
An Embedded Language Framework

for Hardware Compilation ?

Koen Claessen1 and Gordon Pace2

1 Chalmers University, Gothenburg, Sweden
2

Inria Rhône-Alpes, Grenoble, France

Abstract. Various languages have been proposed to describe syn-
chronous hardware at an abstract, yet synthesisable level. We propose
a uniform framework within which such languages can be developed,
and combined together for simulation, synthesis, and verification. We do
this by embedding the languages in Lava — a hardware description lan-
guage (HDL), itself embedded in the functional programming language
Haskell. The approach allows us to easily experiment with new formal
languages and language features, and also provides easy access to formal
verification tools aiding program verification.

1 Introduction

There are two essentially different ways of describing hardware. One way is struc-

tural description, where the designer indicates what components should be used
and how they should be connected. Designing hardware at the structural level
can be rather tedious and time consuming. Sometimes, one affords to exchange
speed or size of a circuit for the ability to design a circuit by describing its be-
haviour at a higher level of abstraction which can then be automatically compiled

down to structural hardware. This way of describing circuit is usually called a
synthesisable behavioural description1 . Behavioural descriptions are also often
used to describe the specification of a circuit.

There exist a number of languages that one can use to structurally describe
hardware. An example is the synchronous language Lustre [8, 9], which can be
compiled into hardware structurally [21]. Languages that can be used for synthe-
sisable behavioural description are for example Esterel [2] and Occam [17]. The
popular industrial description languages VHDL and Verilog allow both kinds of
descriptions.

? This work has been partially supported by the European Research Consortium in
Informatics and Mathematics (ERCIM).

1 These are to be distinguished from behavioural descriptions (as used in industrial
HDLs such as Verilog and VHDL) which are used to describe the functionality of a
circuit, but are do not necessarily have a hardware counterpart.

In this paper, we will only deal with synchronous hardware, that is, all latches in
a circuit listen to one omnipresent global clock. Moreover, at every clock cycle,
if each input to a circuit is defined, each point in the circuit stabilises to exactly
one voltage, low or high. However, we do not require that every feedback loop
in the circuit contains a latch.

There are two main classes of synthesisable languages: ones where the descrip-
tion determines the timing behaviour (cycle by cycle) of the resultant circuit,
and ones with no explicit timing control, and where the compilation only guar-
antees that the output at the end of the algorithm (or at designated points in the
algorithm) matches that of the circuit. Languages with strict timing are neces-
sary to describe circuits such as protocol implementations, and reactive systems,
where the circuit continuously runs, sampling inputs, and behaving accordingly.
In practice, some compilation schemata fall somewhere in between these two
classes. In particular, commercial synthesis tools for Verilog and VHDL usually
provide the user with the option of choosing how strictly the timing behaviour
specified is adhered to. In the rest of the paper, we will be talking exclusively

of strict timing compilation, but the approach is equally applicable to languages
with loose timing.

Embedded Description Languages

Using a technique from the programming language community, called embedded

languages [11], we present a framework to merge structural and behavioural
hardware descriptions. An embedded description language is realised by means of
a library in an already existing programming language, called the host language.
This library provides the syntax and semantics of the embedded language by
exporting function names and implementations.

The basic embedded language we use is Lava [5]. Lava is a structural hardware
description language embedded in the functional programming language Haskell
[18]. From hardware descriptions in Lava, EDIF netlist descriptions can be au-
tomatically generated, for example to implement the described circuit on a Field
Programmable Gate Array (FPGA). This has previously led to highly efficient
implementations of complicated circuits [6, 25].

Embedding a language is a powerful concept because descriptions in the embed-
ded language are first-class objects in the host language. In the case of Lava, this
means that hardware descriptions can be generated, analysed and transformed
using a full-blown programming language.

The idea is now to build a layer on top of Lava, which embeds a synthesisable
behavioural description language. In order to do this, we have to specify the
syntax of the behavioural language, and the way it is compiled into a structural
hardware description. It is possible to describe all this in the Lava framework: the
syntax is described as a Haskell datatype, and the compilation process described
as a Lava circuit description.

But why stop there? It is possible to embed several different behavioural descrip-
tion languages, each with their own features, advantages and disadvantages. In

this way, we can describe a hardware system, using different languages for dif-
ferent parts, all within a single framework.

Examples of uses of embedding in this way are: behavioural in structural, where
we use a behavioural language to describe some parts, and plug these parts to-
gether using a structural language; multiple behavioural in structural, the same,
but having several different behavioural languages; structural in behavioural, so
that we can describe a sub-procedure of the behavioural algorithm structurally;
and even behavioural in behavioural, where we can describe sub-procedures for
one behavioural language by using another behavioural language. All these ex-
amples are useful in describing circuits as well as their specifications.

Some of these examples are non-trivial to achieve, and we do not claim to have
a generic solution to them. Our contribution proposes a common framework, in
which one can quickly experiment with different approaches and new behavioural
languages. The framework we propose, Lava, is powerful enough to use for de-
scribing new languages, giving semantics to them, implementing them, and com-
bining them. In the context of developing behavioural description languages, it is
very convenient to have circuit descriptions, analyses, transformations, and im-
plementation and verification methods backed up by a full-blown programming
language.

In section 2 we briefly introduce Lava and show how a simple high level language,
that of regular expressions, can be embedded in Lava and how instances of
this language can then be manipulated syntactically and compiled into circuits.
In section 3 we illustrate how the embedded language approach extends easily
to more complex languages by presenting a small, imperative style language,
Flash. Section 4 then discusses more advanced issues: various ways of combining
different high level languages, verification of compiled programs and exploring
potentially dangerous combinational loops.

2 Embedding Hardware Description Languages

Circuit Descriptions in Lava

Circuit descriptions in Lava correspond to function definitions in Haskell. The
Lava library provides primitive hardware components such as gates, multiplexers
and delay components. We give a short introduction to Lava by example.

Here is an example of a description of a register. It contains a multiplexer, mux,
and a delay component, delay. The delay component holds the state of the
register and is initialised to low.

setRegister (set, new) = now

where

old = delay low now

now = mux (set, (old, new))

new

now

old

1

set

0 M
U

X

Note that setRegister is declared as a circuit with two inputs and one output.
Note also that definitions of outputs (now) and possible local wires (old) are
given in the where-part of the declaration.

After we have made a circuit description, we can simulate the circuit in Lava
as a normal Haskell function. We can also generate VHDL or EDIF describing
the circuit. It is possible to apply circuit transformations such as retiming, and
to perform circuit analyses such as performance and timing analysis. Lava is
connected to a number of formal verification tools, so we can also automatically
prove properties about the circuits.

Generic and Parametrized Circuit Definitions

We can use the one bit register to create an n-bit register array, by putting n

registers together. In Lava, inputs which can be arbitrarily wide are represented
by means of lists. A generic circuit, working for any number of inputs, can then
be defined by recursion over the structure of this list.

setRegisterArray (set, []) = []

setRegisterArray (set, new:news) = val:vals

where

val = setRegister (set, new)

vals = setRegisterArray (set, news)

Note how we use pattern matching to distinguish the cases when the list is empty
([]) and non-empty (x:xs, where x is the first element in the list, and xs the
rest).

Circuit descriptions can also be parametrized. For example, to create a circuit
with n delay components in series, we introduce n as a parameter to the descrip-
tion.

delayN 0 inp = inp

delayN n inp = out

where

inp’ = delay low inp

out = delayN (n-1) inp’

Again, we use pattern matching and recursion to define the circuit. Note that
the parameter n is static, meaning that it has to be known when we want to
synthesise the circuit.

A parameter to a circuit does not have to be a number. For example, we can
express circuit descriptions which take other circuits as parameters. We call these
parametrized circuits connection patterns. Other examples of parameters include
truth tables, decision trees and state machine descriptions. In this paper, we will
talk about circuit descriptions which take behavioural hardware descriptions, or
programs, as parameters.

Behavioural Descriptions as Objects

In order to parametrize the circuit definitions with behavioural descriptions,

we have to embed a behavioural description language in Lava. We do this by
declaring a Haskell datatype representing the syntax of the behavioural language.
To illustrate the concepts with a small language, we will use regular expressions.
The syntax of regular expressions is expressed as a Haskell datatype:

data RegExp = EmptyString

| Input Sig

| Star RegExp

| RegExp :+: RegExp

| RegExp :>: RegExp

The data objects belonging to this type are interpreted as regular expressions
with, for example, a(b + c)∗ being expressed as:

Input a :>: Star (Input a :+: Input c)

Note that the variables a, b and c are of type Sig — they are signals provided
by the programmer of the regular expression. They can either be outputs from
another existing circuit, or be taken as extra parameters to the definition of
a particular regular expression. We interpret the signal a being high as the
character ‘a’ being present in the input.

Since regular expressions are now simply data objects, we can generate these
expressions using Haskell programs. Thus, for example, we can define a power

function for regular expressions:

power 0 e = EmptyString

power n e = e :>: power (n-1) e

Similarly, regular expressions can be manipulated and modified. For example, a
simple rewriting simplification can be defined as follows:

simplify (EmptyString :>: e) = simplify e

simplify (EmptyString :+: e)

| containsEmpty e = simplify e

| otherwise = EmptyString :+: simplify e

simplify (Star (Star e)) = simplify (Star e)

...

Another useful algorithm which can be expressed is the one presented in [20],
which reduces (in linear time) a regular expression e to another one f such that
the empty string does not occur in f and e∗ is the same language as f∗. Thus,
from now on, we assume that the body of a Star cannot produce the empty
string.

Compiling Regular Expressions into Circuits

The circuits we generate for regular expressions have one input start and two
outputs match, and prefix. When start is set to high, the circuit will start
sampling the signals. The output match is then set to high when the resulting

sequence of signals is included in the language represented by the expression.
The output prefix corresponds to a wire which indicates whether the compiled
circuit is still active, and the parsing of the regular expression has not yet failed
with respect to the received inputs. Note that the circuit will get extra inputs,
which correspond to the parsed symbols. They are part of the regular expression,
by means of the Input construct.

prefix

start

match

The type of the resulting circuit is thus:

type Circuit_RegExp = Sig -> (Sig, Sig)

since the resulting circuit has one input and two outputs.
We express the compilation process as a circuit definition
parametrized by a regular expression:

regexp :: RegExp -> Circuit_RegExp

prefix

start

match

low

The Empty String

The compilation of the empty string is straightforward,
given the usage of the prefix and match wires:

regexp EmptyString start = (prefix, match)

where

prefix = low

match = start

start

match

a
prefix

Signal input

The regular expression Input a is matched if, and only
if the signal a is high when the circuit is started.

regexp (Input a) start = (prefix, match)

where

prefix = and2 (start, a)

match = delay low prefix

start

match

e

f prefix

Sequential composition

The regular expression e :>: f must start accepting ex-
pression e, and upon matching it, start trying to match
expression f.

regexp (rexp1 :>: rexp2) start = (prefix, match)

where

(prefix1, match1) = regexp rexp1 start

(prefix2, match) = regexp rexp2 match1

prefix = or2 (prefix1, prefix2)

e prefix

start

match

Loops

The circuit accepting regular expression Star e is very
similar to that accepting e, but it is restarted every time
the inputs match e.

regexp (Star rexp) start = (prefix, match)

where

(prefix, match’) = regexp rexp match

match = or2 (start, match’)

f

start

e

match

prefix

Non-deterministic choice

The inputs match regular expression e :+: f exactly
when they match expression e or f.

regexp (rexp1 :+: rexp2) start = (prefix, match)

where

(prefix1, match1) = regexp rexp1 start

(prefix2, match2) = regexp rexp2 start

prefix = or2 (prefix1, prefix2)

match = or2 (match1, match2)

A circuit resulting from such a compilation scheme is not necessarily efficient
enough. Often, there are optimisations we can make, such as constant folding
(when the input to a gate is always low or always high), sharing introduction
(when we have identical gates with identical inputs), tree introduction (changing
a linear chain of associative gates into a balanced tree), and constant introduction
(when a circuit point provably always has the same value). Sometimes, more
rigorous optimisation methods are necessary; in this case we can use external
circuit optimisation tools such as SIS [7].

3 Compiling Flash

In this section, we will show a slightly bigger example of a language, we will
call Flash. It is quite a basic language, but it illustrates many of the issues
one encounters when dealing with hardware compilation. As it is meant just
an example, we deal quite informally with the semantics of Flash. More formal
treatment of the semantics of similar languages can be found in [1, 17].

Flash Syntax

As before, we first declare a Haskell datatype that embeds the syntax of Flash.

data Flash = Skip

| Delay

| Shout

| IfThenElse Sig (Flash, Flash)

| While Sig Flash

| Flash :>> Flash

| Flash :|| Flash

Flash is a simple imperative programming language containing the usual state-
ments like skip, sequential composition (:>>), if-then-else, and while. For sim-
plicity, the language has no expressions. Instead, we can use Lava gates directly
to create a signal representing the condition in both the if-then-else and the
while loop.

To create some interesting output, we have added a Shout statement. This state-
ment is in the spirit of the Esterel emit statement [2]. It makes a special output
of the circuit, called shout, high whenever Shout is executed. Further, we also
have parallel composition (:||), which has a fork-join semantics. Lastly, the de-
lay statement is the only statement that takes time. When executed, it blocks
the process until the next clock cycle. Note that Shout takes no time to execute.

For example, a Flash program to output a clock-like output alternating between
high and low could be written as:

alternate = While (high) (Shout :>> Delay :>> Delay)

Compiling Flash

finish

start

shout

The circuits that we compile Flash programs into have
one input, start, which is set to high to start the pro-
gram. They will have two outputs: shout, which be-
comes high when the program shouts, and finish, which
becomes high when the program is done.

In figure 1, we see the compilation schemata for the various language constructs
of Flash. We show the Lava code for some of the constructs.

The case for the while loop looks as follows:

flash (While cond prog) start = (shout, finish)

where

(shout, finish’) = flash prog start’

restart = or2 (start, finish’)

start’ = and2 (restart, cond)

finish = and2 (restart, inv cond)

We might (re)start the body of the while loop, if the whole loop is started or if
the body has just finished. In that case, depending on the condition, we restart
the body or we finish. Note that we have created a loop since finish’ depends
on start’ depends on restart depends on finish’. In fact, this loop might be
a combinational loop — we say more about this in section 4.

Here is how we translate parallel composition:

flash (prog1 :|| prog2) start = (shout, finish)

start

finish

low shout

start

finish

shout low

start

finish

shout

P

Q

start

finish

shout

Skip Shout Delay Sequential composition

shout

Q

P

start

finish

cond

finish

Synchroniser

P

Q

shout

start

shout

start

finish

P

cond

Conditional Parallel composition While loops

Fig. 1. Compiling Flash

where

(shout1, finish1) = flash prog1 start

(shout2, finish2) = flash prog2 start

shout = or2 (shout1, shout2)

finish = synchroniser (finish1, finish2)

We start both processes as soon as the parallel composition is started. We shout
when one of the processes shouts. But when do we finish? We use a little circuit,
called synchroniser, which keeps track of both processes, and generates a high
on the finish signal exactly when both processes have finished.

synchroniser (finish1, finish2) = finish

where

both = and2 (finish1, finish2)

one = xor2 (finish1, finish2)

wait = delay low (xor2 (one, wait))

finish = or2 (both, and2 (wait, one))

The wire both is high when both processes are finishing at the same time. The
wire one is high when exactly one process is finishing. The wire wait is high
when one process has finished but not the other.

4 Advantages of Embedding

In this section, we discuss some of the advantages of embedding behavioral lan-
guages in a general hardware description framework like Lava.

Combining Languages

The choice of the right language to solve a problem is crucial both to simplify the
algorithm, and to generate more efficient circuits. For example, regular expres-
sions can be very useful to generate circuits which validate their input, but, since
they have no outputting mechanism, it becomes very difficult (or impossible) to
perform calculations and output their results.

Consider the problem of designing a circuit that accepts input sequences that
behave like a clock with half-period n. This circuit might be useful for monitoring
real input, or when expressing properties for later formal verification. It is easy
to write a generic regular expression with the specified behaviour:

acceptClock n c = Star (power n (Input c)

:>: power n (Input (inv c))

)

Now consider using a regular expression to design a circuit that monitors two
inputs, accepting them only if they behave like clocks with half-periods n and
m. The size of the smallest regular expression capable of doing this has a size of
the order of magnitude of the least common denominator of n and m, which is
too big in practice.

There are two solutions. One is to design a new language, in which it is easy
to describe circuits as the one mentioned above. In fact, it would suffice to add
conjunction as a regular expression operator, which would require some extra
compile-time effort. The other is to combine the solutions to the two subproblems
(recognising each clock) at the structural level using Lava:

acceptTwoClocks n m (c1,c2) = ok

where

(ok1,_) = regexp (acceptClock n c1) start

(ok2,_) = regexp (acceptClock m c2) start

start = delay high low

ok = and2 (ok1, ok2)

Obviously, the used subprograms need not be in the same language. For example,
if we want to run a Flash program prg only to abort it as soon as the input does
not match a regular expression rexp, we can use the following parameterised
circuit:

abort rexp prg start = (shout’, finish)

where

(shout, finish) = flash prg start

(prefix, _) = regexp rexp start

shout’ = and2 (shout, prefix)

Nesting Languages

A problem with the approach mentioned above is that we deal with the input and
output of the produced circuits at a rather low-level. This is quite error-prone,
and it becomes difficult to change the shape of the produced circuits.

A cleaner approach is not to express the combination of programs at the struc-
tural level, but at the behavioural one. Thus, for example, one could allow adding
Flash subprograms to regular expressions by augmenting the syntax of regular
expressions by:

data RegExp = ... | ImportFlash Flash

Consider the problem of generating a circuit which recognises the input of a, b
and c in any order. If this is required in a sub-expression of a regular expression,
the result of expanding the expression can lead to a blow up in circuit size.
However, a Flash program for this is rather simple to write:

wait s = While (inv s) Delay

perm3 (a,b,c) = (wait a :|| wait b :|| wait c) :>> Delay

If this is required within a regular expression, one can easily use it as for example:

Star (ImportFlash (perm3 (a,b,c)) :+: ImportFlash (perm3 (d,e,f)))

Fiddling with the interfaces to make them match is thus done only once when
the compilation of a regular expression of the form ImportFlash p is defined.
However, this approach still has the undesirable effect that for every new lan-
guage one uses, the compilers for all other languages need to be modified to be
able to import programs from the new languages into the old ones.

A more extendable approach would be to add one Import construct for each
language:

data RegExp = ... | ImportRegExp Circuit_RegExp

data Flash = ... | ImportFlash Circuit_Flash

Now, in order to import Flash programs in regular expressions, all we have
to provide is a parameterised circuit flash_regexp, which converts from one
format to the other.

flash_regexp flashc start = (prefix, match)

where

(shout, finish) = flashc start

prefix = shout

match = finish

Needless to say, there are other ways in which a Flash circuit can be transformed
into one which can be used by regular expressions. For example, one can gener-
ate (or calculate) an active wire from Flash circuits which corresponds to the

regular expression prefix wire. In defining these ‘conversion’ circuits, we have
to be careful here not to invalidate the invariants that the languages involved
assume and obey. The technique mentioned in the next section can be used to
help with this. ‘Calling’ another language now simply becomes a matter of using
the Import construct and the right conversion circuits.

Error Wires

Often, something can go wrong during the execution of a program. What exactly
can go wrong depends on the semantics of the language. A standard example in
a language with arithmetic expressions is division by zero. It is not clear what
the corresponding compiled circuit would do in that case, since we do not want
the circuit simply to ‘abort’.

In a language with parallel composition, things can go wrong due to parts of
the circuit requiring single access: two processes trying to send a message on the
same channel at the same time, two processes updating a shared variable at the
same time, etc. If the semantics of the language disallows these situations, then
we should make sure that the programs we compile to hardware are well-behaved.

The solution we propose is to have an extra output to the circuit which goes high
as soon as something goes wrong with the program execution — an error wire.
This wire and the logic generating it will not appear in the final implementation
of the circuit, but will be used to verify (by means of model checking methods)
that the program in question is error-free.

Consider a change to the semantics of Flash, requiring that only one process
can shout at the same time. We would like to be warned at compile time if a
program violates that property. Thus, we add an error wire to the output of Flash
circuits, and adapt the compilation scheme accordingly. Here is the interesting
case, parallel composition:

flash (prog1 :|| prog2) start = (shout, error, finish)

where

(shout1, error1, finish1) = flash prog1 start

(shout2, error2, finish2) = flash prog2 start

shout = or2 (shout1, shout2)

both = and2 (shout1, shout2)

error = orl [error1, both, error2]

finish = synchroniser (finish1, finish2)

There is an error in parallel composition of two programs if there was an error
in (at least) one of the processes, or if both processes shout at the same time.
We can now declare a property, a circuit which outputs are always high if and
only if a certain property holds.

prop_FlashProgramOk prog start = inv error

where

(_, error, _) = flash prog start

The output ok is high if and only if there is no error in the program prog. We
can check this property using the Lava command verify.

Lava> verify (prop_FlashProgramOk (alternate :|| (Delay :>> alternate))

Verify: ... Valid.

Lava> verify (prop_FlashProgramOk (Shout :>> Delay :|| Shout))

Verify: ... Falsifiable.

<high>

The error wire technique can also be used to find bugs in the compilation scheme
itself. Many languages have certain invariants that hold for every program. By
raising the signal on the error wire when the invariant is violated, and verifying
the absence of this error for random programs (by using a technique similar to
the one developed in [4]), we can find bugs or increase our confidence in the
compilation scheme.

Combinational Loops

Looking at the compilation scheme for the while construct, we can see that it is
possible to introduce combinational loops: cycles in the circuit without a delay
component.

The usual solution in this case is to require that body of the while loop takes
time — the execution path goes through at least one Delay statement. But
even with this restriction, the resulting circuit might still contain combinational
loops. However, these combinational loops are not bad, in the sense that the
actual circuit never produces undefined outputs. In this case, the combinational
loops are called constructive [24].

Even when all combinational loops in a given circuit are constructive, most of
the external formal verification tools that Lava is connected to, are not able to
deal with these loops. Fortunately, the method of temporal induction [23] can
naturally verify properties of cyclic circuit definitions. However, the method is
only sound if all loops in the circuit are constructive loops.

Thus, before we implement or formally verify actual circuits containing possible
bad loops, we have to prove that all loops all constructive. Lava provides a circuit
analysis, called constructive, which does exactly that [3]. Here is how we can
use it:

Lava> verify (constructive (flash (While high Delay)))

Verify: ... Valid.

Lava> verify (constructive (flash (While high Skip)))

Verify: ... Falsifiable.

<high>

What about parallel composition? When is it acceptable for a body of a while
loop to contain a parallel composition? Take, for example, the following Flash
program:

possibleProblem inp = While high

(IfThenElse inp (Skip , Delay)

:|| Delay

)

In principle, we should be able to execute this, since for all programs p, the
program p :|| Delay takes time to execute. Let us analyse the resulting circuit:

possibleProblemCirc inp = flash (possibleProblem inp)

Lava> verify (constructive possibleProblemCirc)

Verify: ... Falsifiable.

<low, high>

<high, low>

This shows that the simple compilation scheme we have used to illustrate our
examples is not sufficiently robust to handle this example. Obviously, one can
require that both sides of a parallel composition should take time (when appear-
ing immediately inside the body of a while loop). However, this is a stringent
and rather unsatisfactory restriction. A better solution would be to use a more
complex compilation of loops, as used, for example, in [1].

5 Conclusions

Related Work

Hardware compilation of high-level languages has been around for quite a while.
The approach has been considered potentially practical mainly since the intro-
duction of programmable circuits. The compilation for various languages have
since appeared in the literature, see e.g. [15, 17, 16, 1]. An introductory overview
of the methodology appears in [26].

It is widely recognised that different styles of synchronous languages lend them-
selves more easily to different applications. In [13, 14], Maraninchi and Rémond
present Mode-Automata — a combination of state diagram based descriptions
(based on Argos [12]) with the dataflow language Lustre [8]. The semantics of the
resulting language are defined by a translation into plain Lustre. The approach
is thus very similar to the one we use, except that they use external programs to
read mode-automata and translate them into Lustre. The embedded language
approach we use, allows us to translate and reason about the new language at the
same level as our base HDL Lava. This allows a much more versatile approach
to language combination.

Poigné and Holenderski [19] present a theoretical framework for combining syn-
chronous languages by using synchronous automata as the common semantic
level. These ideas have been implemented in the Synchrony Workbench

where programs written in one of a number of languages (Esterel, Lustre, Argos,

and Synchronous Eifel) can be combined together. The main difference between
their work and that presented in this paper, is that we embed the languages we
use, and our intermediate language, Lava, is itself an embedded language. This
gives us certain advantages: it is easier to add new languages to the framework,
and language combination can be easily adapted depending on the requirements.

Discussion

We have presented a uniform framework in which it is easy to implement and
hence experiment with synthesisable behavioural languages. By embedding these
languages in Lava, we are able to define their compilation in a natural and easy
way and, at the same time, benefit from the verification tools connected to Lava
to improve compilation and verify programs. We also benefit from, the fact that
we can directly generate EDIF netlists or VHDL from the circuits generated by
our embedded compilers.

Using this approach, we have shown that we can formally reason about programs
at a number of levels. First, taking advantage of the fact that our programs
are just data objects in Haskell, we can apply syntactic reasoning by defining
functions which modify the program. Second, using the verification tools linked
to Lava, we can define observers (in one of the languages) to verify properties of
hardware described using either structural Lava, or some other language. Third,
the compilation process itself can make use of the verification tools to check
dynamic properties which may be needed to guarantee correct compilation.

Within our framework, we have implemented various languages or subsets of
them, such as Esterel, Handel and Occam, fragments of process calculi such as
CSP and CBS, and some restricted temporal logics. We have also embedded
state machine descriptions and specification languages in the same framework.
This included different control and data features including updatable variables,
buffered and unbuffered channels, exceptions and broadcast communication. De-
scribing the compilation of a language is rather straightforward, and in fact, we
have successfully used this framework in the teaching of a graduate course on
hardware description languages. The definition of the compilation function for
a language is usually not much different from a denotational semantics of the
language in terms of a dataflow network.

One of the important issues that we have not discussed in this paper is the
question of the correctness of the compilation procedure. A number of approaches
have been proposed [10, 22, 1] which are applicable to our compilation scheme.
We are currently exploring how such proofs can also be presented uniformly
within our framework. Preliminary work is encouraging and it is not difficult to
prove that, for instance, the compilation of regular expressions presented in this
paper satisfies regular expression equational axioms.

References

1. Gérard Berry. The constructive semantics of Pure Esterel. Unfinished draft, avail-
able from http://www.esterel.org, 1999.

2. Gérard Berry. The Esterel primer. Available from http://www.esterel.org, 2000.
3. K. Claessen. Safety property verification of cyclic circuits. In preparation, 2002.
4. K. Claessen and J. Hughes. QuickCheck: A light-weight tool for random testing of

Haskell programs. In Internatioanl Conference on Functional Programming, 2000.
5. K. Claessen and M. Sheeran. A tutorial on Lava: A hardware description and ver-

ification system. Available from http://www.cs.chalmers.se/˜koen/Lava, 2000.
6. Koen Claessen, Mary Sheeran, and Satnam Singh. The design and verification of

a sorter core. In CHARME. Springer, 2001.
7. E. M. Sentovich and K. J. Singh et al. SIS: A system for sequential circuit synthesis.

Technical Report Berkeley, UCB/ERL M92/41, 1992.
8. N. Halbwachs. A tutorial of Lustre. Available from http://www-verimag.imag.fr/

SYNCHRONE, 1993.
9. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow

programming language Lustre. Proceedings of the IEEE, 79(9):1305–1320, 1991.
10. Jifeng He, Ian Page, and Jonathan Bowen. Towards a provably correct hardware

implementation of Occam. In G.J. Milne and L. Pierre, editors, Correct Hardware
Design and Verification Methods, number 683 in LNCS. Springer, 1993.

11. Paul Hudak. Building domain-specific embedded languages. ACM Computing
Surveys, 28(4):196, 1996.

12. F. Maraninchi. Operational and compositional semantics of synchronous automa-
ton compositions. In CONCUR, number 630 in LNCS. Springer, 1992.

13. F. Maraninchi and Y. Rémond. Compositionality criteria for defining mixed-styles
synchronous languages. In International Symposium: Compositionality – The Sig-
nificant Difference, number 1536 in LNCS. Springer, 1997.

14. Florence Maraninchi and Yann Rémond. Mode-automata: About modes and states
for reactive systems. In European Symposium On Programming. Springer, 1998.

15. David May. Compiling Occam into silicon. In C. A. R. Hoare, editor, Develop-
ments in Concurrency and Communication, University of Texas at Austin Year of
Programming Series, chapter 3, pages 87–106. Addison-Wesley, 1990.

16. Ian Page. Constructing hardware-software systems from a single description. Jour-
nal of VLSI Signal Processing, 12(1):87–107, 1996.

17. Ian Page and Wayne Luk. Compiling Occam into field-programmable gate arrays.
In Wayne Luk and Will Moore, editors, FPGAs, pages 271–283. Abingdon EE&CS
books, 1991.

18. Simon Peyton Jones and John Hughes et al. Report on the programming
language Haskell 98, a non-strict, purely functional language. Available from
http://haskell.org, 1999.

19. A. Poigné and L. Holenderski. On the combination of synchronous languages. In
International Symposium: Compositionality – The Significant Difference, number
1536 in LNCS, pages 490–514. Springer, 1997.

20. Pascal Raymond. Recognizing regular expressions by means of dataflow networks.
In 23rd International Colloquium on Automata, Languages, and Programming,
(ICALP’96), number 1099 in LNCS. Springer, 1996.

21. F. Rocheteau and N. Halbwachs. Pollux, a Lustre-based hardware design envi-
ronment. In P. Quinton and Y. Robert, editors, Conference on Algorithms and
Parallel VLSI Architectures II, Chateau de Bonas, 1991.

22. M. Schenke and M. Dossis. Provably correct hardware compilation using tim-
ing diagrams. Available from http://semantik.Informatik.Uni-Oldenburg.DE/

persons/michael.schenke/, 1997.
23. Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking safety properties

using induction and a SAT-solver. In FMCAD, LNCS 1954. Springer, 2000.

24. T. Shiple, G. Berry, and H. Touati. Constructive analysis of cyclic circuits. In
European Design and Test Conference, 1996.

25. Satnam Singh and Phil James-Roxby. Lava and JBits: From HDL to bitstream in
seconds. In K.L. Pocek and J.M. Arnold, editors, IEEE Symposium on FPGAs for
Custom Computing Machines. IEEE Computer Society Press, 2001.

26. Niklaus Wirth. Hardware compilation: Translating programs into circuits. Com-
puter, 31(6):25–31, 1998.

