
Contribution to the Design of Data Types in E�LOTOS

Version ���

Hubert GARAVEL�

INRIA Rh�one�Alpes
VERIMAG � Miniparc�ZIRST

rue Lavoisier
����� MONTBONNOT ST MARTIN

FRANCE
Tel � �	��
 �� � � ��
Fax � �	��
 �� �� �� ��

E�mail � hubert�garavel�imag�fr

July� ��� ��

Abstract

In the framework of the revision of the Lotos standard undertaken within ISO� we present

some considerations for improving the data type part of Lotos�

� Introduction

E�Lotos users� as in most computer languages� one will have to specify two di�erent things� data

structures� which de�ne the types of values handled in the speci�cations� and algorithms� which
express computations involving these values�

Although some languages� like ASN��� do not allow algorithms to be expressed� this is clearly not
acceptable for a formal description technique like E�Lotos�

In standard Lotos� due to the adoption of ActOne� algorithms and data structures are not clearly
separated� which proves to confuse most users of the language� E�Lotos should adopt a more prag�
matic style� closer to what exists in most computer languages� It is worth noticing that almost all
algebraic languages posterior to ActOne �such as Pluss� Lpg� etc�	 carefully distinguish construc�

tors and de�ned functions�

� Speci�cation of data structures

When describing protocols� one needs� not only basic data types �bits� integers� etc�	� but also so�
phisticated data structures� such as records� discriminated unions� lists� etc�

�This work has been supported in part by the EuropeanCommission� under project ISC�CAN��� �EUCALYPTUS���
A European�Canadian Lotos Protocol Tool Set	


�



Clearly� PASCAL�like types �as well as Ada�like or C�like types	 are not appropriate for E�Lotos�
at least for two very strong reasons�

� As noticed during the COST 
�� meeting in Warsaw �June ��	� nobody supports the in�
troduction of pointer types in E�Lotos� due to semantical issues such as� references to dead
objects� concurrent accesses to the same object by several parallel processes���

On the other hand� if pointers are forbidden� PASCAL�like without pointers are not su�cient
to express dynamic data structures� such as lists�

� Discriminated unions in PASCAL raise another painful semantic problem� when one tries to
access a �eld that does not correspond to the current value of the discriminant� Such violations
are a well�known way to subvert strong typing� thus compromising the correctness of the whole
speci�cation�

In such case� the semantics of the �eld access is totally unde�ned� Clearly� such situations
should be prohibited� since they go against the functional style of the behaviour part of Lotos
which � using appropriate syntactic and static semantic restrictions � always ensures that a
variable is initialized before it is accessed�

Ada improves on PASCAL by detecting these situations at the expense of run�time checking�
Unfortunately� this approach slows down the generated code�

The only solution for avoiding these semantic issues and preserving run�time e�ciency is to use ML�
like recursive types or � which is equivalent � to use sorts generated by free constructors as in most
algebraic speci�cation languages�

It is well�known that ML�like types with constructors are far superior to PASCAL�like records �see
for instance �Wat�� pp� �� and 
���	� Moreover� using such types seems to be the only way to achieve
a great degree of compatibility with existing ActOne� This approach has already been promoted
for E�Lotos� for instance in �Pec���

To express such sorts� several syntaxes �borrowed either from functional languages like ML or from
algebraic languages	 are plausible� However� several common�sense requirements should be consid�
ered�

�� The constructors of a given sort should be declared together with this sort� in a close syntactic
proximity� instead of being disseminated in the whole Lotos description� as it is currently
permitted in Lotos�

This should improve the readability of E�Lotos descriptions� It would also forbid to modify
existing �or prede�ned	 type libraries by adding new constructors to sorts that are already
de�ned�


� It should be possible to name the arguments �i�e�� formal parameters	 of constructors� which
simply means that it should be possible to name the �elds of records and discriminated unions�

This is not the case in standard Lotos� where the arguments of an operation are only de�ned
by their sorts� As Lotos is supposed to be a speci�cation language� this is an clear drawback�
For instance� in the following example taken from the formal description in Lotos of the OSI�
enhanced transport service developed at the University of Li�ege� we see�

��

The failure probability parameters have the following ��tuple

structure� Failures � Prob x Prob x Prob x Prob� where the

arguments respectively represent the failure probabilities

termed TC establishment� transfer� TC resilience� and TC release

��






type TCFailureProbabilities is Probability

sorts

Failures

opns

Failures � Prob� Prob� Prob� Prob �	 Failures






endtype

in which the meaning of the four arguments of constructor Failures cannot been explained
but with a comment� The following declaration would be certainly preferable�

type TCFailureProbabilities is Probability

sorts

Failures

opns

Failures �TCEstablishment � Prob�

Transfer � Prob�

TCResilience � Prob�

TCRelease � Prob� �	 Failures






endtype

Giving names to the formal parameters may allow to de�ne implicitly projection functions�
which allow to consult or modify the �elds of the record� as well as short�hand notations to
handle values of record types�

Moreover� this would also be closer to function declarations in most languages �either algorith�
mic or functional	 and would also be aligned with process declarations in the behaviour part of
Lotos itself�

Keeping in mind these requirements� we have basically two possible syntaxes� as shown below in the
case of a boolean list� First� we may choose a ML�like syntax� similar to the one proposed in �Pec��
but modi�ed so as to name the formal parameters��

sort LIST is

NIL �

CONS �ITEM�BOOL� NEXT�LIST�

Note� in this case� the equivalent ML syntax would be�

datatype LIST �

NIL of UNIT �

CONS of INT � LIST

Another possible syntax could be the following one� which is compatible with the syntax of process
de�nitions�

sort LIST is

constructor NIL � LIST

constructor CONS �ITEM�BOOL� NEXT�LIST� � LIST

endsort

If necessary for backward compatibility reasons� the old ActOne syntax �with unnamed parameters	
could be also admitted in E�Lotos�

�The ��	 symbol could be replaced with a ���	 symbol� in order to express a choice between several possibilities
and in order to avoid the introduction of a new keyword

�



sort LIST is

constructor NIL � �	 LIST

constructor CONS � BOOL� LIST �	 LIST

endsort

� Speci�cation of computations

During the E�Lotos interim meeting in Paris� it was decided to use a functional style for the data
part of E�Lotos�

��� De�nition of functions

As a �rst consequence of this design choice� the de�nition of an E�Lotos function �i�e�� non�
constructor	 should be concentrated in a single place� instead of being de�ned in several equations
disseminated in the whole description� as it can happen with Lotos� Therefore� a plausible syntax
�aligned with the one of process de�nitions	 could be�

function F �X�BOOL� Y� Z�INT� � INT is

�� body of function F ��

endfunc

The de�nition of F may take several forms�

� It may be �external�� meaning that an implementation of Fmust be available in some description
or programming language�

� It can be de�ned �functionally�� as a value expression�

function F �X�BOOL� Y� Z�INT� � INT is

if X � false then Y

elsif Y � Z then Y

else �

endif

endfunc

� It may be de�ned as a set of algebraic equations� in the style of ActOne if one wants to retain
a great level of compatibility with standard Lotos�

function F �X�BOOL� Y� Z�INT� � INT is

F �false� Y� Z� � Y

Y � Z �	 F �true� Y� Z� � Y

Y �	 Z �	 F �true� Y� Z� � �

endfunc

In such case� whether the semantics should be the initial algebra semantics or a rewrite rule
semantics is an open debate� The initial algebra semantics might have problems to coexist with
functional de�nitions�

In the sequel� we concentrate on value expressions� which are likely to be the main way to de�ne
functions�

�



��� Syntax of expressions

The following terminal �i�e�� lexical	 symbols will be used�

symbol meaning

F� F�� F�� ��� function identi�er
C�C�� C�� ��� constructor identi�er
S� S�� S�� ��� sort identi�ers
X�X�� X�� ��� variable identi�er

The following non�terminal �i�e�� syntactic	 symbols will be de�ned�

symbol meaning

V� V�� V�� ��� value expression
P� P�� P�� ��� pattern expression

In standard Lotos� the syntactic de�nition of value expression is rather limited�

V ��� X

j F �V�� ���� Vn	

j V� � V�

j V� of S

j �V�	

We propose to generalize the notion of value expression� by introducing new constructs ��let�� �if��
�case�� ���	 that will increase the expressiveness and will also create a symmetry between value
expressions and behaviour expressions�

Pattern expressions are a limited form of value expressions� which are used in pattern�matching
context� A pattern expression has the following syntax�

P ��� X

j X � S

j any S

j C�P�� ���� Pn	

j P� of S

j �P�	

Value expressions generalize the value expressions that exist in Lotos� They have the following
syntax�

V ��� X

j C�V����Vn	

j F �V����Vn	

�



j V� � V�

j V� �� V�

j V� of S

j V� andthen V�

j V� orelse V�

j if V� then V ��

elsif V� then V ��

���

elsif Vn then V �n

else V �
n��

endif

j case V� in

P��V��� � V �
�

���

Pn�Vn�� � V �
n

endcase

j assert V�� ���� Vn in V�

j let P� � V�� ���� Pn � Vn in V�

j �V�	

��� Static semantics of expressions ���� binding

� All occurrences of sort identi�ers in pattern or value expressions are use�occurrences� that shall
be bound to the de�nition of the corresponding sort�

� All occurrences of constructor identi�ers in pattern or value expressions are use�occurrences
that shall be bound to the de�nition of the corresponding constructor �possibly with some
overloading resolution	�

� All occurrences of function identi�ers in pattern or value expressions are use�occurrences that
shall be bound to the de�nition of the corresponding function �possibly with some overloading
resolution	�

� All occurrences of variable identi�ers in value expressions are use�occurrences that shall be bound
to the de�nition of the corresponding variable�

� Occurrences of variable identi�es in pattern expressions can be either use�occurrences or def �
occurrences� � depending on the context�

More precisely� the set of variables declared in a pattern expression P � noted varsfPg� is de�ned as
follows�

�also called place�marking occurrences in �ISO��
�also called binding occurrences in �ISO��

�



varsfXg � ��

varsfX � Sg � fXg

varsfany Sg � ��

varsfC�P�� ���� Pn	g � varsfP�g � ���� varsfPng

varsfP� of Sg � varsfP�g

varsf�P�	g � varsfP�g

where the operator ��� denotes the union of sets the intersection of which is empty� If the intersection
is not empty �which could occur in a pattern expressions such as �C�X � S�X � S	� for instance	�
this is a static semantics error�

For a given pattern expression Pi� the variables of varsfPig have the following scope�

� These variables are not visible in Pi� For instance� in the following pattern expression �C�X �
S� Y � S�X�Y 	�� variables X and Y occurring in �X�Y � shall not be bound to the de�nitions
�X � S� and �Y � S� contained in Pi�

� If Pi occurs in some clause �Pi�Vi�� � V �
i
� contained in �case� expression� these variables

are only visible in sub�expressions Vi and V �
i
� They mask all variables with the same names�

possibly de�ned in enclosing scopes�

� If Pi occurs in a �let� expression of the form �let P� � V�� ���� Pn � Vn in V��� these variables
are only visible in V�� They mask all variables with the same names� possibly de�ned in enclosing
scopes�

��	 Static semantics of expressions ���� typing

The result sort of a pattern expression P � noted sortfPg� is de�ned as follows�

sortfXg � sort of variable X

sortfX � Sg � S

sortfany Sg � S

sortfC�P�� ���� Pn	g � sort of the result of constructor C

sortfP� of Sg � S

sortf�P�	g � sortfP�g

The result sort of a value expression V � noted sortfV g� is de�ned as follows�

sortfXg � sort of variable X

sortfC�V����Vn	g � sort of the result of constructor C

sortfF �V����Vn	g � sort of the result of function F

�



sortfV� � V�g � bool

sortfV� �� V�g � bool

sortfV� of Sg � S

sortfV� andthen V�g � bool

sortfV� orelse V�g � bool

sortfif V� then V �� ���g � sortfV ��g

sortfcase V� in���� � V �� ���g � sortfV ��g

sortfassert V�� ���� Vn in V�g � sortfV�g

sortflet P� � V�� ���� Pn � Vn in V�g � sortfV�g

sortf�V�	g � sortfV�g

There are additional type�checking constraints�

� In a pattern expression of the form �C�P�� ���� Pn	�� each sortfPig must be equal to the sort of
the i�th argument of constructor C�

� In a pattern expression of the form �P� of S�� one must have sortfP�g � S�

� In a value expression of the form �C�V�� ���� Vn	�� each sortfVig must be equal to the sort of the
i�th argument of constructor C�

� In a value expression of the form �F �V�� ���� Vn	�� each sortfVig must be equal to the sort of the
i�th argument of constructor F�

� In a value expression of the form �V� � V�� or �V� �� V��� one must have sortfV�g � sortfV�g�

� In a value expression of the form �V� of S�� one must have sortfV�g � S�

� In a value expression of the form �V� andthen V�� or �V� orelse V��� one must have
sortfV�g � sortfV�g � bool �

� In an �if� value expression� one must have sortfV�g � sortfV�g � ��� � sortfVng � bool and
sortfV ��g � sortfV ��g � ��� � sortfV �

n
g � sortfVn��g�

� In a �case� value expression� one must have sortfV�g � sortfP�g � ��� � sortfPng� and
sortfV�g � ��� � sortfVng � bool � and sortfV ��g � ��� � sortfV �

n
g�

� In an �assert� value expression� one must have sortfV�g � ��� � sortfVng � bool �

� In a �let� value expression� for all i� on must have sortfPig � sortfVig�

��
 Dynamic semantics of expressions

Basically� the dynamic semantics is governed by the following principles�

� Pattern expressions are not meant to be evaluated� they only act as �lters for pattern�matching
and uni�cation�

� As in standard Lotos� value expressions are meant to be evaluated� provided that free variables
are bound to known values�

�



� As in standard Lotos� the evaluation of a given value expression leads to a unique� deterministic
result��

� Unlike Lotos� which is based on initial algebra semantics� the proposed evaluation strategy is
essentially functional� It combines di�erent evaluation strategies�

� Any use�occurrence of a variable in a pattern or value expression is systematically replaced
by the value bound to this variable�

� In most cases� call�by�value �also� eager evaluation	 is used� For instance� when evaluat�
ing value expressions such as �C�V����Vn	� or �F �V����Vn	�� sub�expressions V�� ���� Vn are
evaluated �rst �in an unde�ned order	�

� However� in some other cases� call�by�need �also� lazy evaluation	 is necessary� This ob�
viously happens with value expressions such as �andthen�� �orelse�� �if�� and �case��
Due to these cases� the semantics cannot be fully strict�

� Also� some order of evaluation must be respected� For instance� sub�expressions V�� ���� Vn
occurring in a �let� or �assert� expression must be evaluated before sub�expression V� is
evaluated�

� Finally� some value expressions �namely �let� and �case�	 rely on pattern�matching and
even on conditional rewriting with priority�

� There is a special value� noted ���� which denotes a run�time error� This value is returned when
the evaluation of a value expression fails�� There are several possible reasons for the evaluation
to fail�

� Entering into a non�terminating �diverging	 computation� such as evaluating F ��	 for a
function F de�ned as F �X	 �� F �X � �	�

� Failing to �nd an appropriate pattern when evaluating a �case� or a �let� value expression�

� Obtaining a false boolean guard when evaluating an �assert� expression�

Formally� the evaluation of a given expression V in a memory environment M �i�e�� a partial ap�
plication that maps a set of variables to their corresponding values	 could be de�ned as a function
evalfV�Mg� The result returned by this function is either a value expression containing only con�
structors� or the unde�ned value ��

In the sequel� we do not de�ne formally evalfV�Mg� but we explain instead the meaning of some
value expressions�

��� Informal description of the pattern�matching mechanism

The pattern�matching mechanism can be described as follows�

� Pattern �X� matches a single value� which is the value of variable X

� Pattern �X � S� matches any value of sort S and binds this value to the �new	 variable X

� Pattern �any S� matches any value of sort S

�For the sake of simplicity� non�deterministic expressions� such as �any bool	� are not accepted� otherwise� evalu�
ating an expression would give birth to a transition system of all possible results
 If necessary� the behaviour part can
be used to describe such speci�c situations


�Even in this case� the evaluation leads to a deterministic result






� Pattern �C�P�� ���� Pn	� matches any value expression of the form C�v�� ���� vn	 such that each
sub�pattern Pi also matches the sub�value vi�

� Pattern �P� of S� has the same e�ect as pattern �P��

� Pattern ��P�	� has the same e�ect as pattern �P��

It is worth noticing that this mechanism is closely related to the notion of value matching used in
the behaviour part of Lotos� when it is necessary to match an ����o�er against an ����o�er�

�� Informal description of the �case� operator

The semantics of a given �case� expression V of the form�

case V� in

P��V��� � V ��
���

Pn�Vn�� � V �n
endcase

can be explained as follows�

� First� V� is evaluated� leading to a result v�� If v� is equal to �� then V evaluates also to �
�strict semantics	�

� Otherwise� the algorithm searches for the smallest i � f�� ���� ng such that pattern Pi matches
v� and such that the boolean guard Vi �if present	 evaluates to true�

� If no such i can be found� or if some guard Vi evaluates to �� then V evaluates also to � �strict
semantics	�

� If some i is found� then V �
i
is evaluated� V evaluates to the result of V �

i
�

� When values Vi and V �
i
are evaluated� the variables of varsfPig �de�ned in Pi and used in Vi

and V �i 	 are replaced by their values�

� Note� there is no need for a �otherwise� or �default� clause before �endcase� to order to
all catch missing cases� This can be done by having the last pattern Pn be �any S�� where S
is equal to sortfV g�

For instance� the boolean function AND could be de�ned in many di�erent ways using the proposed
�case� constructs�

function AND �X� Y�BOOL� � BOOL is

case X in

true �	 Y

false �	 false

endcase

endfunc

function AND �X� Y�BOOL� � BOOL is

case X in

true �	 Y

any bool �	 false

��



endcase

endfunc

function AND �X� Y�BOOL� � BOOL is

case X in

true �	 Y

Z�bool �	 false

endcase

endfunc

function AND �X� Y�BOOL� � BOOL is

case X in

Z�bool �Z � true� �	 Y

Z�bool �Z � false� �	 Z

endcase

endfunc

function AND �X� Y�BOOL� � BOOL is

case X in

true �	 case Y in

true �	 true

false �	 false

endcase

false �	 false

endcase

endfunc

The proposed �case� construct is extremely powerful� since it combines di�erent mechanisms into a
single� uni�ed framework�

� Keeping in mind that all existing Lotos tools implement ActOne equations as rewrite rules�
it is easy to translate sets of equations �aka rewrite rules	 into �case� expressions�

Due the possibility to declare variables in patterns �i�e�� the �X � S� patterns	� �forall� clauses
are no longer necessary to declare quanti�ed variables�

The proposed �case� is more powerful than current �rewrite�oriented dialects of	 ActOne�
because it allows �case� expressions to be arbitrarily nested� which is not possible with sets
of rewrite rules� To express nested �cases� in ActOne� it is necessary to de�ne auxiliary
functions� which proves to be tedious in practice�

� This �case� construct is also more powerful than the two similar constructs found in ML�

� ML has a �case� construct �with the � � symbol to denote the �otherwise� clause	
�Wat�� p� ���� but it only applies to constant values �i�e�� a very limited form of pattern�
matching	�

� ML allows functions to be de�ned by pattern�matching on the structure of their arguments
�Wat�� p� 
���� However� pattern�matching constructs

� cannot be nested�

� are limited �a single pattern matching per function de�nition	�

� only allow �one level� simple�patterns�

� do not have an �otherwise� clause�

��



� do not allow boolean guards��

Our proposed �case� construct generalizes both ML constructs� none of which has an equivalent
expressiveness� For instance� our construct allows to de�ne simply a function which tests
whether the size of a list is greater or equal to 
 �which is not so easy in ML	�

function SIZE�� �L�LIST� � BOOL is

case L in

CONS �any ITEM� CONS �any ITEM� any LIST�� �	 true

any LIST �	 false

endcase

endfunc

��� Informal description of the �assert� operator

� All boolean guards V�� ���� Vn are evaluated� If at least one of them evaluates to � or to false�
then V evaluates to ��

� If each Vi evaluates to true� then V� is evaluated� The result obtained for V� is also the result
of V �

Note� the expression �assert false in V �� where V is any value expression� provides an explicit
representation for the unde�ned value ��

The �assert� operator has several roles�

� It can be used to express pre�conditions on the arguments of a �partial	 function�

function PRED �X � NAT� � NAT is

asssert X 	 � in

X � �

endfunc

function MODULO �X� Y� INT� � INT is

assert Y �	 � in






endfunc

� It can also express post�conditions relating the result returned by a function�

function SUM �X� Y � NAT� � NAT is

let RESULT�NAT � X � Y in

assert RESULT 	� X� RESULT 	� Y in

RESULT

endfunc

��� Informal description of the �let� operator

The semantics of a given �let� expression V of the form�

let P� � V�� ���� Pn � Vn in V�

can be explained as follows�

�Therefore� translatingActOne sets of conditional equations in ML might be di�cult


�




� First� all expressions V�� ���� Vn are evaluated� If at least one of them evaluates to �� then V

also evaluates to � �strict semantics	�

� Otherwise� the obtained results are �ltered against the respective patterns P�� ���� Pn� If at least�
one matching fails� then V evaluates to ��

� Otherwise� V� is evaluated by replacing all free variables in varsfP�g � ���� varsfPng by their
corresponding values� The result obtained for V� is also the result of V �

Clearly�

� Having a �let� construct in value expressions is very useful since it allows to avoid redundant
computations� by storing intermediate results in auxiliary variables� A �let� construct also
exists in ML� In ActOne� there is no �let� construct� it is often necessary to de�ne auxiliary
functions� which obscures the data type descriptions�

� The �let� construct which already exist in the behaviour part of Lotos is a particular case of
the proposed �let� construct� This particular case is obtained when each pattern Pi has the
form Xi � Si�

Note� Rigorously speaking� there is a form of �let� with multiple variables �such as in
�let X�� X� � S in ����	 which can no longer be expressed with the proposed construct� But
this form of �let� is completely useless�

� The proposed �let� construct is also much more general� since it allows value destructuration�
thus avoiding to use explicit projection functions� In the following example�

let Failures �TCEstablishment � Prob�

Transfer � Prob�

TCResilience � Prob�

TCRelease � Prob�

� V in

TCEstablishment � Transfer � TCResilience � TCRelease

the value expression V will be evaluated� leading to a result of the form�

Failures �p�� p�� p�� p�	

� The values p�� p�� p�� p� will be extracted and respectively assigned to the free variables
TCEstablishment� Transfer� TCResilience and TCRelease�

Note� reasonably� there should be at least one free variable in each varsfPig�

References

�ISO��� ISO� LOTOS � A Formal Description Technique Based on the Temporal Ordering of Ob�
servational Behaviour� International Standard ����� International Organization for Stan�
dardization � Information Processing Systems � Open Systems Interconnection� Gen�eve�
September ����

�Pec�� Charles Pecheur� Extended data types� Technical Report� University of Li�ege� July ���
Annex H of ISO�IEC JTC��SC
��WG�N��� Working Draft on Enhancements to LOTOS�

�Wat�� David A� Watt� Programming Language Concepts and Paradigms� International Series in
Computer Science� Prentice�Hall� New�York� ���

��


