
Six improvements to the process part of LOTOS

Version ���

Hubert GARAVEL�

INRIA Rh�one�Alpes
VERIMAG � Miniparc�ZIRST

rue Lavoisier
����� MONTBONNOT ST MARTIN

FRANCE
Tel � �	��
 �� 
� 
� ��
Fax � �	��
 �� �� �� ��

E�mail � hubert�garavel�imag�fr

June� ��� �

�

Abstract

This paper proposes six changes to the syntax and static semantics of the process part of

Lotos� These changes are intended to make Lotos a more comfortable language� they are

almost upward compatible� easy to implement� and do not require in�depth modi�cations of

existing Lotos tools�

Introduction

This paper proposes six modi�cations of the FormalDescription Technique Lotos �ISO standard ����
�ISO��b��	 These modi�cations should simplify the tasks of writing and reading Lotos descriptions	
The proposed modi�cations only a
ect the syntax and static semantics of the process part of Lotos	
Dynamic semantics and abstract data types are not addressed here	 The proposed changes are listed
below by increasing complexity and will be presented in the following sections�

� �C�� Giving a printable name to the 
�� gate

� �C�� Turning the speci�cation identi�er into an ordinary process identi�er

� �C�� Turning the reserved keyword 
i� into a prede�ned gate identi�er

� �C�� Introducing an 
if� operator

� �C�� Abbreviating gate parameters lists

� �C�� Abbreviating value parameters lists

�This work has been supported in part by the Commissionof the EuropeanCommunities� under ESPRIT EC�Canada
Exploratory Collaborative Activity EC�CA ��������� 	EUCALYPTUS� A European
Canadian Lotos Protocol Tool
Set��

�



� Giving a printable name to the ��� gate

The dynamic semantics of Lotos makes use of a special gate� the termination gate noted 
�� in the
ISO standard	 Due to the 
exit� operator� the 
�� gate is never used explicitly in Lotos descriptions	
However� when an 
exit� is executed� a rendez�vous on the � gate is performed	 At this point� a
problem arises because 
�� is not a printable name using Latin character sets	 For this reason� Lotos
tools usually replace 
�� by a printable identi�er� 
d�� 
delta�� 
Delta�� 
exit�� etc	

To promote inter�operability between Lotos tools� one should agree upon a printable identi�er for
the 
�� gate	 The 
exit� identi�er seems to be a good candidate for at least two reasons�

� It is the most intuitive solution� an 
exit� operator in the Lotos description leads to an 
exit�
rendez�vous in the corresponding labelled transition system	

� It prevents name clashes with user�de�ned gate identi�ers� 
exit� is already a reserved keyword
in Lotos� users are not allowed to declare gates with the name 
exit�	

There are two di
erent ways to implement the proposed change in the revised Lotos standard�

�	 The �rst solution would consist in adding a note stating that� whenever the 
�� gate is to be
read or written using a Latin character set� then the name 
exit� has to used for this purpose	

�	 A simpler solution would be to replace all occurrences of 
�� by 
exit� in the dynamic semantics	

Both proposed changes are fully upward compatible� in the sense that any valid Lotos description
under the existing standard would remain valid under the revised standard	

� Turning the speci�cation identi�er into an ordinary pro�

cess identi�er

Each Lotos description is given an identi�er �introduced by the 
speci�cation� keyword�	 This
identi�er is very similar to process identi�ers �introduced by the 
process� keyword� but not com�
pletely� as �ISO��b� imposes several distinctions between speci�cation and process identi�ers�

� Speci�cation identi�ers and process identi�ers belong to distinct name spaces	 For a given
Lotos description� the speci�cation identi�er name space only contains a single element �the
name of the description�	

� There is no place in a Lotos description where the speci�cation identi�er can be used	

� Consequently� it is not allowed to use the speci�cation identi�er in place of a process identi�er	
In particular� the speci�cation identi�er cannot be used in a process instantiation �ISO��b�
�	�	�	�	a�	 Therefore� a Lotos description cannot be directly recursive�

specification S �G� � noexit behaviour

G� S �G� �� illegal� identifier S cannot be used here ��

endspec

Recursion can only be expressed by introducing an auxiliary process�

specification S �G� � noexit behaviour

P �G�

where

process P �G� � noexit ��

G� P �G�

�



endproc

endspec

There is very little justi�cation for these constraints regarding speci�cation identi�ers	 One can only
think of one reason� by preventing the speci�cation identi�er from being a process identi�er� one
may wish to maintain a fair balance between data part and process part �avoiding the supremacy of
processes over types at the top level of a Lotos description�	 However� this is not true� since static
and dynamic semantics rules already consider the Lotos speci�cation as a special process	

We propose the following changes� in order to simplify the revised Lotos standard�

� The speci�cation identi�er should be a process identi�er	

� The speci�cation identi�er should be visible in the behaviour expression following the

behaviour� �or 
behaviour�� keyword	

The proposed change is fully upward compatible	

� Turning the reserved keyword �i� into a prede�ned gate

identi�er

In standard Lotos� the identi�er of the invisible gate 
i� is a reserved keyword	 Consequently� it is
not possible to declare any object �type� sort� operation� variable� process� or gate� named either 
i�
or 
I�	 This situation is annoying for several reasons�

� Identi�ers 
i� and 
I� are widely used in computer programs� due to traditions inherited from
common mathematical practice and early programming languages such as FORTRAN	 The
prohibition of these identi�ers in Lotos is confusing to most users	

� There are some situations where the 
i� identi�er would be especially appropriate� for instance
when dealing with complex numbers� matrix indexes� etc	 For example� the following type
de�nition is rejected�

type CHARACTER is

sorts CHAR

opns

A � �� CHAR B � �� CHAR C � �� CHAR

D � �� CHAR E � �� CHAR F � �� CHAR

G � �� CHAR H � �� CHAR I � �� CHAR �� defining �I� is illegal ��

J � �� CHAR K � �� CHAR L � �� CHAR

M � �� CHAR N � �� CHAR O � �� CHAR

P � �� CHAR Q � �� CHAR R � �� CHAR

S � �� CHAR T � �� CHAR U � �� CHAR

V � �� CHAR W � �� CHAR X � �� CHAR

Y � �� CHAR Z � �� CHAR

endtype

This problem could be easily solved by applying the following changes to the existing Lotos standard�

�	 Terminal symbols 
i� and 
I� should be removed from Lotos BNF syntax and� therefore�
should loose their status of reserved keywords	 Practically� the two grammar rules below should
be deleted�

	internal
event
symbol� ��� �I� �

	action
denotation� ��� 	internal
event
symbol� �

�



�	 The revised standard should introduce one prede�ned gate identi�er noted 
i� �also equivalent
to 
I��	

�	 The use of the prede�ned gate 
i� should be restricted by introducing static semantics con�
straints� in order to maintain compatibility with existing Lotos	

Currently� due to syntax rules� the use of the 
i� gate is strictly restricted	 The idea is to
shift these restrictions from syntax to static semantics	 The revised standard should therefore
contain the following static semantics constraints �

� The 
i� gate cannot occur in any gate de�nition context �i	e	 binding occurrence�� meaning
that it is forbidden to declare any gate of name 
i�	 The following constructs are therefore
prohibited�

hide i in 




choice i in �


� 




par i in �


� 




process P �


� i� 


� 




� The 
i� gate cannot occur in any gate de�nition context �i	e	 place�marking occurrence��
except on the left�hand side of an action�pre�x pre�x operator without experiment�o
er	
The following constructs are therefore prohibited��

choice 


 in �


� i� 


�

par 


 in �


� i� 


�

P �


� i� 


�

i �


 � 




i �


 � 




�	 Since name spaces are considered to be distinct in Lotos� identi�ers 
i� and 
I� would be
prede�ned only for gates� but would remain available for types� sorts� variables� operations� and
processes	

This change is fully upward compatible	

� Introducing an �if� operator

Due to its process algebra origins� Lotos uses only two primitives �guards and non�deterministic
choice� to express conditionals	 This imposes a speci�cation style that is not intuitive �novice users
are not familiarwith 
guarded commands� and usually prefer the classical 
if�then�else� constructs��
tedious to write� di�cult to read �guarded commands are more verbose than their 
if�then�else�
equivalents�� and error�prone	

�Unrestricted use of the 	i� gate would lead to subtle problems� such as action denotations of the form
	i �v� ��� �vn�� which are not handled in the existing dynamic semantics of Lotos

�



For these reasons� we propose to extend Lotos with an 
if� operator�	 The following changes should
be introduced in the revised Lotos standard�

� Five new keywords have to be added� 
if�� 
then�� 
else�� 
elsif�� and 
endif�	

� The following rule has to be added to the BNF grammar�

	behaviour
expression� ���

�if� 	value
expression� �then� 	behaviour
expression�

� �elsif� 	value
expression� �then� 	behaviour
expression� ��

� �else� 	behaviour
expression� �

�endif�

where 
������� denotes a repeated occurrence zero or more times �meaning that there can be
zero or more 
elsif� clauses� and where 
������ denotes an optional occurrence �meaning that
the 
else� clause is optional�	 An equivalent syntactic de�nition is the following�

	behaviour
expression� ���

�if� 	value
expression� �then� 	behaviour
expression� 	elsif
part
list� �

	elsif
part
list� ��� 	elsif
part� 	elsif
part
list�

� 	else
part� �

	elsif
part� ��� �elsif� 	value
expression� �then� 	behaviour
expression� �

	else
part� ��� �else� 	behaviour
expression� 	endif
part�

� 	endif
part� �

	endif
part� ��� �endif� �

� The semantics of the 
if� operator is expressed using a transformation function ����� that expands

if� operators into combinations of guards and non�deterministic choices	 This function is
de�ned as follows	 If B is a behaviour expression of the form�

if V� then B�

elsif V� then B�

elsif V� then B�

���

elsif Vn then Bn

else Bn��

endif

then ��B�� is equal to�

�This operator has exactly the same syntax and semantics as in Ada

�



�

�V�� 
� ���B����
��

�not �V�� and �V��� 
� ���B����
��

�not �V�� and not �V�� and �V��� 
� ���B����
��

���

��

�not �V�� and not �V�� and not �V�� ��� and not �Vn��� and �Vn�� 
� ���Bn���
��

�not �V�� and not �V�� and not �V�� ��� and not �Vn��� and not �Vn�� 
� ���Bn�����
�

Remark

If the 
elsif� and�or 
else� parts are missing in B� the corresponding expanded parts have to
be removed from ��B��	 �

This expansion scheme is not optimal because it generates multiple occurrences of expressions
V�� ���� Vn� therefore leading to multiple evaluations of the same expressions�	

A better expansion scheme is shown below	 It stores the results of guard evaluation into �n���
boolean variables X�� ���� Xn �the names of which being di
erent from the names of all free
variables contained in V�� ���� Vn and B�� ���� Bn���	 In this improved scheme� ��B�� is equal to�

�Unless Lotos tools are smart enough to optimize those situations� which does not seem to be the case now���

�



�

let X��bool � V� in

�

�X�� 
� ���B����
��

�not �X��� 
�

let X��bool � V� in

�

�X�� 
� ���B����
��

�not �X��� 
�

let X��bool � V� in

�

�X�� 
� ���B����
��

�not �X��� 
�

���

let Xn�bool � Vn in

�

�Xn� 
� ���Bn���
��

�not �Xn�� 
� ���Bn�����
�

���

�

�

�

�

Remark

There is another� equivalent way to de�ne the improved expansion function �����	 The expansion
can be performed in two successive steps�

� Step �� 
if� operators with 
elsif� parts are expanded into nested 
if� operators without

elsif� part� i	e	 the following behaviour expression�

if V� then B�

elsif V� then B�

elsif V� then B�

���

elsif Vn then Bn

else Bn��

endif

is expanded into�

�



if V� then B�

else

if V� then B�

else

if V� then B�

else

���

if Vn then Bn

else Bn��

endif

���

endif

endif

endif

� Step �� 
if� operators without 
elsif� part are translated into guarded commands� i	e	
the following behaviour expression�

if V then B�

else B�

endif

is expanded into�

�

let X�bool � V in

�

�X� 
� ���B����
��

�not �X�� 
� ���B����
�

�

�

This extension is upward compatible� except for those existing Lotos descriptions that contain
identi�ers with the same spelling as the new reserved keywords� 
if�� 
then�� 
else�� 
elsif�� and

endif�	 For those descriptions� renaming the con�icting identi�ers would be needed	

Reciprocally� any Lotos description with 
if� constructs can be translated into standard Lotos

using a macro�processor that implements the expansion function �����	

	 Abbreviating gate parameters lists

In many Lotos descriptions� process de�nitions tend to have large lists of gate parameters	 This
situation has several drawbacks�

� Large lists of gate parameters are tedious to write and di�cult to read	

� More often than not� the actual gate parameters of a process instantiation are identical to
the formal parameters of the process de�nition	 In such case� actual parameter lists carry no
relevant information� but their 
syntactic noise� obscures Lotos descriptions	

�



� Large lists of gate parameters are error�prone	 Omitted or extra parameters are detected during
static semantics checking	 But permuted gate parameters are not� although they introduce
subtle semantic errors	

� Finally� adding or deleting a gate parameter from a process P is usually tedious� because it is
necessary to modify all instantiations of P � as well as the de�nitions and instantiations of many
processes transitively called by P 	

We believe that these problems could often be solved by the adoption of shorthand notations for
formal and actual gate parameter lists	

The proposed modi�cations require the introduction of a new keyword 



�	

��� Abbreviated formal gate parameter lists

The de�nition of non�terminal symbol 	gate
parameter
list� in the BNF syntax of Lotos should
be modi�ed as follows�

	gate
parameter
list� ���

��� 	gate
identifier
list� ���

� ��� 


 ���

� ��� 	gate
identifier
list� �


� ���

� ��� �


� 	gate
identifier
list� ���

� ��� 	gate
identifier
list� �


� 	gate
identifier
list� ��� �

Remark

This de�nition is still valid even if there are no formal gate parameters� in which case� according to
the syntactic de�nition of Lotos� the non�terminal symbol 	gate
parameter
list� is not used	 �

The semantics of an abbreviated formal gate parameter list is simple� if the 



� keyword is present
in the formal gate parameter list of some process P � this keyword has to be replaced by the list of
formal gate parameters of the process containing P �i	e	� the smallest process in the de�nition of
which the de�nition of P is nested�	 Consequently� this abbreviation is not allowed for the formal
gate parameter list of the speci�cation itself	

For instance� the following fragment�

process P� �G�� G�� � nexit ��

stop

where

process P� �G� 


 G�� G�� � noexit ��

stop

where

process P� �


� � noexit ��

stop

endproc

endproc

endproc

is equivalent to�

process P� �G�� G�� � nexit ��

stop

where

process P� �G�� G�� G�� G�� G�� � noexit ��

�



stop

where

process P� �G�� G�� G�� G�� G�� � noexit ��

stop

endproc

endproc

endproc

��� Abbreviated actual gate parameter lists

The de�nition of non�terminal symbol 	actual
gate
list� in the BNF syntax of Lotos should be
modi�ed as follows�

	actual
gate
list� ��� ��� 	gate
identifier
list� ���

� ��� �


� ���

� ��� 	gate
substitutions� ���

� ��� 	gate
substitutions� �


� ��� �

	gate
substitutions� ��� 	gate
substitution�

� 	gate
substitution� ��� 	gate
substitutions� �

	gate
substitutions� ��� 	formal
gate� ���� 	actual
gate� �

	formal
gate� ��� 	gate
identifier� �

	actual
gate� ��� 	gate
identifier� �

Remark

This de�nition is still valid even if there are no actual gate parameters� in which case� according to
the syntactic de�nition of Lotos� the non�terminal symbol 	actual
gate
list� is not used	 �

The semantics of abbreviated actual gate parameter lists is de�ned as follows	 Let�s consider the
instantiation of some process P �

�	 An 	actual
gate
list� of the form ��� 	gate
identifier
list� ��� has the same mean�
ing as in standard Lotos	

�	 An 	actual
gate
list� of the form ��� �


� ��� has to be replaced by the formal gate
parameter list of P 	 For instance� the following fragment�

process P� �G�� G�� � noexit ��

G�� P� �


�

��

G�� P� �


�

endproc

process P� �G�� G�� � noexit ��

G�� G�� P� �


�

endproc

is equivalent to�

process P� �G�� G�� � noexit ��

G�� P� �G�� G��

��

��



G�� P� �G�� G��

endproc

process P� �G�� G�� � noexit ��

G�� G�� P� �G�� G��

endproc

�	 Let�s consider an 	actual
gate
list� of the form ��� 	gate
substitutions� ���	 Let
G�� ���� Gn be the formal gate parameter list of P 	 Then 	gate
substitutions� must sat�
isfy the following constraint� each Gi must occur once and only once on the left�hand side of a

��� symbol in 	gate
substitutions�	

	actual
gate
list� has to be replaced by the gate list G�

�� ���� G
�

n such that� for each i �
f�� ���� ng� 
Gi��G

�

i� belongs to 	gate
substitutions�	

Remark

It is therefore necessary to extend scope rules in order to allow formal gate parameters of Lotos
processes to be visible in process instantiations �on the left�hand side of 
��� symbols only�	 �

Remark

As a consequence of the above replacement rule� all gates occurring on the right�hand size of a

��� symbol in 	gate
substitutions� must be visible at the point of the Lotos description
where P is instantiated	 �

Remark

	gate
substitutions� determines a total function that maps the formal gate parameters of
P onto the actual ones	 This function is not necessarily injective� there can exist i� and i� and
a gate G such that 	gate
substitutions� contains both 
Gi���G� and 
Gi���G�	 �

For instance� the following fragment�

process P� �G�� G�� � noexit ��

G�� P� �G���G�� G���G��

��

G�� P� �G���G�� G���G��

endproc

process P� �G�� G�� � noexit ��

G�� G�� P� �G���G�� G���G��

endproc

is equivalent to�

process P� �G�� G�� � noexit ��

G�� P� �G�� G��

��

G�� P� �G�� G��

endproc

process P� �G�� G�� � noexit ��

G�� G�� P� �G�� G��

endproc

�	 Let�s consider an 	actual
gate
list� of the form ��� 	gate
substitutions� �


� ���	
Let G�� ���� Gn be the formal gate parameter list of P 	 Then 	gate
substitutions� must
satisfy the following constraint� each Gi may occur at most once on the left�hand side of a 
���
symbol in 	gate
substitutions�	

��



	actual
gate
list� has to be replaced by the gate list G�

�� ���� G
�

n
such that� for each i �

f�� ���� ng� either 
Gi��G
�

i
� belongs to 	gate
substitutions�� or� 
G�

i
� Gi�	

Remark

	gate
substitutions� determines a partial function that maps the formal gate parame�
ters of P onto the actual ones �explicit parameters�	 All formal gates not mentioned in
	gate
substitutions� are kept unchanged �implicit parameters�	 This function is not neces�
sarily injective	 �

Remark

The 



� symbol is allowed even if 	gate
substitutions� contains as many substitutions
as the number of formal gate parameters of P � i	e	 even if all actual parameters are explicit
parameters	 �

For instance� the following fragment�

process P� �G�� G�� � noexit ��

G�� P� �G���G� 


�

��

G�� P� �G���G� 


�

endproc

process P� �G�� G�� � noexit ��

G�� G�� P� �G���G� 


�

endproc

is equivalent to�

process P� �G�� G�� � noexit ��

G�� P� �G�� G��

��

G�� P� �G�� G��

endproc

process P� �G�� G�� � noexit ��

G�� G�� P� �G�� G��

endproc

The proposed modi�cation is upward compatible� except for those existing Lotos descriptions that
contain operation identi�ers with the same spelling as the new reserved keyword 



�	 For those
descriptions� renaming the con�icting identi�ers would be needed	

Reciprocally� any Lotos description with abbreviated gate parameter lists can be translated into
standard Lotos by expanding the 



� symbols	

Remark

The proposed modi�cation �ts well with another proposal for the introduction of typed gates in
Lotos �Gar���	 The syntactic notations and underlying semantics are similar in both proposals	 �

Remark

An alternative approach for abbreviating gate parameter lists would be the possibility to de�ne
identi�ers for �formal and actual� gate parameter lists	 These identi�ers could be used in place of
the 



� notation	 It is not clear� however� if this alternative approach is worth its complexity and
if it can be extended to value parameter lists �see next section� and incomplete action denotations
�Gar���	 �

�this is an exclusive 	or�

��




 Abbreviating value parameters lists

Similarly� it is desirable to shorten the large list of value parameters	 This can be achieved with the
same mechanism as the one proposed for gate parameters	 The only di
erence comes from the fact
that formal parameters are value identi�ers whereas actual parameters are value expressions	

Therefore� only the proposed new syntax is given� together with examples illustrating the use of the
abbreviated constructions	

��� Abbreviated formal value parameter lists

The proposed modi�ed syntax is the following�

	value
parameter
list� ���

��� 	identifier
declarations� ���

� ��� �


� ���

� ��� 	identifier
declarations� �


� ���

� ��� �


� 	identifier
declarations� ���

� ��� 	identifier
declarations� �


� 	identifier
declarations� ��� �

For instance� the following fragment�

process P� �G� �X� � BOOL� X� � NAT� � nexit ��

stop

where

process P� �G� �X� � NAT 


 X� � BOOL� � noexit ��

stop

where

process P� �


� � noexit ��

stop

endproc

endproc

endproc

is equivalent to�

process P� �G� �X� � BOOL� X� � NAT� � nexit ��

stop

where

process P� �G� �X� � NAT� X� � BOOL� X� � NAT� X� � BOOL� � noexit ��

stop

where

process P� �G� �X� � NAT� X� � BOOL� X� � NAT� X� � BOOL� � noexit ��

stop

endproc

endproc

endproc

��� Abbreviated actual value parameter lists

The proposed modi�ed syntax is the following�

	actual
parameter
list� ��� ��� 	value
expression
list� ���

��



� ��� �


� ���

� ��� 	value
substitutions� ���

� ��� 	value
substitutions� �


� ��� �

	value
substitutions� ��� 	value
substitution�

� 	value
substitution� ��� 	value
substitutions� �

	value
substitutions� ��� 	formal
value� ���� 	actual
value� �

	formal
value� ��� 	value
identifier� �

	actual
value� ��� 	value
expression� �

For instance� the following fragment�

process P �G� �X� Y � NAT� ��

�X 	 ��� 
�

P �G� �X �� X � � 


�

��

��X �� ��� and �Y 	 ���� 
�

P �G� �Y �� Y � � 


�

��

��X �� ��� and �Y �� ���� 
�

P �G� �X �� �� Y �� ��

endproc

is equivalent to�

process P �G� �X� Y � NAT� ��

�X 	 ��� 
�

P �G� �X � �� Y�

��

��X �� ��� and �Y 	 ���� 
�

P �G� �X� Y � ��

��

��X �� ��� and �Y �� ���� 
�

P �G� ��� ��

endproc

Remark

The proposed abbreviated notation introduces an assignment notation �using the 
��� symbol� that
carries� more or less� the usual meaning of assignment	 This proves to be useful when translating
into Lotos some descriptions written in languages with explicit assignments �e	g	� Sdl �CCI��� or
Estelle �ISO��a��	

It is to be mentioned that the assignment notation is merely a syntactic facility and does not subvert
the semantics of Lotos as a functional language	 �

Remark

Compared to the existing process instantiation in standard Lotos� the proposed abbreviation has
one major advantage� it lays the emphasis on 
what is changing� and indicates clearly which variables
are modi�ed	 �

��



Conclusion

Six changes �C����C�� have been proposed to improve the process part of Lotos	 These changes only
concern syntactic and static semantic aspects� the existing dynamic semantics is preserved	 These
changes are easy to implement	 Most of them are totally upward compatible� the others are upward
compatible if identi�ers in con�ict with new keywords are renamed	

The bene�ts of improvements �C����C�� are demonstrated in Annexes A and B	

Acknowledgements

Acknowledgements are due to Arnaud F�evrier� Alain Kerbrat� Laurent Mounier� Elie Najm and
Jacques Sincennes for their useful comments	

References

�CCI��� CCITT	 Speci�cation and Description Language	 Recommendation Z	���� International
Consultative Committee for Telephony and Telegraphy� Gen eve� March ����	

�Gar��� Hubert Garavel	 On the Introduction of Gate Typing in E�LOTOS	 Rapport SPECTRE
����� VERIMAG� Grenoble� February ����	 Annex D of ISO�IEC JTC��SC���WG�N����
Revised Draft on Enhancements to LOTOS and Annex C of ISO�IEC JTC��SC���WG�
N���� Working Draft on Enhancements to LOTOS	

�ISO��a� ISO	 ESTELLE ! A Formal Description Technique Based on an Extended State Transi�
tion Model	 International Standard ����� International Organization for Standardization
! Information Processing Systems ! Open Systems Interconnection� Gen eve� September
����	

�ISO��b� ISO	 LOTOS ! A Formal Description Technique Based on the Temporal Ordering of Ob�
servational Behaviour	 International Standard ����� International Organization for Stan�
dardization ! Information Processing Systems ! Open Systems Interconnection� Gen eve�
September ����	

� Annex A� A simpli�ed transport service

The example below is a highly simpli�ed description of a transport service written in Basic Lotos	
The original description is given �rst� followed by a much more concise description making use of
abbreviated gate parameter lists �improvement �C���	

��



specification TRANSPORT�SERVICE �A�CONREQ� A�CONIND� A�CONRESP� A�CONCONF� A�DISREQ� A�DISIND�

B�CONREQ� B�CONIND� B�CONRESP� B�CONCONF� B�DISREQ� B�DISIND� � noexit

behaviour

hide CR� CI� DR� DI in

�

TRANSPORT�ENTITY �A�CONREQ� A�CONIND� A�CONRESP� A�CONCONF� A�DISREQ� A�DISIND� CR� CI� DR� DI�

��CR� CI� DR� DI��

TRANSPORT�ENTITY �B�CONREQ� B�CONIND� B�CONRESP� B�CONCONF� B�DISREQ� B�DISIND� CI� CR� DI� DR�

	

where

process TRANSPORT�ENTITY �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI� � noexit �


IDLE �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

where

process IDLE �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI� � noexit �


CONREQ�

CR�

�

WAIT �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

��

CI�

CONCONF�

OPEN �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

	

��

CI�

CONIND�

�

WAIT �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

��

CONRESP�

CR�

OPEN �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

	

endproc

process WAIT �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI� � noexit �


DISREQ�

DR�

FROZEN �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

��

DI�

DISIND�

DR�

IDLE �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

endproc

process OPEN �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI� � noexit �


WAIT �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

endproc

process FROZEN �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI� � noexit �


CI�

FROZEN �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

��

DI�

IDLE �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI�

endproc

endproc

endspec

��



specification TRANSPORT�SERVICE �A�CONREQ� A�CONIND� A�CONRESP� A�CONCONF� A�DISREQ� A�DISIND�

B�CONREQ� B�CONIND� B�CONRESP� B�CONCONF� B�DISREQ� B�DISIND� � noexit

behaviour

hide CR� CI� DR� DI in

�

TRANSPORT�ENTITY �A�CONREQ� A�CONIND� A�CONRESP� A�CONCONF� A�DISREQ� A�DISIND� CR� CI� DR� DI�

��CR� CI� DR� DI��

TRANSPORT�ENTITY �B�CONREQ� B�CONIND� B�CONRESP� B�CONCONF� B�DISREQ� B�DISIND� CI� CR� DI� DR�

	

where

process TRANSPORT�ENTITY �CONREQ� CONIND� CONRESP� CONCONF� DISREQ� DISIND� CR� CI� DR� DI� � noexit �


IDLE �����

where

process IDLE ����� � noexit �


CONREQ�

CR�

�

WAIT �����

��

CI�

CONCONF�

OPEN �����

	

��

CI�

CONIND�

�

WAIT �����

��

CONRESP�

CR�

OPEN �����

	

endproc

process WAIT ����� � noexit �


DISREQ�

DR�

FROZEN �����

��

DI�

DISIND�

DR�

IDLE �����

endproc

process OPEN ����� � noexit �


WAIT �����

endproc

process FROZEN ����� � noexit �


CI�

FROZEN �����

��

DI�

IDLE �����

endproc

endproc

endspec

��



Annex B� A simpli�ed sliding window protocol

The example below is a simpli�ed sliding window protocol	 For conciseness purpose� the abstract data
type de�nitions are omitted	 The original description is given �rst� followed by a shorter description
making use of 
if� constructs� abbreviated gate parameter lists and abbreviated value parameter lists
�improvements �C��� �C��� and �C���	

specification SLIDING�WINDOW�PROTOCOL �PUT� GET� � noexit

behaviour

hide SDT� RDT� RACK� SACK in

�

�

TRANSMITTER �PUT� SDT� SACK� �ZERO	

���

RECEIVER �GET� RDT� RACK� �ZERO	

	

��SDT� RDT� RACK� SACK��

�

LINE �SDT� RDT� �EMPTY	

���

LINE �RACK� SACK� �EMPTY	

	

	

where

process LINE �INPUT� OUTPUT� �R�REG	 � noexit �


INPUT 
N�NUM�

�

LINE �INPUT� OUTPUT� �INSERT �R� N		

��

LINE �INPUT� OUTPUT� �SHIFT �R		

	

��

�

choice E�ELM ��

�

let N�XNUM 
 VALUE �R� E	 in

�not �VOID �N		� ��

OUTPUT ��CONV �N		�

�

LINE �INPUT� OUTPUT� �DELETE �R� E		

��

LINE �INPUT� OUTPUT� �R	

	

	

	

endproc

process TRANSMITTER �PUT� SDT� SACK� �BASE�NUM	 � noexit �


TRANSMIT �PUT� SDT� SACK� �BASE� �	

where

process TRANSMIT �PUT� SDT� SACK� �BASE�NUM� SIZE�NAT	 � noexit �


�SIZE � TWS� ��

PUT ��BASE � SIZE	�

SDT ��BASE � SIZE	�

TRANSMIT �PUT� SDT� SACK� �BASE� SIZE � �	

��

SACK 
N�NUM�

�

let OK�BOOL 
 WINDOW �N� BASE� SIZE	 in

��



�

�OK� ��

TRANSMIT �PUT� SDT� SACK� �N � �� SIZE � ��N � �	 � BASE		

��

�not �OK	� ��

TRANSMIT �PUT� SDT� SACK� �BASE� SIZE	

	

	

��

�

choice N�NUM ��

�WINDOW �N� BASE� SIZE	� ��

i�

RETRANSMIT �PUT� SDT� SACK� �N� SIZE � �N � BASE		

	

endproc

process RETRANSMIT �PUT� SDT� SACK� �BASE�NUM� SIZE�NAT	 � noexit �


�SIZE � �� ��

SDT �BASE�

RETRANSMIT �PUT� SDT� SACK� �BASE � �� SIZE � �	

��

�SIZE 

 �� ��

TRANSMIT �PUT� SDT� SACK� �BASE� SIZE	

endproc

endproc

process RECEIVER �GET� RDT� RACK� �BASE�NUM	 � noexit �


RECEIVE �GET� RDT� RACK� �BASE� RESET	

where

process RECEIVE �GET� RDT� RACK� �BASE�NUM� RECEIVED�TAB	 � noexit �


RDT 
N�NUM�

�

let OK�BOOL 
 not �TEST �RECEIVED� N		 and WINDOW �N� BASE� RWS	 in

�

�OK� ��

DELIVER �GET� RDT� RACK� �BASE� SET �RECEIVED� N		

��

�not �OK	� ��

RACK ��ZERO � �BASE � ONE		�

RECEIVE �GET� RDT� RACK� �BASE� RECEIVED	

	

endproc

process DELIVER �GET� RDT� RACK� �BASE�NUM� RECEIVED�TAB	 � noexit �


let OK�BOOL 
 TEST �RECEIVED� BASE	 in

�

�OK� ��

GET �BASE�

DELIVER �GET� RDT� RACK� �BASE � �� UNSET �RECEIVED� BASE		

��

�not �OK	� ��

RACK ��ZERO � �BASE � ONE		�

RECEIVE �GET� RDT� RACK� �BASE� RECEIVED	

	

endproc

endproc

endspec

��



specification SLIDING�WINDOW�PROTOCOL �PUT� GET� � noexit

behaviour

hide SDT� RDT� RACK� SACK in

�

�

TRANSMITTER �PUT� SDT� SACK� �ZERO	

���

RECEIVER �GET� RDT� RACK� �ZERO	

	

��SDT� RDT� RACK� SACK��

�

LINE �SDT� RDT� �EMPTY	

���

LINE �RACK� SACK� �EMPTY	

	

	

where

process LINE �INPUT� OUTPUT� �R�REG	 � noexit �


INPUT 
N�NUM�

�

LINE ����� �R �
 INSERT �R� N		

��

LINE ����� �R �
 SHIFT �R		

	

��

�

choice E�ELM ��

�

let N�XNUM 
 VALUE �R� E	 in

�not �VOID �N		� ��

OUTPUT ��CONV �N		�

�

LINE ����� �R �
 DELETE �R� E		

��

LINE ����� ����	

	

	

	

endproc

process TRANSMITTER �PUT� SDT� SACK� �BASE�NUM	 � noexit �


TRANSMIT ����� �BASE� �	

where

process TRANSMIT ����� ���� SIZE�NAT	 � noexit �


�SIZE � TWS� ��

PUT ��BASE � SIZE	�

SDT ��BASE � SIZE	�

TRANSMIT ����� �SIZE �
 SIZE � � ���	

��

SACK 
N�NUM�

if WINDOW �N� BASE� SIZE	 then

TRANSMIT ����� �N �
 N � �� SIZE �
 SIZE � ��N � �	 � BASE		

else

TRANSMIT ����� ����	

endif

��

�

choice N�NUM ��

�WINDOW �N� BASE� SIZE	� ��

i�

��



RETRANSMIT ����� �BASE �
 N� SIZE �
 SIZE � �N � BASE		

	

endproc

process RETRANSMIT ����� ���� SIZE�NAT	 � noexit �


�SIZE � �� ��

SDT �BASE�

RETRANSMIT ����� �BASE �
 BASE � �� SIZE �
 SIZE � �	

��

�SIZE 

 �� ��

TRANSMIT ����� ����	

endproc

endproc

process RECEIVER �GET� RDT� RACK� �BASE�NUM	 � noexit �


RECEIVE ����� �BASE� RESET	

where

process RECEIVE ����� ���� RECEIVED�TAB	 � noexit �


RDT 
N�NUM�

if not �TEST �RECEIVED� N		 and WINDOW �N� BASE� RWS	 then

DELIVER ����� �BASE� SET �RECEIVED� N		

else

RACK ��ZERO � �BASE � ONE		�

RECEIVE ����� ����	

endif

endproc

process DELIVER ����� ���� RECEIVED�TAB	 � noexit �


if TEST �RECEIVED� BASE	 then

GET �BASE�

DELIVER ����� �BASE �
 BASE � �� RECEIVED �
 UNSET �RECEIVED� BASE		

else

RACK ��ZERO � �BASE � ONE		�

RECEIVE ����� ����	

endif

endproc

endproc

endspec

��


