST -> LIST
endsort

3 Specification of computations

During the E-L0oTo0S interim meeting in Paris, it was decided to use a functional style for the data
part of E-LoTos.

3.1 Definition of functions

As a first consequence of this design choice, the definition of an E-LoTos function (i.e., non-
constructor) should be concentrated in a single place, instead of being defined in several equations
disseminated in the whole description, as it can happen with LoTos. Therefore, a plausible syntax
(aligned with the one of process definitions) could be:

function F (X:BOOL, Y, Z:INT) : INT is
(* body of function F *)
endfunc

The definition of F may take several forms:

e It may be “external”, meaning that an implementation of F must be available in some description
or programming language.

e It can be defined “functionally”, as a value expression:

function F (X:BOOL, Y, Z:INT) : INT is
if X = false then Y
elsif Y = Z then Y
else O
endif
endfunc

e It may be defined as a set of algebraic equations, in the style of ACTONE if one wants to retain
a great level of compatibility with standard LoTos:

function F (X:BOOL, Y, Z:INT) : INT is
F (false, Y, Z) = Y;
Y=2Z =>F (true, Y, Z)
Y <> Z =>F (true, Y, Z)
endfunc

Y;
0;

In such case, whether the semantics should be the initial algebra semantics or a rewrite rule
semantics is an open debate. The initial algebra semantics might have problems to coexist with
functional definitions.

In the sequel, we concentrate on value expressions, which are likely to be the main way to define
functions.

3.2 Syntax of expressions

The following terminal (i.e., lexical) symbols will be used:

| symbol | meaning |
P Fy, Py, ... function identifier
C,C1,Cs5, ... | constructor identifier
S, 51,59, ... sort identifiers
X, X1, Xy, ... | variable identifier
The following non-terminal (i.e., syntactic) symbols will be defined:
| symbol | meaning |
V, V1, Va, ... | value expression
P, Py, Ps, ... | pattern expression

In standard LoTos, the syntactic definition of value expression is rather limited:

|
|
| Vo of S
| (Vo)

We propose to generalize the notion of value expression, by introducing new constructs (“let”, “if”,
“case”, ...) that will increase the expressiveness and will also create a symmetry between value
expressions and behaviour expressions.

Pattern expressions are a limited form of value expressions, which are used in pattern-matching
context. A pattern expression has the following syntax:

P =X
| X:S
| any S
| C(P1, ..., Pn)
| PyofsS
| (Po)

Value expressions generalize the value expressions that exist in LoT0s. They have the following
syntax:

3.3

Vi=Va
Vi<>W

Vo of S

Vi andthen V;
V1 orelse V5

if V, then Vj
elsif V; then V/

elsif V,, then V,
else V.,
endif

| case Vj in

Pl[Vl]_ > Vll

P, [Vo]— > V!

endcase
| assert Vi,...,V, in 1}
| let P, =Vi,...P, =V, in V}
| (Vo)

Static semantics of expressions (1): binding

All occurrences of sort identifiers in pattern or value expressions are use-occurrences” that shall
be bound to the definition of the corresponding sort.

All occurrences of constructor identifiers in pattern or value expressions are use-occurrences
that shall be bound to the definition of the corresponding constructor (possibly with some
overloading resolution).

All occurrences of function identifiers in pattern or value expressions are use-occurrences that
shall be bound to the definition of the corresponding function (possibly with some overloading
resolution).

All occurrences of variable identifiers in value expressions are use-occurrences that shall be bound
to the definition of the corresponding variable.

Occurrences of variable identifies in pattern expressions can be either use-occurrences or def-
occurrences® , depending on the context.

More precisely, the set of variables declared in a pattern expression P, noted vars{P}, is defined as
follows:

2also called place-marking occurrences in [ISO88]
3also called binding occurrences in [ISO88]

vars{X} = @
vars{X : S} {X}

vars{any S} @

vars{C(P1,..., Pn)} = wvars{Pi}W..Wvars{P,}
vars{Py of S} = wars{Py}
vars{(Py)} = wars{Py}

where the operator “@” denotes the union of sets the intersection of which is empty. If the intersection
is not empty (which could occur in a pattern expressions such as “C(X : S, X : S)” for instance),
this is a static semantics error.

For a given pattern expression P;, the variables of vars{P;} have the following scope:

e These variables are not visible in P;. For instance, in the following pattern expression “C(X :
S,Y : 5, X+Y)”, variables X and Y occurring in “X +7Y” shall not be bound to the definitions
“X 057 and “Y : 57 contained in P;.

o If P; occurs in some clause “P;[Vij]— > V/” contained in “case” expression, these variables
are only visible in sub-expressions V; and V. They mask all variables with the same names,
possibly defined in enclosing scopes.

e If P; occurs in a “let” expression of the form “let P = Vi, ..., P, = V,, in 14", these variables
are only visible in V. They mask all variables with the same names, possibly defined in enclosing
scopes.

3.4 Static semantics of expressions (2): typing

The result sort of a pattern expression P, noted sort{P}, is defined as follows:

sort{X} = sort of variable X
sort{X : S} = S

sort{any S} =
sort{C(P1,..., Py)} =
sort{Py of S} =
sort{(Py)} =

S

sort of the result of constructor C'
S

sort{ Py}

The result sort of a value expression V| noted sort{V}, is defined as follows:

sort{X} =
sort{C(V1..Vp)} =

sort{ F(V1..V)} =

sort of variable X
sort of the result of constructor C'
sort of the result of function F

sort{Vi = Va} = bool

sort{Vi <> Vo} = ool
sort{Vp of S} = S

sort{Vy andthen Va} = bool

sort{V1 orelse Vo} = bool
sort{if Vo then Vj...} = sort{V]}
sort{case Vy in..— > V/...} = sort{V/}
sort{assert Vi,...,V, in o} = sort{V}
sort{let P, =V1,...., P, =V, in o} = sort{Vo}
sort{(Vo)} = sort{Vp}

There are additional type-checking constraints:

3.5

In a pattern expression of the form “C'(Py, ..., Py)”, each sort{P;} must be equal to the sort of
the 2-th argument of constructor C.

In a pattern expression of the form “Py of 5”7, one must have sort{Py} = 5.

In a value expression of the form “C(V1, ..., V,,)”, each sort{V;} must be equal to the sort of the
¢-th argument of constructor C.

In a value expression of the form “F(V1,...,V,,)”, each sort{V;} must be equal to the sort of the
t-th argument of constructor F.

In a value expression of the form “V; = V5”7 or “V} <> V5”, one must have sort{V}} = sort{Va2}.
In a value expression of the form “V; of S”, one must have sort{V5} = S.

In a value expression of the form “V; andthen V5” or “V; orelse V5”, one must have

sort{V1} = sort{Va} = bool.

In an “if” value expression, one must have sort{Vy} = sort{V1} = ... = sort{V,} = bool and
sort{Vy} = sort{V]} = ... = sort{V,!} = sort{Vo11}.

In a “case” value expression, one must have sort{Vy} = sort{P1} = ... = sort{P,}, and
sort{Vi} = ... = sort{V,} = bool, and sort{V]} = ... = sort{V}.

In an “assert” value expression, one must have sort{Vi} = ... = sort{V,,} = bool.

In a “let” value expression, for all i, on must have sort{P;} = sort{V;}.

Dynamic semantics of expressions

Basically, the dynamic semantics is governed by the following principles:

Pattern expressions are not meant to be evaluated: they only act as filters for pattern-matching
and unification.

As in standard LoTos, value expressions are meant to be evaluated, provided that free variables
are bound to known values.

e Asinstandard LoTos, the evaluation of a given value expression leads to a unique, deterministic
result?.

e Unlike LoTos, which is based on initial algebra semantics, the proposed evaluation strategy is
essentially functional. It combines different evaluation strategies:

— Any use-occurrence of a variable in a pattern or value expression is systematically replaced
by the value bound to this variable.

— In most cases, call-by-value (also, eager evaluation) is used. For instance, when evaluat-
ing value expressions such as “C(V1...V,,)” or “F(11...V,,)”, sub-expressions V1, ...,V are
evaluated first (in an undefined order).

— However, in some other cases, call-by-need (also, lazy evaluation) is necessary. This ob-
viously happens with value expressions such as “andthen”, “orelse”, “if’, and “case”.
Due to these cases, the semantics cannot be fully strict.

— Also, some order of evaluation must be respected. For instance, sub-expressions Vi, ..., V,,
occurring in a “let” or “assert” expression must be evaluated before sub-expression Vj is
evaluated.

— Finally, some value expressions (namely “let” and “case”) rely on pattern-matching and

even on conditional rewriting with priority.

e There is a special value, noted “.L”, which denotes a run-time error. This value is returned when
the evaluation of a value expression fails®>. There are several possible reasons for the evaluation
to fail:

— Entering into a non-terminating (diverging) computation, such as evaluating F'(0) for a
function F' defined as F/(X) := F(X + 1);
— Failing to find an appropriate pattern when evaluating a “case” or a “let” value expression,;
— Obtaining a false boolean guard when evaluating an “assert” expression.
Formally, the evaluation of a given expression V' in a memory environment M (i.e., a partial ap-
plication that maps a set of variables to their corresponding values) could be defined as a function

eval{V, M}. The result returned by this function is either a value expression containing only con-
structors, or the undefined value L.

In the sequel, we do not define formally eval{V, M}, but we explain instead the meaning of some
value expressions.

3.6 Informal description of the pattern-matching mechanism

The pattern-matching mechanism can be described as follows:

e Pattern “X” matches a single value, which is the value of variable X
e Pattern “X :.S” matches any value of sort S and binds this value to the (new) variable X

e Pattern “any S” matches any value of sort S

4For the sake of simplicity, non-deterministic expressions, such as “any bool”, are not accepted; otherwise, evalu-
ating an expression would give birth to a transition system of all possible results. If necessary, the behaviour part can
be used to describe such specific situations.

5Even in this case, the evaluation leads to a deterministic result.

Pattern “C(Py, ..., P,)” matches any value expression of the form C(v1,...,v,) such that each

sub-pattern P; also matches the sub-value v;.

Pattern “FP, of S” has the same effect as pattern “Py”

Pattern “(Py)” has the same effect as pattern “Py”

It is worth noticing that this mechanism is closely related to the notion of value matching used in

the behaviour part of LoTo0s, when it is necessary to match an

3.7

“1”_offer against an “?”-offer.

Informal description of the “case” operator

The semantics of a given “case” expression V of the form:

case 14 in

Pl[Vl]— > Vll

P,[Va]—> V)

endcase

can be explained as follows:

First, Vy 1s evaluated, leading to a result vg. If vg is equal to L, then V evaluates also to L
(strict semantics).

Otherwise, the algorithm searches for the smallest i € {1,...,n} such that pattern P; matches
vy and such that the boolean guard V; (if present) evaluates to true.

If no such ¢ can be found, or if some guard V; evaluates to L, then V evaluates also to L (strict
sermantics).

If some ¢ is found, then V' is evaluated. V evaluates to the result of V/.

When values V; and V;/ are evaluated, the variables of vars{F;} (defined in P; and used in V;
and V') are replaced by their values.

Note: there is no need for a “otherwise” or “default’ clause before “endcase” to order to
all catch missing cases. This can be done by having the last pattern P, be “any S”, where S
is equal to sort{V}.

For instance, the boolean function AND could be defined in many different ways using the proposed
“case” constructs:

function AND (X, Y:BOOL) : BOOL is
case X in
true > Y
false -> false
endcase
endfunc

function AND (X, Y:BOOL) : BOOL is
case X in
true -> Y
any bool -> false

10

endcase
endfunc

function AND (X, Y:BOOL) : BOOL is
case X in
true > Y
Z:bool —-> false
endcase
endfunc

function AND (X, Y:BOOL) : BOOL is
case X in
Z:bool [Z = truel —> Y;
Z:bool [Z = false] -> Z
endcase

endfunc

function AND (X, Y:BOOL) : BOOL is
case X in
true -> case Y in
true -> true
false —> false
endcase
false -> false
endcase
endfunc

The proposed “case” construct is extremely powerful, since it combines different mechanisms into a
single, unified framework:

e Keeping in mind that all existing LoTo0S tools implement ACTONE equations as rewrite rules,
it is easy to translate sets of equations (aka rewrite rules) into “case” expressions.

Due the possibility to declare variables in patterns (i.e., the “X : S” patterns), “forall” clauses
are no longer necessary to declare quantified variables.

The proposed “case” is more powerful than current (rewrite-oriented dialects of) AcTONE,
because 1t allows “case” expressions to be arbitrarily nested, which is not possible with sets
of rewrite rules. To express nested “cases” in ACTONE, it is necessary to define auxiliary
functions, which proves to be tedious in practice.

e This “case” construct is also more powerful than the two similar constructs found in ML:

— ML has a “case” construct (with the “” symbol to denote the “otherwise” clause)
[Wat90, p. 33], but it only applies to constant values (i.e., a very limited form of pattern-
matching).

— ML allows functions to be defined by pattern-matching on the structure of their arguments
[Wat90, p. 233]. However, pattern-matching constructs

cannot be nested,
are limited (a single pattern matching per function definition),

*
*
x only allow “one level” simple-patterns,
*

do not have an “otherwise” clause
)

11

* do not allow boolean guards®.

Our proposed “case” construct generalizes both ML constructs, none of which has an equivalent
expressiveness. For instance, our construct allows to define simply a function which tests
whether the size of a list is greater or equal to 2 (which is not so easy in ML):

function SIZE_2 (L:LIST) : BOOL is
case L in
CONS (any ITEM, CONS (any ITEM, any LIST)) -> true
any LIST -> false
endcase
endfunc

3.8 Informal description of the “assert” operator

e All boolean guards V7, ..., V,, are evaluated. If at least one of them evaluates to L or to false,
then V evaluates to L.

e If each V; evaluates to true, then V4 is evaluated. The result obtained for V4 is also the result

of V.

Note: the expression “assert false in V7, where V is any value expression, provides an explicit
representation for the undefined value L.

The “assert” operator has several roles:
e It can be used to express pre-conditions on the arguments of a (partial) function:

function PRED (X : NAT) : NAT is
asssert X > 0 in
X -1
endfunc

function MODULO (X, Y: INT) : INT is
assert Y <> 0 in

endfunc

e It can also express post-conditions relating the result returned by a function:

function SUM (X, Y : NAT) : NAT is
let RESULT:NAT = X + Y in
assert RESULT >= X, RESULT >= Y in
RESULT
endfunc

3.9 Informal description of the “let” operator
The semantics of a given “let” expression V of the form:
let P1 = Vl,...,PnI Vn in Vo

can be explained as follows:

6 Therefore, translating ACTONE sets of conditional equations in ML might be difficult.

12

e First, all expressions V7, ..., V,, are evaluated. If at least one of them evaluates to L, then V'
also evaluates to L (strict semantics).

e Otherwise, the obtained results are filtered against the respective patterns Py, ..., P,,. If at least,
one matching fails, then V evaluates to L.

e Otherwise, V is evaluated by replacing all free variables in vars{P,} & ... vars{P,} by their
corresponding values. The result obtained for Vj is also the result of V.

Clearly:

e Having a “let” construct in value expressions is very useful since it allows to avoid redundant
computations, by storing intermediate results in auxiliary variables. A “let” construct also
exists in ML. In AcTONE, there is no “let” construct, it is often necessary to define auxiliary
functions, which obscures the data type descriptions.

e The “let” construct which already exist in the behaviour part of LOTOSs is a particular case of
the proposed “let” construct. This particular case 1s obtained when each pattern P; has the
form X; : S;.

Note: Rigorously speaking, there is a form of “let” with multiple variables (such as in
“let X1, X5 : S in ...”) which can no longer be expressed with the proposed construct. But
this form of “let” 1s completely useless.

e The proposed “let” construct is also much more general, since it allows value destructuration,
thus avoiding to use explicit projection functions. In the following example:

let Failures (TCEstablishment : Prob,
Transfer : Prob,
TCResilience : Prob,
TCRelease : Prob)
=V in
TCEstablishment * Transfer * TCResilience * TCRelease

the value expression V will be evaluated, leading to a result of the form:

Failures (p1,p2,P3, p4)

The values p1,p2,p3, pa will be extracted and respectively assigned to the free variables
TCEstablishment, Transfer, TCResilience and TCRelease.

Note: reasonably, there should be at least one free variable in each vars{P;}.

References

[ISO88] ISO. LOTOS — A Formal Description Technique Based on the Temporal Ordering of Ob-
servational Behaviour. International Standard 8807, International Organization for Stan-
dardization — Information Processing Systems — Open Systems Interconnection, Genéve,

September 1988.

[Pec94] Charles Pecheur. Extended data types. Technical Report, University of Liége, July 1994.
Annex H of ISO/IEC JTC1/SC21/WG1 N1349 Working Draft on Enhancements to LOTOS.

[Wat90] David A. Watt. Programming Language Concepts and Paradigms. International Series in
Computer Science. Prentice-Hall, New-York, 1990.

13

