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Abstract. We propose a new approach to interprocedural analysis and
verification, consisting of deriving an interprocedural analysis method
by abstract interpretation of the standard operational semantics of pro-
grams. The advantages of this approach are twofold. From a methodolog-
ical point of view, it provides a direct connection between the concrete
semantics of the program and the effective analysis, which facilitates im-
plementation and correctness proofs. This method also integrates two
main, distinct methods for interprocedural analysis, namely the call-
string and the functional approaches introduced by Sharir and Pnueli.
This enables strictly more precise analyses and additional flexibility in
the tradeoff between efficiency and precision of the analysis.

1 Introduction

We consider the interprocedural verification of invariance properties of imper-
ative programs. The applications we have in mind are automated debugging
[4, 14] or automatic test selection [25], which may require precise and complex
analyses. These are flow-sensitive (the analysis needs to take conditionals into
account accurately), attribute-dependent (attributes (or properties) of variables
are inter-related), and may require the use of infinite or even infinite-height
lattices, in particular for the analysis of the properties numerical variables.

Our ambition is to design a method which is able to infer precise facts on
the possible call-stacks of programs (and not only on the possible environments
lying on top of the call-stack), and which can reuse existing abstract interpreta-
tion techniques and implementations available for intraprocedural analysis. For
debugging applications, we would like to be able to answer questions like:

Being in procedure P with environment εP , and assuming being called
successively by R and Q with x=y, is it possible to enter procedure S?

Formally, this amounts to ask whether an execution path of the form

〈cR, ?〉 ·〈cQ, x=y〉 ·〈cP , εP 〉 →∗ Γ · 〈cS , ?〉

exists. Such an automatic state reaching feature has already been implemented
in a debugger for reactive programs [14].

We first present our method, before discussing existing approaches to inter-
procedural analysis and some of their limitations for the applications we have in
mind.



Our method. We start from the standard (small-step) operational semantics
of imperative programs and derive in two distinct abstraction steps an imple-
mentable analysis. Since we aim the verification of invariance properties, the
property lattice L is the powerset of states ℘(S). The difficulty in interproce-
dural analysis is that a state is an unbounded stack of activation records3, i.e.
pairs of control points and local environments, so that the state-space has the
following form: S = Act+ with E+ =∪i≥1E

i denoting the Kleene operator on
a set E. This means that there are two sources of infinity in the lattice L: the
unbounded length of stacks, and the cardinality of the domain Act , considered
as infinite as soon as there are numerical variables or recursive data structures.

L =
℘(Act+)

As =
℘(EAct)2

Ad
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Fig. 1. Analysis scheme

The first abstraction abstracts
the collecting semantics — which
manipulates (co-)reachable sets of
stacks of activation records — to a
semantics manipulating sets of ex-
tended activation records. This stack
abstraction, which deals with the
first source of infinity, is independent from a second, more classical data ab-
straction, which abstracts sets of extended activation records in one of the many
computable abstract lattices that are available for intraprocedural analysis, in
order to deal with the second source of infinity, cf. Fig. 1.

The stack abstraction defines the interprocedural analysis method itself but
does not lead directly to an effective analysis. Rather, it just simplifies the con-
crete lattice of sets of stacks into sets of simpler objects, for which computable
abstract lattices already exists. Those need just to be equipped with a correct
abstraction of procedure calls and returns operations in the stack abstraction
lattice As, in order to obtain an implementable interprocedural analysis.

Existing approaches and some of their limitations for our applications. Inter-
procedural analysis methods have been widely studied and many of them can
be classified as one of two classical approaches. We review in section 6 methods
that do not fit in this classification. The functional approach [6, 28, 19] uses a
denotational semantics of the analysed program and proceeds in two steps. The
first step computes the predicate transformers associated with the procedures
of the program, and the second step uses them to propagate an input predicate
along the execution paths, to obtain the predicates holding at each control point.
Some drawbacks of this approach are the following:

1. Predicates holding at control points are replaced by predicate transformers,
which are more complex objects. This new viewpoint forbids the direct reuse
of intraprocedural analyses (which use predicates).

2. The call-stack of the original program disappears, so no property can be
specified on it.

The operational approach, generalising the “call-string approach” of [28], con-
sists of adopting an operational semantics for programs. Fixpoint computation
3 We assume in this paper that there are no global variables.
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proceeds as in intraprocedural analysis, i.e. by propagating a predicate along
execution paths. However, (an abstraction of) the call-stack has to be taken into
account. The general abstraction scheme for call-stacks consists of using “to-
kens” to abstract stack-tails, and to label current activation records by them.
These tokens represent the calling context of the current activation record [28,
18]. We bring a solution to the main limitations of this approach, namely:

– Tokens are used as labels. They are essentially enumerated and are not given
any structure (as for instance a lattice structure).

– A notable consequence is that the set of tokens should be finite in practice,
which means that the abstraction of stack-tails is very rough.

From a more synthetic point of view, both approaches lead to context-sensitive
analyses. The functional approach takes into account the data part of the calling
context of a procedure, whereas the operational approach focuses mainly on the
control part. From this point of view, our stack abstraction enables an effective
analysis which is both data and control context-sensitive.

Contributions. Using the principles of abstract interpretation, we unify two main
interprocedural analysis methods and give correctness and optimality proofs
with a minimal number of concepts. We provide a method which is both data
and control context-sensitive, thus strictly more precise. Our approach enables
backward analysis and its intersection with forward analysis. Finally, it facilitates
implementation issues by clearly separating stack and data abstractions.

Outline. Section 2 presents the considered program model and its semantics.
In Section 3 we revisit the functional approach with a first stack abstraction.
We show the similarity of the two methods and discuss some advantages of our
approach. In Section 4 we refine the previous abstraction by using call-strings, in
order to subsume the call-string and the functional approaches. This allows us to
accurately specify the above-mentioned debugging problem. Section 5 discusses
the data abstraction step, in order to derive an effective analysis from a stack
abstraction. Related work is described in Section 6 and Section 7 concludes. Due
to the lack of space, we have omitted the proofs. They can be found in [16].

2 Program Model and Standard Semantics

We consider a simple imperative programming language with non-nested proce-
dures and value parameter passing (as in Java or Ml). We suppose that each
procedure has its own fixed set of variables, and do not consider global variables,
which can be passed as additional procedure parameters. Similarly, programs are
not restricted to programs manipulating scalar values: pointers and a memory
heap can be modelled by adding to all procedures a special parameter modelling
the memory heap. We require that formal input parameters are not modified.
This is crucial to compute a relation between environments at the entry and any
other point of a procedure (as in [28, 19]), and this is not restrictive either, as
they can always be copied into additional local variables. The main restrictions

3



Var : Variables: Var =
�

i LVar i

LVar i, loci : Local variables of procedure Pi

Ini, fpii : Formal input parameters of Pi

Out i, fpoi : Formal output parameters of Pi

Gi = 〈Ctrl i, Ii〉 : Flow graph of Pi

si, ei ∈ Ctrl i : Entry and exit points of Pi

G = 〈Ctrl , I〉 : Flow graph of the program

Table 1. Syntactic domains.

s

c2

c1 c3

c4

e

〈(n = 0)?〉

〈r := 1〉

〈(n > 0)?〉

〈x := n−1〉

〈ret r := f(x)〉

〈call
r
:=

f(x)〉

〈r := r∗n〉 〈r := f(x)〉

CFG for the Factorial Program

v ∈Value : values
εi ∈LEnv i = LVar i → Value : local environments for Pi

ε ∈LEnv =
�

i
LEnv i : local environments

〈c, ε〉 ∈Act = Ctrl × LEnv : activation record
Γ ∈State = Act+ : stacks/program states

Table 2. Semantic domains.

are thus the absence of exceptions or non-local jumps, variable aliasing on the
stack (as it happens with reference parameter passing), pointers to procedures
and procedural parameters.

Program Syntax. The syntactic domains are summarised in Table 1.

A program is defined by a set (Pi)0≤i≤p of procedures. Since we specify the
initial states of an analysis separately, there is no particular “main” procedure.

Each procedure Pi = 〈LVar i, Ini,Out i, Gi〉 is defined by its intraprocedural
control-flow graph Gi and its sets of local variables LVar i, formal input pa-
rameters In i ⊆ LVar i and formal output parameters Out i ⊆ LVar i. We note
x = 〈x(1), . . . ,x(n)〉 vectors of variables. As vectors, the above-mentioned sets
are written loci, fpii and fpoi.

An intraprocedural control-flow graph is a graph Gi = 〈Ctrl i, Ii〉 where Ctrl i
is the set of control points of Pi, containing unique entry and exit control points
si and ei. Ii : Ctrl i × Ctrl i → Inst labels edges between control points with two
kinds of instructions: intraprocedural instructions 〈R〉 and procedure calls 〈y :=
Pj(x)〉, where x and y are the vectors of actual input and output parameters.
Intraprocedural instructions are specified as a relation R ⊆ LEnv2 describing the
transformation of the top environment. We require the Gi to be deterministic for
procedure calls, i.e. if Ii(c, c

′) is a call then there exists no c′′ such that Ii(c, c
′′)

or Ii(c
′′, c′) is a call.

The interprocedural control-flow graph (CFG) G = 〈Ctrl , I〉 is constructed
from the set of intraprocedural ones. Ctrl is defined as Ctrl =

⋃

0≤i≤p Ctrl i and
I is defined as the “union”

⋃

i Ii, where all procedure-call-edges are removed and
replaced by two edges usually called call-to-start and exit-to-return edges:

Ii(c, c
′) 6= 〈y := Pj(x)〉

I(c, c′) = Ii(c, c′)

Ii(c, c
′) = 〈y := Pj(x)〉

I(c, sj) = 〈cally := Pj(x)〉
I(ej , c

′) = 〈rety := Pj(x)〉
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I(c, c′) = 〈R〉 R(ε, ε′)

Γ ·〈c, ε〉 → Γ ·〈c′, ε′〉
(Intra)

I(c, sj) = 〈cally := Pj(x)〉 ∀k : εj(fpi
(k)
j ) = ε(x(k))

Γ ·〈c, ε〉 → Γ ·〈c, ε〉·〈sj , εj〉
(Call)

I(ej , c) = 〈rety := Pj(x)〉 ε′ = ε[y(k) 7→ εj(fpo
(k)
j )]

Γ ·〈call(c), ε〉·〈ej , εj〉 → Γ ·〈c, ε′〉
(Return)

Fig. 2. SOS rules defining →.

post(c
〈R〉
−−→ c

′)(X) = �Γ ·〈c′, ε′〉 �� Γ ·〈c, ε〉 ∈ X ∧ R(ε, ε′)�
post(c

〈call y:=Pj(x)〉
−−−−−−−−−−→ sj)(X) = �Γ ·〈c, ε〉·〈sj , εj〉 ��Γ ·〈c, ε〉 ∈ X ∧ εj(fpi

(k)
j ) = ε(x(k))�

post(ej

〈ret y:=Pj(x)〉
−−−−−−−−−→ c)(X) = �Γ ·〈c, ε′〉

���� Γ ·〈call(c), ε〉·〈ej , εj〉 ∈ X

ε′ = ε[y(k) 7→ εj(fpo
(k)
j )] �

Table 3. Forward transfer function post .

Thus there are three kinds of instructions labelling edges of interprocedural
CFGs: intraprocedural instructions 〈R〉, procedure calls 〈cally := Pj(x)〉 and
procedure returns 〈rety := Pj(x)〉, see the factorial program beside Table 1.

In the sequel, we use the following notations. For c ∈ Ctrl , c is a call-site to
Pj if ∃c′ : I(c, c′) = 〈call y := Pj(x)〉. proc(c) denotes j such that c ∈ Ctrl j .

For any edge c
〈y:=Pj(x)〉

−−−−−−→ c′, we define ret(c) = c′ and call(c′) = c.

Operational Semantics. The semantic domains are summarised in Table 2.
The operational semantics is given by a transition system (State,→). States

are stacks Γ = 〈c0, ε0〉 · . . . · 〈cn, εn〉 of activation records (i.e. pairs of a control
point ci and an environment εi). 〈cn, εn〉 is the current activation record or top of
Γ ; the tail of Γ is Γ without its top, i.e. 〈c0, ε0〉 · . . . · 〈cn−1, εn−1〉. Environments
map variables to values; their update is written ε[x 7→ v]. The transition relation
→ ⊆ State × State is defined (in SOS-style) by the rules in Fig. 2. As long as a
variable is not initialised, it holds nondeterministically any value in its domain,
cf. rule (Call). As usual, →∗ denotes the reflexive-transitive closure of →.

Standard Collecting Semantics. The forward collecting semantics describes
the set of reachable states of a program. It is the natural choice for expressing
and verifying invariance properties and is derived from the operational semantics
by collecting the states belonging to executions of the program. We define the
function reach : ℘(State)→ ℘(State) computing the states reachable from a set
of initial states X0 as:

reach(X0)
def
= {q | ∃q0 ∈ X0 , q0 →

∗ q}

It is also the least fix-point solution of X = X0 ∪ post(X) where the forward
transfer function post is defined by post(X) = {q′ | ∃q ∈ X : q → q′}. Ta-
ble 3 gives the decomposition of post according to the transitions of the CFG,

i.e. post(X) =
⋃

(c,c′)∈Ctrl×Ctrl
post(c

I(c,c′)
−−−−→ c′)(X). For X0, X ⊆ S, we define

F [X0](X)
def
= X0 ∪ post(X). Since F [X0] is monotone and continuous, Kleene’s

fix-point theorem allows us to compute the forward collecting semantics by iter-
ated application of F [X0] starting from ∅:
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reach(X0) = lfp(F [X0]) =
⋃

n≥0 (F [X0])
n(∅)

The collecting semantics can also be considered backward, yielding the set
of states X from which a given set of final states X0 is reachable. In this case
we call X the set of coreachable states of X0. We get the following definitions:

pre(X) = {q | ∃q′ ∈ X : q → q′}

coreach(X0) = lfp(G[X0]) with G[X0](X) = X0 ∪ pre(X)

Properties of the Stacks in the Standard Semantics. The assumption
that formal input parameters are read-only variables induces strong properties
on stacks which are the basis of our stack abstractions. A necessary condition
for q = Γ ·〈c, ε〉 to lead to q′ = Γ ·〈c, ε〉·〈c′, ε′〉 (where c is a call site to Pproc(c′))
is that the values of actual input parameters in ε have to match those of the
formal input parameters in ε′. This is formalised by the following definition.

Definition 1. 〈c, ε〉 is a valid calling activation record (or valid) for 〈c′, ε′〉 if
(i) c is a call site for procedure Pj: ∃j : c′ = sj ∧ I(c, sj) = 〈cally := Pj(x)〉;

(ii) actual and formal parameters are equal: ∀k : ε(x(k)) = ε′(fpi
(k)
j ).

Extending Definition 1, we call a stack 〈c0, ε0〉 . . . 〈cn, εn〉 consistent if 〈ci, εi〉 is
valid for 〈ci+1, εi+1〉 (∀0 ≤ i < n). From now on, we focus on consistent states
and restrict State to its consistent subset.

3 Revisiting the Functional Approach

We present a first stack abstraction, which allows analysis results at least as
accurate as the classical functional approach for forward analysis, but in addition:

– It enables a more direct reuse of standard data abstractions (we manipulate
environments and not functions from environments to environments).

– Stacks can be rebuild by concretisation of abstract values.
– Defining backward analysis is straightforward.

3.1 Stack Abstraction

The main idea is to forget all about sequences of activation records in the stack,
keeping information only on the activation records themselves. As already ob-
served in a different context [19], we can nevertheless get accurate results.

An abstract state Y = 〈Yhd , Ytl〉 is composed of two sets of activation records.
Yhd represents top activation records, whereas Ytl is the collapse of all activation
records in stack-tails. This leads to the following abstract domain:

Af def
= ℘(Act)× ℘(Act) (1)

which comes equipped with the standard lattice structure Af (v,t,u,>,⊥) of a
(smashed) Cartesian product of lattices.
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post
f

hd
(c

〈R〉
−−→ c

′)(Y ) = �〈c′, ε′〉 ��〈c, ε〉 ∈ Yhd ∧ R(ε, ε′)� (3a)

post
f

hd
(c

〈call y:=Pj(x)〉
−−−−−−−−−→ sj)(Y ) = �〈sj , εj〉 ��〈c, ε〉 ∈ Yhd ∧ εj(fpi

(k)
j ) = ε(x(k))� (3b)

post
f

hd
(ej

〈ret y:=Pj(x)〉
−−−−−−−−→ c)(Y ) = �〈c, ε′〉 �����〈call(c), ε〉∈Ytl ∧ ε(x(k))=εj(fpi

(k)
j )

〈ej , εj〉∈Yhd ∧ ε′ =ε �y(k) 7→εj(fpo
(k)
j )� � (3c)

post
f
tl
(c

〈call y:=Pj(x)〉
−−−−−−−−−→ sj)(Y ) = Ytl ∪ �〈c, ε〉 ∈ Yhd} (3d)

post
f

tl
(c

i
−→ c

′)(Y ) = Ytl otherwise (i is an instruction) (3e)

Table 4. Equations defining postf .

We define the Galois connection ℘(State) −−−→←−−−
αf

γf

Af , with the abstraction

function αf = 〈αf
hd

, α
f
tl
〉 and concretisation function γf defined by:

αf : X 7−→
⊔

q∈X αf
(
{q}

)

{〈c0, ε0〉. . .〈cn, εn〉} 7−→
〈 {
〈cn, εn〉

}
,

{
〈ci, εi〉 | 0≤ i<n

} 〉

γf : Y = 〈Yhd , Ytl 〉 7−→






q = 〈c0, ε0〉. . .〈cn, εn〉

∣
∣
∣
∣
∣
∣

〈cn, εn〉 ∈ Yhd

∀0≤ i<n : 〈ci, εi〉 ∈ Ytl

q is a consistent stack







α
f
hd

gathers the top activation records, whereas α
f
tl

collects all the other acti-
vation records. To rebuild a stack from an abstract state, γf uses the notion of
consistent stacks. Notice that 〈c, ε〉 ∈ Ytl implies that c is a call site.

The extensive function γf ◦αf describes the information lost by Af . If 〈c0, ε0〉
is valid for 〈c1, ε

′
1〉 and ε1 6= ε′1, we might have:

〈c0, ε0〉 ·〈c1, ε
′
1〉 ∈ (γf ◦ αf )

({
〈c0, ε0〉 ·〈c1, ε1〉, 〈c1, ε

′
1〉

})

6∈
{
〈c0, ε0〉 ·〈c1, ε1〉, 〈c1, ε

′
1〉

} (2)

However, α
f
hd

(X) keeps exact information on top activation records, which is
the only information computed by functional approaches.

The main reason why we separate top activation records from those below
in the stack is for defining properly an abstract backward analysis, and also for
being able to perform a forward analysis from an non empty stack.

3.2 Forward Analysis

Abstract Postcondition postf . To compute reachable states in the abstract
domain, we need an abstract postcondition operator postf . Table 4 specifies
postf , using the decomposition already used for post . We prove in [16] that
postf is a correct approximation of post , i.e. postf w αf ◦ post ◦ γf .

Only procedure returns need comment, since the stack contents before the
call has to be recovered. [28, 18, 19] use for this purpose a function combine to
combine the environment of the caller at the call site with the environment of
the callee at its exit point. In Section 2, we noticed that Γ · 〈call(c), ε〉 · 〈ej , εj〉
can be a successor of Γ · 〈call(c), ε〉 only if 〈call (c), ε〉 is valid for 〈ej , εj〉. So,
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for 〈ej , εj〉 ∈ Yhd , (3c) selects the activation records 〈call(c), ε〉 ∈ Ytl valid for it.
Then, the reachable activation record(s) at c are obtained by assigning return
parameters to y. This is our combine operation, defined by abstraction of the
concrete procedure return operation.

Because the input parameters are frozen, at the exit point ej of a procedure
Pj , the top of the stack (in Yhd ) contains a relation φj(fpij , fpoj) between reach-

able call and return parameters, defined by φj =
{
(x,y)

∣
∣ ∃〈ej , ε〉 ∈ Yhd : x =

ε(fpij)∧y = ε(fpoj)
}
. Since φj is the predicate transformer of Pj specialised on

the reachable inputs, our handling of procedure returns can be seen as applying
the predicate transformer of the callee to the valid calling activation records that
are reachable in Ytl at the call site.

Correctness and Optimality. Transposing the notion of reachable states into

the abstract lattice Af , we define F f [Y0](Y )
def
= Y0tpostf (Y ) and reachf (Y0)

def
=

lfp(F f [Y0]) (∀Y0 ∈ Af ). Since postf correctly approximates post , we deduce from
abstract interpretation theory that we correctly approximate reachable states:

Theorem 1 (Correctness). For any Y0 ∈ Af , reachf (Y0) w αf ◦reach◦γf (Y0)

The fact that we incrementally build the predicate transformer of a procedure
at its exit point together with [28] suggests that we could improve and get the
best we can hope for with a Galois connection, that is

reachf ◦ αf = αf ◦ reach

This means it doesn’t matter if we compute the fixpoint in the concrete lattice
and then abstract the result, or directly compute in the abstract lattice.

Since Theorem 1 implies reachf ◦ αf w αf ◦ reach, we just have to prove
the inverse inclusion. We show that Y = αf ◦ reach(X0) is a post-fixpoint of
postf , i.e. that postf (Y ) v Y , under additional assumptions on X0. First, we
require initial states to be one-element stacks, guaranteeing exactness of their
abstraction. Second, we require that initial states/activation records belong to
procedures that are never called; otherwise the abstraction might allow procedure
returns even if there is no other activation record on the (concrete) stack.

Under these conditions, we get:

Theorem 2 (Optimality). Let X0 ∈ ℘(State) such that q ∈ X0 implies that
q = 〈c, ε〉 and that proc(c) is never called by any procedure.
Then reachf ◦ αf (X0) = αf ◦ reach(X0). This implies that

reachf
hd
◦ αf (X0) =

{
〈c, ε〉 | ∃Γ : Γ · 〈c, ε〉 ∈ reach(X0)

}

reachf
tl
◦ αf (X0) =

{
〈c, ε〉 | ∃Γ, Γ ′ : Γ · 〈c, ε〉 ·Γ ′ ∈ reach(X0)

}

Whereas our analysis loses information on stack contents, we get exact results
if we are interested only in the values held by variables at some control points
(which is the case for many applications).

As we relate our abstract semantics directly to the standard semantics, we get
by Theorem 2 the Meet Over all Valid Paths property defined in [28, 19], without
having to introduce the notion of interprocedural valid paths. Theorems 1 and
2 are thus very similar to the optimality results in those papers.
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pre
f

hd
(c

〈R〉
−−→ c

′)(Y ) = �〈c, ε〉 �� 〈c′, ε′〉 ∈ Yhd ∧ R(ε, ε′)� (4a)

pre
f

hd
(c

〈call y:=Pj(x)〉
−−−−−−−−−→ sj)(Y ) = �〈c, ε〉 ���� 〈sj , εj〉 ∈ Yhd ∧ 〈c, ε〉 ∈ Ytl

ε(x(k)) = εj(fpi(k)) � (4b)

pre
f

hd
(ej

〈ret y:=Pj(x)〉
−−−−−−−−→ c)(Y ) = �〈ej , εj〉

����� 〈c, ε〉 ∈ Yhd ∧ εj(fpo
(k)
j ) = ε(y(k))

∀x(k) 6∈ y : εj(fpi
(k)
j ) = ε(x(k)) � (4c)

pre
f

tl
(ej

〈ret y:=Pj(x)〉
−−−−−−−−→ c)(Y ) = Ytl ∪ �〈call(c), ε〉 ���� 〈c, ε

′〉 ∈ Yhd

∀z 6∈ y : ε(z) = ε′(z) � (4d)

pre
f

tl
(c

i
−→ c

′)(Y ) = Ytl otherwise (i is an instruction) (4e)

Table 5. Equations Defining pref .

3.3 Backward Analysis

Backward analysis is implemented in a similar fashion as forward analysis. Ta-
ble 5 gives the definition of a correct approximation of pre in Af . By defining,
for Y0, Y ∈ A, Gf [Y0](Y ) = Y0 t pref (Y ) and coreachf (Y0) = lfp(Gf [Y0]) we get
the correctness of the analysis: coreachf w αf ◦ coreach ◦ γf . Here we do not
have any optimality result, as formal output parameters are not frozen during a
backward execution. But we could use a similar mechanism by duality.

3.4 Comparison with the functional approach

Re-expressing the functional approach (cf. introduction) by abstracting the stacks
of the concrete semantics presents some advantages. From a conceptual point of
view, we manipulate environments instead of functions from environments to
environments. The relational character of the stack abstraction is inherited from
the relational character of the concrete semantics, induced by the freezing of the
formal input parameters.

From an algorithmical point of view, we merge the two fixpoint computations
of the traditional functional approach to a unique fixpoint computation. Thus,

– Our method is less compositional: we have to perform a new analysis for
different initial states, whereas in the functional approach only the second
fixpoint has to be computed again, as the predicate transformers associated
with procedures are defined by the first fixpoint and do not depend on the
initial states.

– It may however be more accurate: indeed, we compute at the exit point
of the procedures their predicate transformers specialised on their reachable
inputs. As the functions postf and F f [Y0] are not distributive, applying
them on smaller abstract values may prevent some loss of information. In
addition, the data abstraction that follows the stack abstraction is often not
distributive either (e.g., [20, 8]), which may increase the gain in precision.

Moreover, backward analysis can be easily defined with a stack abstraction.
Backward analysis is especially useful when combined with forward analysis,
when one is interested in the set of states reachable from some initial states
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and leading possibly to some final states, as for the debugging problem of the
introduction or test selection. In this case, forward analysis from the initial
states returns a set reach of reachable states. Then we perform a backward
analysis from the final states intersected with reach ; practically, pref (Y ) is
replaced by pref (Y ) u reach in the definition of Gf [Y0]. The intersection during
the fixpoint iteration allows a more accurate analysis, as the transfer functions
are not distributive. This scheme can be iterated, each fixpoint computation
being performed on a restricted state space. Such a scheme has been successfully
applied to the verification of reactive systems [15], and we are interested in
extending it to recursive programs.

4 Subsuming Functional and Call-String Approaches

Refined Stack Abstraction. In this section we combine the previous abstrac-
tion Af with the call-string approach. We replace activation records 〈cn, εn〉 used
in Af by objects of the form 〈c0 . . . cn, εn〉, called extended activation records.
This corresponds to replacing single control points cn labelling environments by
sequences c0 . . . cn, called call strings in [28]. The abstract semantics proposed
in this section can be seen as a synthesis of the two distinct methods described
in [28].

Let us note EAct
def
= Ctrl+×LEnv the set of extended activation records. We

extend the notion of valid calling activation record (see Definition 1) to extended
activation records. 〈ω, ε〉 is valid for 〈ω′, ε′〉 if ω=ω0 ·c, ω′=ω0 ·c·c′, and 〈c, ε〉 is
valid for 〈c′, ε′〉. This additional condition increases the precision of the analysis.

We extend the domain Af defined in Section 3.1, (1) by replacing activation
records by extended activation records, yielding the abstract domain:

As def
= ℘(EAct)× ℘(EAct) (5)

As is connected to ℘(State) by the Galois connection ℘(State) −−−→←−−−
αs

γs

As,
where abstraction αs and concretisation γs are defined by:

αs : X 7−→
⊔

q∈X αs
(
{q}

)

{〈c0, ε0〉. . .〈cn, εn〉} 7−→
〈 {
〈c0 . . . cn, εn〉

}
,

{
〈c0 . . . ci, εi〉 | 0≤ i<n

} 〉

γs : Y = 〈Yhd , Ytl 〉 7−→







〈c0, ε0〉 . . . 〈cn, εn〉
︸ ︷︷ ︸

=q

∣
∣
∣
∣
∣
∣

〈c0 . . . cn, εn〉 ∈ Yhd

∀0≤ i<n : 〈c0 . . . ci, εi〉 ∈ Ytl

q is a consistent stack







As loses less information than Af : thanks to call-strings, we cannot have any
more the problem of (2). However we have a subtler phenomenon: if 〈c0, ε0〉 is a
valid calling activation record for 〈c1, ε

′
1〉 and ε1 6= ε′1 we might have

〈c0, ε0〉 ·〈c1, ε
′
1〉 ∈ γs◦αs

(

{〈c0, ε0〉 ·〈c1, ε1〉, 〈c0, ε
′
0〉 ·〈c1, ε

′
1〉}

)

(6)

Hence, while the abstraction keeps the stack length exact, it can still induce
some “cross-over” of activation records belonging to different concrete stacks.
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Forward Analysis. The transfer function post s, fully defined in [16], is very
similar to postf (cf. Tab. 4) but call-strings allow a more accurate “matching”
of possible calling contexts with top contexts. For instance,

post
s
hd

(ej

〈ret y:=Pj(x)〉
−−−−−−−−−→ c)(Y ) = �������〈ω ·c, ε′〉

��������
〈ω ·call(c) ·ej , εj〉 ∈ Yhd

〈ω ·call(c), ε〉 ∈ Ytl

ε(x(k)) = εj(fpi
(k)
j )

ε′ = ε[y(k) 7→ εj(fpo
(k)
j )]

����
��� (7)

which is to be compared to (3c).
As in Section 3 and using similar definitions, the forward analysis is not only

correct but also optimal. Moreover, the second condition of Theorem 2 is no
longer needed, because we know that an extended activation record can return
to a caller only when its call-string component is of length at least 2.

Theorem 3 (Optimality). Let X0 ∈ ℘(State) be a set one-element stacks.
Then we have reachs ◦ αs(X0) = αs ◦ reach(X0). This implies that

reachs
hd ◦ αf (X0) = {〈c0 . . . cn, εn〉 | 〈c0, ε0〉 . . . 〈cn, εn〉 ∈ reach(X0)}

reachs
tl ◦ αf (X0) =

{
〈c0 . . . cn, εn〉 | ∃Γ ∈Act+:〈c0, ε0〉 . . . 〈cn, εn〉 ·Γ ∈ reach(X0)

}

Discussion. The lattice As encompasses the two methods proposed in [28]: ab-
stracted to Af , it corresponds to the functional approach of that paper, whereas
As, further abstracted with a data abstraction which does not relate the values
of input parameters and output parameters, would give the call-string approach.
As told in the introduction, As leads to an interprocedural analysis which is both
control and data context-sensitive. Here we used the call-strings of [28], but this
could be generalised to the tokens of [18]. Backward analysis can of course be
defined in the lattice As similarly as in Section 3.

5 Data Abstractions

Our stack abstractions in some way define each an interprocedural analysis
method, but not an effective analysis, due to infinite data values or unbounded
size of call strings. We show here which existing abstract lattices are suitable for
these methods. [16] shows how to extend them with procedure call and return
operations. We will consider only As, since Af is a further abstraction of As.

We can use the isomorphism As ' Ctrl →
(
℘(Ctrl∗ × LEnv)

)2
to associate

a set of values to each control point (as usual when analysing imperative pro-
grams). Ctrl being finite, we just need an abstract lattice for ℘(Ctrl∗×LEnv) in
order to get an abstract lattice for As. A natural way to achieve this is to build
an abstract lattice for ℘(Ctrl∗ × LEnv) by composing abstract domains avail-
able for ℘(Ctrl∗) and ℘(LEnv ). So we need to abstract ℘(Ctrl∗) and ℘(LEnv )
by some lattices ACtrl and ALEnv , as well as a method for combining them.

Abstractions for call-strings. Several abstract domains are possible for ACtrl :

1. ℘(Ctrlp), for some fixed p ≥ 0: the top p elements of stacks are exactly
represented, the others are completely forgotten,

11



2. Reg(Ctrl), the set of regular languages over the finite alphabet Ctrl , together
with a suitable widening operator, as the one suggested by [13] or

3. some subsets of regular languages: simple regular languages, star-free regular
languages, etc., with widening operators if necessary.

Notice that apart the first one, these abstractions for call strings are more general
than the one suggested in [28], where only finite partitioning of ℘(Ctrl∗) is
considered. Here we do not restrict abstract lattices for ℘(Ctrl∗) neither to finite
lattices nor to finite-height lattices, thanks to the use of widening.

Abstractions for environments. Any abstract lattice ALEnv available for intrapro-
cedural analysis can be chosen here [8, 20, 10, 27, 17]. However it should be rela-
tional in order to be effectively able to represent relations between input and
output parameters at the exit point of procedures. In particular equality con-
straints should be possible in ALEnv for implementing an accurate procedure
return operation. The typical counter-example is the lattice of intervals for nu-
merical variables, where no relationships between variables can be represented,
only a conjunction of invariants for each variable.

Combining the two abstract lattices. To avoid the inherent difficulties of the
design of an abstraction combining different data-types (in our case Ctrl∗ and
LEnv), we suggest to combine the lattices abstracting each datatype. We could
use the tensor product ACtrl ⊗ALEnv [21]. However, this product is not finitely
representable as soon as either ACtrl or ALEnv is infinite. Instead, we suggest
the simple solution of [15], which is to take the Cartesian product A = ACtrl ×
ALEnv . In this lattice, relationships between call strings and data values cannot
be directly represented: an abstract value is just the conjunction of an invariant
on call strings and an invariant on data values. However, partitioning on A can be
used to establish relationships between the two components. This technique has
been used for obtaining relational invariants on Boolean and numerical variables
in [15], and can be considered as a particular instance of the disjunctive or down-
set completion method discussed in [7], where the size of disjuncts is bounded by
the size of the partition. For instance, if we partition ACtrl ×ALEnv according to
the k last control points in call-strings, we get a lattice isomorphic to Ctrlk →
ACtrl ×ALEnv .

Example. Fig. 3 gives a program computing MacCarthy’s 91-function and the
analysis results, with as initial states 〈s, n ∈ ZZ 〉. The exact denotational seman-
tics of this function is λn.(if n > 101 then n−10 else 91). We use the lattice

A=(Ctrl ∪ Ctrl2)→
(
Reg(Ctrl)×Pol(ZZ )

)2
, i.e. we partition A w.r.t. the two top

control points in the call-strings, and we use convex polyhedra for numerical vari-
ables. As widening operator on Reg(Ctrl ), we use the bisimulation on automata
of order δ, ∼δ, as in [13], with δ=1. Starting analysis with a one-element stack,
we have Ytl =Yhd for all call-sites and Ytl =∅ elsewhere. Thus Fig. 3 shows only
Yhd . Observe that the result at point e is both control and data context-sensitive:
the partitioning on call-strings induces a differentiation of the possible values of
the input n. We do not find the exact result at point e, because of the convex
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proc MC(n: int): (r: int) is

t1, t2: int;

begin s:�〈s, ?〉, 〈ωc3s, n≤111〉, 〈ωc4s, 91≤n≤101〉�
if n > 100 then c0:�〈c0, n≥101〉, 〈ωc3c0, 101≤n≤111〉, 〈ωc4c0, n=101〉�
r := n - 10 c1:�〈c1, r=n−10≥91〉, 〈ωc3c1, 101≤n≤111 ∧ r=n−10〉, 〈ωc4c1, r=n−10=91〉�

else c2:�〈c2+ωc3c2, n≤100〉�, 〈ωc4c2, 91≤n≤100〉�
t1 := n + 11; c3:�〈c3+ωc3c3, n≤100 ∧ t1=n+11〉, 〈ωc4c3, 91≤n≤100 ∧ t1=n+11〉�
t2 := MC(t1); c4:� 〈c4+ωc3c4, n≤100 ∧ t1=n+11 ∧ 91≤t2≤101 ∧ t2≥n+1〉,

〈ωc4c4, 91≤n≤100 ∧ t1=n+11 ∧ 91≤t2≤101 ∧ t2≥n+1〉 �
r := MC(t2); c5:� 〈c5+ωc3c5, n≤100 ∧ t1=n+11 ∧ 91≤t2≤101 ∧ t2≥n+1 ∧ r=91〉,

〈ωc4c5, 91≤n≤100 ∧ t1=n+11 ∧ 91≤t2≤101 ∧ t2≥n+1 ∧ r=91〉 �
endif

end MC e:�〈e, r≥91〉, 〈ωc3e, n≤111 ∧ 91≤r≤101 ∧ r≥n−10〉, 〈ωc4e, 91≤n≤101 ∧ r=91〉�
Fig. 3. MacCarthy’s 91-function (where ω

def
= (c3 + c4)

∗).

hull on polyhedra performed on the results at points c1 and c5, which are exact.
In particular, although the result at point c5 depends on the approximate result
at point e, it is exact thanks to the context-sensitiveness of the analysis. Clearly,
partitioning A w.r.t. only the top control point would have lead to much less
precise information, because of the more frequent use of convex hull.

6 Related Work

As explained in the introduction, one can distinguish two main approaches to
interprocedural static analysis, namely the functional and the operational. The
functional approach of [6] has been used for instance to analyse the access to
arrays in interprocedural Fortran programs [9], using the abstract domain of
convex polyhedra [8]. [22] can be seen as an algorithmical implementation of [19]
using graph reachability techniques, which can be used with finite lattices and
distributive data flow functions. This technique can be applied to all bit-vector
analyses and the Bebop tool [1] is based on it. An extension [26] allows to tackle
some finite-height infinite lattices, like (linear) constant propagation.

In the operational approach, [3] considers more complex Pascal programs
with reference parameter passing, which introduces aliasing on the stack (i.e.
several variables may refer to the same location in the stack), and nested pro-
cedure definitions. Unsurprisingly, the devised solution is quite complex. It has
been implemented using the interval domain for integers [5]. Stacks are collapsed
more severely than in our model. The proposal of [11], implemented in Moped

[12] and applied to concurrent programs in [2], relies on the result that the set
of reachable stacks of a pushdown automata is a regular language, that can be
represented by finite-state automata. The analysed program is converted to a
pushdown automaton, and is thus restricted to programs manipulating finite-
state variables/properties, or requires the finite abstraction of data/properties
prior the analysis. A recent extension allows the use of some infinite finite-height
lattices [23] and represents a very interesting mix of the two approaches: push-
down automata are here extended by associating transformers to transition rules.
This allows to encode the control part of the program and properties belonging
to a finite lattice in the pushdown automata, whereas properties belonging to
a finite-height lattice can be handled by the transformers attached to the tran-
sitions. Finally, [24] directly represents the stack as a linked list of activation
records, using the shape analysis of [27].
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7 Conclusion

In this paper, we presented an approach to the verification of imperative pro-
grams with recursive procedures and variables over possibly infinite domains.
We showed that by relying solely on the principles of abstract interpretation,
one can derive from the standard semantics of a program an interprocedural
analysis method. This is done by abstracting in a proper way sets of call-stacks
of the programs. Such an interprocedural analysis method can then be imple-
mented after a second data abstraction. We defined two stack abstractions, the
optimality of which suggests that they are good starting points for the follow-
ing data abstraction. The first one is equivalent to the functional approach, but
offers in addition the specialisation of predicate transformers and clarifies the
intersection between forward and backward analysis.

The second stack abstraction, which is both data and control context sen-
sitive, integrates the two approaches distinguished in [28]. It allows to specify
complex constraints on the stack yielding an analysis which contains strictly
more information. This is particularly useful for starting an analysis from initial
or final states with a non-empty call-stack and also makes the combination of
forward and backward analysis more efficient, as more information can be used
for intersecting the two analyses.

It could be argued that our assumptions on the analysed programs are too
restrictive. Non-local jumps could be easily added, as in [18], although this would
suppress our current optimality results. Allowing reference parameter passing
and handling aliasing on the stack would be very useful to tackle C programs.
However, it should be noted that all the general approaches, with the notable
exception of [3], assume like ourselves that intraprocedural instructions modify
only the top activation record in the stack. Thus they cannot tackle directly
reference parameter passing. The simplest way for adding this feature in our
case would be to add aliasing information in activation records and to use it to
properly update variables passed by reference upon procedure returns.

An implementation of our analysis is under work, targeted to programs with
enumerated or numeric variables, following the implementation guidelines de-
scribed in [16]. The next step would be its application to programs manipulating
pointers to dynamically allocated objects, using abstract domains such as the
one of [27].
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