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Abstract. Software Adaptation is a crucial issue for the development
of a real market of components promoting software reuse. Recent work
in this field has addressed several problems related to interface and be-
havioural mismatch. In this paper, we present our proposal for software
adaptation, which builds on previous work overcoming some of its lim-
itations, and makes a significant advance to solve pending issues. Our
approach is based on the use of synchronous vectors and regular ex-
pressions for governing adaptation rules, and is supported by dedicated
algorithms and tools.

1 Introduction

Component-Based Software Engineering (CBSE) focuses on composition and
reuse, aiming to develop a market of software components, in which customers
select the most appropriate software piece depending on its technical specifica-
tion [6]. The development of such a market has always been one of the major
concerns of Software Engineering, but it has never become a reality. The reason
is that we cannot expect that any given software component perfectly matches
the needs of a system where it is trying to be integrated. Software is never reused
“as it is”, especially in case of legacy code, and a certain degree of adaptation
is always required [16].

To deal with these problems a new discipline, Software Adaptation, which is
emerging, is concerned with providing techniques to arrange already developed
pieces of software, in order to reuse them in new systems [7]. Software Adaptation
promotes the use of adaptors —specific computational entities guaranteeing that
components will interact in the right way.
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CBSE postulates that a component must be reusable from its interface [20],
which in fact constitutes its full technical specification. Hence, we have to provide
components with a specification that helps in the process of adapting and reusing
them. The intended adaptation will then take the form of a mapping among the
interface descriptions of the components involved.

The characteristics and expressiveness of the language used for interface de-
scription determines the degree of interoperability we can achieve using it, and
the kind of problems that can be solved. We can distinguish between several
levels of interoperability, and accordingly of interface description [8]: signature
level (service names and types), behavioural level (interaction protocols), se-
mantic level (functional specification of what the component actually does) and
service level (non functional properties such as quality of service). At each one,
mistmatch can occur [8] and would have to be corrected. Currently, industrial
component models only tackle the signature level, with Interface Description
Languages (IDLs). Although (automatic) adaptation in the semantic and ser-
vice levels still remains uncertain, several approaches have been presented for
extending component interfaces with behaviour, thus resulting in what we may
call a Behavioural IDL (BIDL) (e.g., WSBPEL [1] for web services).

In this paper, we focus on mismatch appearing at the behavioural level. In-
tuitively, it means that two (or more) components cannot —as they are— inter-
act till they reach correct termination states. To compensate such behavioural
incompatibilities, we propose first to use synchronous vectors as the mapping
language to make explicit communications on different message names. Second,
we extend our notation to enable writing regular expressions of vectors. Such a
mapping notation is convenient to describe in an abstract way more advanced
adaptation scenarios such as reordering of messages. Figure 1 gives a graphical
overview of our method for adaptation.
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Fig. 1. Overview of our approach for adaptation of incompatible components

The remainder of the paper is organized as follows. Section 2 formally intro-
duces our component interface model, and defines interface mismatch by means
of synchronous products. Section 3 presents our approach to component adap-



tation, which combines the points in favour of different adaptation approaches,
while trying to overcome their limitations. Our proposals for behavioural adapta-
tion with or without message reordering are supported by dedicated algorithms,
and in both cases the adaptation mappings rely on synchronous vectors. Next,
Section 4 extends our initial mapping notation with regular expressions, enabling
complex policies for applying the adaptation vectors. In Section 5, we survey the
more advanced proposals for software adaptation, and compare ours to them.
Finally, Section 6 draws up the main conclusions of this work and sketches some
future tasks that will be accomplished to extend its results.

2 Interfaces and Mismatch

2.1 Component Interfaces

Component interfaces are given using a signature and a behavioural interface.

Definition 1 (Signature). A signature Σ is a set of operation profiles. This set
is a disjoint union of provided operations and required operations. An operation
profile is simply the name of an operation, together with its argument types, its
return type and the exceptions it raises.

This definition naturally corresponds to the signature definitions in compo-
nent based models such as CCM or J2EE. Such signatures are defined using an
IDL. For the sake of simplicity in the presentation, in this paper we do not deal
with operation arguments, return values or exceptions.

We also take into account behavioural interfaces through the use of Labelled
Transition Systems (LTSs).

Definition 2 (LTS). A Labelled Transition System is a tuple (A, S, I, F, T )
where: A is an alphabet (set of events), S is a set of states, I ∈ S is the initial
state, F ⊆ S are final states, and T ⊆ S × A × S is the transition function.

The alphabet of the LTS is built on the signature. This means that for each
provided operation p in the signature, there is an element p? in the alphabet,
and for each required operation r, an element r!. As in CCS, (a, ā) denote
complementary actions —i.e., if a is p? (respectively r!), then ā is p! (respectively
r?).

LTSs are adequate as far as user-friendliness and development of formal al-
gorithms are concerned. However, higher-level behavioural languages such as
process algebras can be used to define behavioural interfaces in a more concise
way. In this paper, we use as a BIDL the part of the CCS notation restricted to
sequential processes which can be translated into LTS models: P ::= 0 | a?.P

| a!.P | P1+P2 | A, where 0 denotes a do-nothing process, a?.P a process
which receives a and then behaves as P, a!.P a process which sends a and then
behaves as P, P1+P2 a process which may act either as P1 or P2, and A denotes
the call to a process defined by an agent definition equation A = P.



As process algebras do not enable to define initial and final states, we extend
this CCS notation to tag processes with initial (i) and final (f) attributes.
Finally, 0 is often omitted in processes (e.g., a!.b![f] is used for a!.b!.0[f]).

Example 1. Consider a client that repetitively sends a query and its argument,
and then waits for an acknowledgement, quitting with an end!, and a server
repetitively waiting for a query and a value, then returning a given service:

Client[i] = query!.arg!.ack?.Client + end![f]

Server[i,f] = query?.value?.service!.Server

The LTSs for these two components are given below with initial and final states
respectively marked by input arrows and black circles.

ack?

end!

service!

query? value?arg!query!

Fig. 2. A simple client/server system

2.2 Behavioural Mismatch

Various definition of behavioural mismatch have been proposed in the field of
software adaptation and software architecture analysis [8]. We build on the most
commonly accepted one, namely deadlock-freedom. The first step is to define the
semantics of a system made up of several identified components. This semantics
can be given, following work by Arnold [2] using synchronous product.

Definition 3 (Synchronous Product). The synchronous product of n LTSs
Li = (Ai, Si, Ii, Fi, Ti), i ∈ 1..n, is the LTS (A, S, I, F, T ) such that:

– A ⊆ Πi∈1..nAi, S ⊆ Πi∈1..nSi, I = (I1, . . . , In),
– F ⊆ {(s1, . . . , sn) ∈ S |

∧
i∈1..n si ∈ Fi},

– T is defined using the following rule:
∀(s1, . . . , sn) ∈ S, ∀i, j ∈ 1..n, i < j such that
∃(si, a, s′i) ∈ Ti, ∃(sj , ā, s′j) ∈ Tj, then
(x1, . . . , xn) ∈ S and ((s1, . . . , sn), (l1, . . . , ln), (x1, . . . , xn)) ∈ T , where
∀k ∈ 1..n, lk = { a if k = i, ā if k = j, ε otherwise }
xk = { s′i if k = i, s′j if k = j, sk otherwise }

We are now able to characterize behavioural mismatch by means of deadlock.

Definition 4 (Deadlock State). Let L = (A, S, I, F, T ) be an LTS. A state
s is a deadlock state for L, noted dead(s), iff it is in S, not in F and has no
outgoing transitions: s ∈ S ∧ s 6∈ F∧ 6 ∃l ∈ A, s′ ∈ S . (s, l, s′) ∈ T .

Definition 5 (Deadlock Mismatch). An LTS L = (A, S, I, F, T ) presents a
deadlock mismatch if there is a state s in S such that dead(s).



To check if a system made up of several components presents behavioural
mismatch, its synchronous product is computed and then Definition 5 is used.

Example 2. Taking Example 1, we obtain the following synchronous product:

(query!,query?)

Fig. 3. Synchronous product for the client/server system in Figure 2

Note that the deadlock is caused by (i) the client required service end! which
has no counterpart in the server, and (ii) name mismatching between the client
required service arg! and the server provided service value?.

We may now define what is a correct adaptor for a system. An adaptor is given
by an LTS which, put into a non-deadlock-free system yields a deadlock-free one.
For this to work, the adaptor has to preempt all the component communications.
Therefore, prior to the adaptation process, component service names may have
to be renamed prefixing them by the component name, e.g., c:service!.

The product we have defined here is common in the community and hence
is supported by tools such as the CADP toolbox [9]. Our deadlock definition
however is slightly different from the one used in these tools, since it has to
distinguish between success (deadlock in a final state), and failure (deadlock in
a non-final state). Mismatch detection can be automatically checked by CADP
up to the adding within component interfaces of specific loop transitions labelled
with accept over final states. Then the EXP.OPEN tool [13] of CADP is used
to perform a full matching product between the component interfaces.

3 Adaptation based on Synchronous Vectors

3.1 Synchronizing with Vectors

The first thing to solve in adaptation is impossible communication due to dif-
ferent event/message names. Our idea is to use synchronous vectors as a way to
denote a morphism between event names in different components.

Vectors generalize synchronous product by expressing not only synchroniza-
tion between processes on the same event names (a and ā in Definition 3), but
more general correspondences between the events of the process involved.

Definition 6 (Vector). A synchronous vector (or vector for short) for a set of
Id indexed components Li = (Ai, Si, Ii, Fi, Ti), i ∈ Id, is a tuple (ei) with ei ∈
Ai ∪{ε}, ε meaning that a component does not participate in a synchronization.

Note that vectors are simple correspondences between events. Extensions can
be easily defined to consider relations between events with data.



Definition 7 (Synchronous Vector Product). The synchronous vector prod-
uct of n LTSs Li = (Ai, Si, Ii, Fi, Ti), i ∈ 1..n with a set of vectors V , is the
LTS (A, S, I, F, T ), denoted by Π(Li, V ), such that:

– A ⊆ Πi∈1..nAi, S ⊆ Πi∈1..nSi, I = (I1, . . . , In),
– F ⊆ {(s1, . . . , sn) ∈ S |

∧
i∈1..n si ∈ Fi},

– T is defined using the following rule:
((s1, . . . , sn), (l1, . . . , ln), (s′1, . . . , s

′

n)) ∈ T and (s′1, . . . , s
′

n) ∈ S if
∃(s1, . . . , sn) ∈ S and ∃v = (l1, . . . , ln) ∈ V such that,
∀li ∈ v s′i = si if li = ε and ∃(si, li, s

′

i) ∈ Ti otherwise.

3.2 Behavioural Adaptation without Reordering

We first address adaptation where only event names mismatch is taken into
account, that is impossible communications due to different message names.
Our algorithm takes as input the Id indexed set of components LTSs Li of the
systems and a mapping which is a synchronous vector V .

1. compute the product P = (AP , SP , IP , FP , TP ) = Π(Li, V )
2. obtain Prestr = (APrestr

, SPrestr
, IPrestr

, FPrestr
, TPrestr

) from P recursively re-
moving transitions and states yielding deadlocks: find a state s such that
dead(s), remove s and any transition t with target s, and do this until there
is no more such s in the LTS.

3. from Prestr, build the adaptor A = (APrestr
, SPrestr

∪ Sadd, IPrestr
, FPrestr

, TA)
where Sadd and TA are defined as follows.
For each t = (s = (s1, . . . , sn), (l1, . . . , ln), s′ = (s′1, . . . , s

′

n)) in TPrestr
, let

Lrec = {l? | l! ∈ (l1, . . . , ln)} and Lem = {l! | l? ∈ (l1, . . . , ln)}. Let then
Seqrec be the set of all permutations over Lrec and Seqem be the set of
all permutations over Lem. For each couple (R, E) in Seqrec × Seqem, R =
(r1, . . . , rnr) and E = (e1, . . . , ene), seq = (r1, . . . , rnr, e1, . . . , ene), construct
the transaction

s = q0
seq[1]
→ q1 . . . qk

seq[k+1]
→ qk+1 . . . qn−1

seq[n]
→ s′ = qn

adding each qk∈1..n−1 in Sadd and each qk
seq[k+1]
→ qk+1 (k ∈ 0..n) in TA.

This algorithm builds the most general adaptor in the sense that it simulates
any other adaptor for the mismatching system. Its complexity lies mainly in the
synchronous product construction O(|S|n) where S is the largest set of states.

3.3 Behavioural Adaptation with Reordering

Let us now extend the domain of adaptation problems we deal with. The goal is
to also address behavioural mismatch with reordering, that is, the incompatible
ordering of the events exchanged. Indeed, our behavioural adaptation proposal
above would yield an empty adaptor in presence of such behavioural mismatch,



concluding that adaptation is not possible. In this case, the adaptation process
may try to reorder protocol events in-between the components. To this purpose,
we present a second approach which complements the first one. However, it does
not replace it as the process may not agree on message reordering.

This behavioural adaptation approach is based on previous works dedicated
to the analysis of component queue boundedness [14]. In order to accommodate
behavioural mismatch, the events received by the adaptor are de-synchronized
from their emission. Our algorithm can be simulated by a translation of the
problem into Petri nets [15]. The main advantage of such an approach is that it
is equipped with efficient tools.

We first proceed by constructing a Petri net representation of the assump-
tions the components make on their environment (by mirroring their behavioural
interfaces), and then build causal dependences between the events received and
sent by the adaptor accordingly to the mapping, given under the form of syn-
chronous vectors. This allows us to build an adaptor which accommodates both
behavioural mismatch (with or without reordering).

1. for each component i with LTS Li, for each state sj ∈ Si, add a place
Control-i-s j

2. for each component i with initial state Ii, put a token in Control-i-I i

3. for each a! in
⋃

i Ai, add a place Rec-a

4. for each a? in
⋃

i Ai, add a place Em-a

5. for each component i with LTS Li, for each (s, l, s′) ∈ Ti:
– add a transition with label l̄, one arc from place Control-i-s to the

transition and one arc from the transition to place Control-i-s’

– if l has the form a! then add one arc from the transition to place Rec-a

– if l has the form a? then add one arc from place Em-a to the transition
6. for each vector v = (l1, . . . , ln) in V :

– add a transition with label tau
– for each li with form a!, add one arc from place Rec-a to the transition
– for each li with form a?, add one arc from the transition to place Em-a

7. for each tuple (f1, . . . , fn), fi ∈ Fi, of final states, add a (loop) accept

transition with arcs from and to each of the tuple fi

Once this Petri net encoding has been performed, we compute its marking
graph. If it is finite (e.g., for non recursive adaptors) then it gives a behavioural
description of the adaptor. If not (it cannot be computed in finite time), then
we compute the coverability graph of the net. Note that due to the overap-
proximation of such a graph, we add a guard [#Em-a>1] (#Em-a meaning the
number of tokens in place Em-a) on any a! transition in this graph leaving a
state where #Em-a is ω. In both cases (marking or coverability graph), step 2 of
the algorithm in Section 3.2 has to be performed on the adaptor obtained. The
complexity of this algorithm lies mainly in the marking or coverability graph
construction which is exponential [17].

This algorithm is supported by tools. We have made successful experiments
with the TINA tool [3] to generate marking and coverability graphs. Our ap-
proach yields graphs which can be too large for a human reader. We simplify the



adaptor LTS passing the resulting output file to CADP and performing a τ ∗ a

reduction on it to remove the meaningless tau transitions it contains.

3.4 Application

We here present an example following the behavioural adaptation technique
above.

Example 3. Suppose we have a client Client[i]=req!.arg!.ack?[f] and a
server Server[i]=value?.query?.service![f] with vectors <req!,query?>,
<arg!,value?> and <ack?,service!>. Such an example is typical of clients
and servers which follow different standards for the order of sending subservice
elements. The Petri net encoding (see Section 3.3) of the system is:

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

Control_c_0

Control_c_2 Control_s_2

Control_s_0

tau

tau

tau

accept

Rec_req

Rec_arg

value!

query!

arg?

Em_query

Em_value

req?

Rec_serviceEm_ack

Control_c_3 Control_s_3

Control_c_1 Control_s_1

ack! service!

Fig. 4. Petri net encoding of a simple client/server system

Computing the marking graph, we obtain an LTS with 13 states and 16
transitions (Fig. 5, left), which once reduced yields the correct adaptor (Fig. 5,
right)1.

We want to stress that our adaptation proposal is an automatic process. For
the sake of the presentation, we have shown here a simple example for which
the adaptor could be obtained manually. However, using slightly more complex
component protocols, the adaptor becomes too large to be obtained by hand.
Moreover, the use of regular expressions in the next section will increase the
complexity of the adapting process and the need for such automatic techniques.

4 Adaptation Patterns

In this section, we tackle the problem of adaptation mappings which may change
over time. In the following, we present a way to express such mappings using
regular expressions (regex), and then update our algorithms to deal with them.
1 Note the i which stands in CADP for tau transitions, and the accept loop transitions

which enable the detection of correct final states.
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Fig. 5. Initial and reduced adaptor for the client/server system

4.1 Regular Expressions (Regex) of Vectors

First, we introduce the syntax for regex. These will be used in place of the basic
vector mappings we presented in Section 3.

Definition 8 (Vector Regex). Given n LTSs Li = (Ai, Si, Ii, Fi, Ti), and a set
of vectors V = {(eij)}j for their adaptation, with eij ∈ Ai∪{ε}, a (vector) regex
for these LTSs can be generated by the following syntax: R ::= v (VECTOR)|

R1.R2 (SEQUENCE)| R1+R2 (CHOICE)| R* (ITERATION), where R, R1, R2 are
regex, and v is a vector in V

A graphical description such as LTS labelled with vectors might be used
instead of regular expressions to favour readability and user-friendliness of the
notation.

Example 4 (Alternating use client). Suppose we have a system formed by one
client C and two servers, S and A:

C[i] = end![f] + req!.arg!.ack?.C,
S[i,f] = value?.query?.service!.S, and
A[i,f] = value?.query?.service!.A.

One may want to express in the adaptation mapping that the client accesses
the two servers alternatively, and not always the same one. For this, we use the
following regex: (vs1.vs2.vs3.va1.va2.va3)*.vend with

vs1 =<req!,query?,ε>, va1 =<req!,ε,query?>, vend =<end!,ε,ε>,
vs2 =<arg!,value?,ε>, va2 =<arg!,ε,value?>,
vs3 =<ack?,service!,ε>, va3 =<ack?,ε,service!>.

Example 5 (Connected vs non connected modes). Suppose a client/server system
where the client C sends its id only once at login time, while the server S requires
an identification every time the client does a request. Here we have:

C[i]=log!.Logged, with



Logged[f]=req!.ack?.Logged, and
S[i,f]=log?.req?.ack!.S

The regex describing the adaptation required is now v0.v2.v3.(v1.v2.v3)* with
v0 =<log!,log?>, v1 =< ε,log?>, v2 =<req!,req?>, v3 =<ack?,ack!>.

4.2 Behavioural Adaptation without Reordering

To be able to update our algorithms for using our new regex mappings2, we first
define how to obtain an LTS from them. This corresponds to the well-known
problem of obtaining an automaton which recognizes the language of a regex [10].
The only difference is that the atoms of our regex are vectors and not elements
of basic alphabets. Instead of using a regex, one may also use directly the LTS
that derives from such regex, (i.e., an LTS where the alphabet corresponds to
vectors).

We then modify the synchronous vector product to take a regex LTS in place
of the vector argument.

Definition 9 (Synchronous Vector Product (with regex LTS)). The syn-
chronous vector product (with regex LTS) of n LTS Li = (Ai, Si, Ii, Fi, Ti),
i ∈ 1..n with a regex LTS LR = (AR, SR, IR, FR, TR), is the LTS (A, S, I, F, T )
such that:

– A ⊆ AR × Πi∈1..nAi, S ⊆ SR × Πi∈1..nSi, I = (IR, I1, . . . , In),
– F ⊆ {(sr, s1, . . . , sn) ∈ S | sr ∈ FR ∧

∧
i∈1..n si ∈ Fi},

– T is defined using the following rule:
((sr, s1, . . . , sn), (lr, l1, . . . , ln), (s′r , s

′

1, . . . , s
′

n)) ∈ T and (s′r, s
′

1, . . . , s
′

n) ∈ S

if
∃(sr, s1, . . . , sn) ∈ S and ∃v = (sr, (lr1

, . . . , lrn
), s′r) ∈ TR with,

∀lri
s′i = si if lri

= ε and ∃(si, lri
, s′i) ∈ Ti otherwise.

To apply the Section 3.2 algorithm we just have now to discard the first ele-
ment of the product components, that is, from the LTS L = (A, S, I, F, T ) obtain
the LTS L′ =proj(L) = (A′, S′, I ′, F ′, T ′) such that ∀X ∈ {A, S, I, F} X ′ =
{cdr(x) | x ∈ X} and T ′ = {(cdr(s),cdr(l),cdr(s′)) | (s, l, s′) ∈ T } with
cdr((x0, x1, . . . , xn)) = (x1, . . . , xn).

We may now modify the algorithm for behavioural mismatching without
reodering as presented in Section 3.2. The new algorithm takes as input the Id

indexed set of components LTSs Li of the system and a mapping which is a
regex R (for the set of LTSs). We just have to replace step 1 in this algorithm
by:

1. compute the LTS LR for the regex R
2. compute the product PR = (APR

, SPR
, IPR

, FPR
, TPR

) = Π(LR, Li)
3. compute P =proj(PR)

Its complexity is O(|S|n+1) where S is the largest set of states.
2 Note that our new algorithms would apply to the vector mappings we have defined

in the previous section, just taking the set V = {vi} of vectors as the regex (v1 +
v2 + . . . + vn)∗.



4.3 Behavioural Adaptation with Reordering

Our algorithm for behavioural adaptation with reordering can also be adapted
to deal with regex.

1. compute the LTS LR = (AR, SR, IR, FR, TR) for the regex R.
2. build the Petri net encoding for the problem as presented in section 3.3,

replacing part 6 with:
– for each state sR in SR, add a place ControlR-s R

– put a token in place ControlR-I R

– for each transition tR = (sR, (l1, . . . , ln), s′R) in TR:
• add a transition with label tau, one arc from place ControlR-s R to

the transition and one arc from the transition to place ControlR-s’ R

• for each li which has the form a!, add one arc from place Rec-a to
the transition

• for each li which has the form a?, add one arc from the transition to
place Em-a

3. in the building of accept transitions, add FR to the Fi taken into account
(final states now correspond to acceptance states of the regex LTS).

The rest of the algorithm (computing marking or coverability graph, and re-
ducing them) is the same. Similarly to Section 3.3, this algorithm is exponential.

4.4 Application

We here develop Example 4 above, following our behavioural adaptation tech-
nique.

Example 6 (Example 4 developed). First note that, as explained before, we re-
name arguments to avoid name clash. We have:

C[i] = c:end![f] + c:req!.c:arg!.c:ack?.C,
S[i,f] = s:value?.s:query?.s:service!.S, and
A[i,f] = a:value?.a:query?.a:service!.A.

To express that the client alternatively uses the two servers we may use the
following regex: R1 =(vs1.vs2.vs3.va1.va2.va3)*.vend with:

vs1 =<c:req!,s:query?,ε>, va1 =<c:req!,ε,a:query?>,
vs2 =<c:arg!,s:value?,ε>, va2 =<c:arg!,ε,a:value?>,
vs3 =<c:ack?,s:service!,ε>, va3 =<c:ack?,ε,a:service!>,
vend =<c:end!,ε,ε>

Note that this mapping is probably overspecified, since it imposes a strict alter-
nation between servers. Instead, one may choose to authorize the client to access
any server it wants. Then, the mapping becomes:

R2 =(vs1.vs2.vs3 + va1.va2.va3)*.vend

We have run both examples and obtained (after reduction) the adaptors in
Fig. 6 (left for R1, and right for R2.) Note that applying step 2 of the algorithm
presented in Section 3.2, the state 1 and the corresponding transition are removed
for R1. Both adapters solve the existing mismatch, making the system deadlock-
free.
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Fig. 6. Adaptors obtained for the alternating client/server system

5 Related Work

For a thorough review of the state of the art in Software Adaptation, we refer
to [8]. Here, we will mention only a few works, those more closely related to our
proposal.

As said in the introduction, the need for adaptation may occur at any of the
levels of interoperability described, while currently available component plat-
forms address software adaptation only at the signature level. Hence, most of
the recent proposals for adaptation of software have jumped from the signature
level to the specification and analysis of behavioural interfaces, promoting the
use of BIDLs for describing component protocols.

The foundation for behavioural adaptation was set by Yellin and Strom. In
their seminal paper [21], they introduced formally the notion of adaptor as a
software entity capable of enabling the interoperation of two components with
mismatching behaviour. They used finite state machines to specify component
interactive behaviour, to define a relation of compatibility, and to address the
task of (semi-)automatic adaptor generation.

More recently, in [18], the authors present an adaptation approach as a so-
lution to particular synchronization problems between concurrent components,
for instance one component uses or is accessed by two other components. This
approach is based on algorithms close to the synchronous products we use in
this paper. Moreover, they can solve protocol incompatibilities enabling one of
the involved component to perform several actions before or after several syn-
chronizations with its partners. In comparison, our proposal is more general and
based on a rich notation to deal with possibly complex adaptation scenarios,
whereas their approach works out only precise situations in which mismatch
may happen, without using any mapping language for adaptor specification.

Taking Yellin and Strom’s proposal [21] as a starting point, the work of Brogi
and collaborators (BBCP) [4, 5] presents a methodology for behavioural adapta-
tion. In their proposal, component behaviour is specified using a process algebra
—a subset of the π-calculus—, where service offering/invocation is represented
by input/output actions in the calculus, respectively. The starting point of the
adaptation process is a mapping that states correspondences between services of



the components being adapted. This mapping can be considered as an abstract
specification of the required adaptor. Then, an adaptor generation algorithm re-
fines the specification given by the mapping into a concrete adaptor implemen-
tation, taking also into account the behavioural interfaces of the components,
which ensures correct interaction between them according to the mapping. The
adaptor is able to accommodate not only syntactical mismatch between service
names, but also the interaction protocols that the components follow (i.e., the
partial ordering in which services are offered/invoked).

Another interesting proposal in this field is that of Inverardi and Tivoli
(IT) [11]. Starting from the specification with MSCs of the components to be
assembled and of the properties that the resulting system should verify (liveness
and safety properties expressed as specific processes), they automatically derive
the adaptor glue code for the set of components in order to obtain a property-
satisfying system. The IT proposal has been extended in [12] with the use of
temporal logic; coordination policies are expressed as LTL properties, and then
translated into Büchi automata.

Our approach addresses system-wide adaptation (i.e., differently from BBCP,
it may involve more than two components). It is based on LTS descriptions
of component behaviour, instead of process algebra as in BBCP. However, we
may also describe behaviours by means of a simple process algebra, and use
its operational semantics to derivate LTSs from it. Differently from IT, we use
synchronous vectors for adaptor specification, playing a similar function than
the mappings rules in BBCP. With that, we are able to perform adaptation of
incompatible events.

With respect to behavioural adaptation, our approach can be considered as
both generative and restrictive [8], since we address behavioural adaptation by
enabling message reordering (as in BBCP), while we also remove incorrect be-
haviour (as in IT). Similarly to both approaches, our main goal is to ensure dead-
lock freedom. However, more complex adaptation policies and properties can be
specified by means of regular expressions. Indeed, the most relevant achievement
of our proposal is this use of regular expressions for imposing additional proper-
ties over mappings. In fact, the semantics of BBCP mappings can be expressed
by combining their different rules (in our case, vectors) in a regular expression by
means of the choice (+) operator. On the contrary, our regex are much more ex-
pressive, solving the problem of BBCP underspecified mappings [4], and allowing
to take into account a new class of adaptation problems.

In Table 1 we give a synthesis of the features of our approach compared to
IT and BBCP.

6 Conclusion

Software Adaptation has become a crucial issue for the development of a real
market of components enhancing software reuse, especially when dealing with



criteria IT BBCP our proposal

behavioural descriptions automata proc. algebra LTS or proc. algebra

properties no deadlock, no deadlock no deadlock
LTL properties — regular expressions

mappings/adaptor abstraction yes yes yes

name mismatch no yes yes

data types no yes no

message reordering no yes yes

system-wide adaptation yes no yes
Table 1. Comparison of Adaptation approaches

legacy systems. Recent research work in this field —in particular that of BBCP
and IT [4, 5, 11, 12]— has addressed several problems related to signature and
behavioural mismatch. In this paper, we have shown our proposal for software
adaptation based on a notation, namely regular expressions of synchronous vec-
tors, and equipped with algorithms and tools. It builds on BBCP and IT previous
works, overcoming some of their limitations, and making a significant advance
to solve some of the pending issues.

There are still some open issues in our proposal, deserving future work. First,
and differently from BBCP, we do not deal with data types, nor with one-to-many
correspondences between services. Taking data into account would require more
expressive models than LTSs, such as Symbolic Transition Systems (STSs) [14].
This is a perspective for our work, since it allows the description of the data
involved in the operations within the protocol without suffering from the state
explosion problem that usually occurs in process algebraic approaches.

With respect to one-to-many correspondences between services (one of the
strong points in favour of the BBCP proposal), we intend to explore how regular
expressions can be used for that purpose. More expressive models for mappings,
such as non-regular protocols [19], could also be extended to vectors in order
to get a bigger class of properties expressible at the adaptor level (e.g., load-
balancing adaptation of the access of clients to servers).

Finally, we intend to implement our adaptation algorithms in ETS, an Eclipse
plug-in that we have developed for the experimentation over LTS and STS.
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