
Model Checking for Software Architectures?

Radu Mateescu

Inria Rhône-Alpes / Vasy, 655, avenue de l’Europe
F-38330 Montbonnot Saint Martin, France

Radu.Mateescu@inria.fr

Abstract. Software architectures are engineering artifacts which pro-
vide high-level descriptions of complex systems. Certain recent architec-
ture description languages (Adls) allow to represent a system’s structure
and behaviour together with its dynamic changes and evolutions. Model
checking techniques offer a useful way for automatically verifying finite-
state Adl descriptions w.r.t. their desired correctness requirements. In
this position paper, we discuss several issues related to the application
of model checking in the area of software architectures, underlining the
aspects of interest for current and future research (construction of state
spaces, expression and verification of requirements, state explosion).

1 Introduction

Software architectures [27] are essential engineering artifacts used in the de-
sign process of complex software systems. They specify at a high abstraction
level various aspects of a system: gross organization into components, proto-
cols for communication and data access, functionality of design elements, etc.
Over the last decade, a significant number of architecture description languages
(Adls) were proposed and supported by dedicated tool environments (see [20]
for a survey). Recently defined Adls such as π-Space [5] and the ArchWare
Adl [22] aim at describing the structure and behaviour of software systems that
are subject to dynamic changes and evolutions. Inspired from mobile process
calculi, such as the higher-order polyadic π-calculus [21], these Adls provide
mobility of communication channels, dynamic process creation/destruction, and
higher-order process handling, enabling one to design evolvable, industrial-scale
systems. To ensure the reliability of such complex systems, computer-assisted
verification methodologies become a necessary step in the design process.

Model checking [6] is a verification technique well-adapted for the automatic
detection of errors in complex systems. Starting from a formal representation of
the system under design, e.g., an Adl description, a corresponding model (state
space) is constructed; then, the desired correctness requirements, expressed in
temporal logic, are checked on the resulting model by using specific algorithms.
Although limited to finite-state systems, model checking provides a simple and
efficient verification approach, particularly useful in the early phases of the design
process, when errors are likely to occur more frequently.
? This study was supported by the European Ist-2001-32360 project “ArchWare”.

During the last decade, model checking was successfully applied for analysing
software architectures described using different Adls inspired from process alge-
bras, the most prominent ones being Wright [2] and Darwin [17]. Wright is
based upon Csp, thus allowing to use Fdr [25] to perform various architectural
consistency checks amenable to deadlock detection and behavioural refinement.
Darwin uses the π-calculus to describe the structural aspects of the architec-
ture (configuration and coordination) and Fsp (a dialect of Csp) to describe the
behaviour of individual components; this allows to check properties expressed in
Linear Temporal Logic (Ltl) using Ltsa [16].

However, so far relatively little work was dedicated to model checking for
Adls that provide mobility and dynamicity mechanisms. Dynamic Wright [3]
allows to describe dynamic reconfiguration and steady-state (static) behaviour
orthogonally, by introducing special reconfiguration-triggering events handled
by a configuror process; reconfigurable architectures are translated into Csp by
instantiating a finite number of possible configurations and by tagging events
with the configuration in which they occur. A similar approach was used for
∆Padl [1], where dynamic architectures are simulated by instantiating finite
numbers of replicas and by adding transparent routers to model dynamic recon-
figuration. In addition to these general results concerning the extension of Adls
with dynamicity, the problem of model checking was also considered for dynamic
systems belonging to specific domains, such as publish-subscribe systems [12].

In this position paper, we discuss three different aspects related to the ap-
plication of model checking techniques for analysing dynamic Adl descriptions:
construction of the state space corresponding to an Adl description (Section 2),
expression and verification of correctness requirements (Section 3), and handling
of the state explosion problem (Section 4). Finally, we give some concluding re-
marks and directions for future research (Section 5).

2 Constructing State Spaces

We can identify two ways of building the state space of an architectural de-
scription written in a dynamic Adl: either by developing from scratch an Adl
simulator able to explore all reachable states of an architectural description,
or by translating the Adl into another formal specification language already
equipped with a state space generator. The first solution would certainly be the
most efficient and accurate w.r.t. the operational semantics of the Adl, but may
require a considerable effort (e.g., simulators for the polyadic π-calculus, such as
Mwb [29], are complex pieces of software). On the other hand, the second solu-
tion can be much simpler to achieve and may take advantage of the software tools
already available for the target language. In the sequel, we examine the latter
solution by considering as targets Lotos [14] and E-Lotos [15], two languages
standardized by Iso, which combine the best features of classical value-passing
process algebras (Ccs and Csp) and are equipped with state-of-the-art software
engineering environments such as the Cadp verification toolbox [9].

Dynamic process creation. To obtain finite-state Adl descriptions in pres-
ence of dynamic process creation, one must statically bound the maximum
number of process replicas that may coexist. Lotos can describe dynamic
process creation by using recursion through parallel composition (e.g., pro-
cesses like P := a; stop ||| P), but most of the existing compilers do not
handle this construct, since it may yield infinite, non regular behaviours.
A solution would consist in statically expanding each dynamic process into
the parallel composition of its n allowed replicas (all initially idle): this can
be expressed concisely in E-Lotos by using the indexed parallel composi-
tion operator [11]. Alternatively, one may directly construct the sequential
process equivalent to the interleaving of n parallel replicas [13].

Mobility of communication channels. Lotos and E-Lotos assume that
the process network has a fixed communication topology. Nevertheless, mo-
bility of communication channels can be simulated in Lotos by defining a
data type “channel name”, which allows to send and receive channel names
as ordinary data values. The Lotos processes produced by translating Adl
(dynamic) processes will still communicate along a fixed network of gates,
but each communication on a gate G will carry the name of an underlying
mobile channel (e.g., G !c !0 denotes the emission of value 0 along channel
c). The number of gates can be reduced due to the powerful synchronization
mechanisms of Lotos, which allow several channels to be multiplexed on a
single gate. Also, the fact of bounding the number of replicas for dynamic
processes also induces a bound on the set of (private) channel names that
can be created by individual processes.

Higher-order process handling. Since Lotos provides only first-order con-
structs (data values and behaviours are clearly separated), it does not allow
a direct representation of higher-order mechanisms such as sending a process
along a channel. However, a significant part of a higher-order dynamic Adl
can be translated into first-order by applying the translation from higher-
order to first-order π-calculus [26, chap. 13].

By developing a translation according to the guidelines above, and by subse-
quently using a compiler for Lotos (such as the Cæsar [10] compiler of Cadp),
one can obtain a state space generator for a dynamic higher-order Adl. Such a
tool would allow to handle finite-state configurations of Adl descriptions pre-
senting a limited amount of dynamic process creation, channel mobility, and
higher-order communication.

3 Checking Correctness Requirements

Temporal logics and µ-calculi [28] are well-studied formalisms for expressing
correctness requirements of concurrent systems. During the last decade, many
algorithms and model checking tools dedicated to these formalisms were devel-
oped; now, the research focuses on the application of these results in industrial
context. We can mention two areas of interest w.r.t. the analysis of software
architectures using temporal logics:

Optimized verification algorithms. The speed and memory performance of
verification algorithms can still be improved, namely when they are applied
to particular forms of models. For instance, run-time verification consists in
analysing the behaviour of a system by checking correctness requirements on
execution traces generated by executing or randomly simulating the system.
In this context, memory-efficient verification algorithms have been designed
for µ-calculus [18]; further improvements (e.g., memory consumption inde-
pendent from the length of the trace) can be obtained by specialising these
algorithms for particular temporal logics.

Advanced user interfaces. User-friendliness is essential for achieving an in-
dustrial usage of temporal logic. Several aspects must be considered when
integrating model checking functionalities into an engineering environment:
extension of the basic temporal logics with higher-level constructs, e.g., reg-
ular expressions [19]; identification of the interesting classes of requirements,
which should be provided to the end-user by means of graphical and/or
natural language interfaces; and automated interpretation of the diagnostics
produced by model checkers in terms of the application under analysis.

4 Handling Large Systems

When using model checking to analyse large systems containing many parallel
processes and complex data types – such as Adl descriptions of industrial sys-
tems – the size of the state space may become prohibitive, exceeding the available
computing resources (the so-called state explosion problem). Several techniques
were proposed for fighting against state explosion:

On-the-fly verification. Instead of constructing the state space entirely be-
fore checking correctness requirements (which may fail because of memory
shortage), on-the-fly verification explores the state space incrementally, in a
demand-driven way; this allows to detect errors in complex systems without
constructing their whole state space explicitly. An open platform for devel-
oping generic on-the-fly verification tools is provided by the Open/Cæsar
environment [7] of Cadp, together with various on-the-fly verification tools
(guided simulation, searching of execution sequences, model checking, etc.).

Partial order reduction. Due to presence of independent components which
evolve in parallel and do not synchronize directly, the state space of a par-
allel system often contains redundant interleavings of actions, which can be
eliminated by applying partial order reductions [24]. A form of partial order
reduction useful in the context of process algebras is τ -confluence, for which
several tools are already available [23].

Compositional verification. Another way to avoid the explicit construction
of the state space is by using abstraction and equivalence. Compositional
verification consists in building the state spaces of the individual system’s
components, hiding the irrelevant actions (which denote internal activity),
minimising the resulting state spaces according to an appropriate equivalence
relation, and recomposing them in order to obtain the state space of the

whole system. The Svl environment [8] of Cadp provides an efficient and
versatile framework for describing compositional verification scenarios.

Sufficient locality conditions. For specific correctness requirements (e.g.,
deadlock freedom), there exist sufficient conditions (e.g., acyclic intercon-
nection topology) ensuring the satisfaction of the requirement on the whole
system by checking it locally on each component of the system [4]. In this
way state explosion is avoided, since only the state spaces of the individ-
ual components need to be constructed. An interesting issue concerns the
extension of these results for more elaborate correctness requirements.

Experience has shown that analysis of large systems can be achieved effectively
by combining different methods. A promising direction of research would be to
study the combination of the aforementioned verification methods in the field of
software architectures, and to assess the results on real-life industrial systems.

5 Conclusion

In this position paper we have attempted to make precise several directions of
research concerning the integration of model checking features within the design
process of industrial systems based on software architectures and dynamic Adls.
At the present time, the theoretical developments underlying model checking
have become mature, and robust, state-of-the-art tool environments are avail-
able. Therefore, we believe that a natural and effective way to proceed is by
reusing, adapting, and enhancing the existing model checking technologies in
the framework of software architectures.

References

1. P. Abate and M. Bernardo. A Scalable Approach to the Design of SW Architectures
with Dynamically Created/Destroyed Components. In Proc. of SEKE’02, pp. 255–
262, ACM, July 2002.

2. R. J. Allen. A Formal Approach to Software Architecture. Ph.D. Thesis, Technical
Report CMU-CS-97-144, Carnegie Mellon University, May 1997.

3. R. J. Allen, R. Douence, and D. Garlan. Specifying and Analyzing Dynamic Soft-
ware Architectures. In Proc. of FASE’98, LNCS vol. 1382, pp. 21–37.

4. M. Bernardo, P. Ciancarini, and L. Donatiello. Detecting Architectural Mismatches
in Process Algebraic Descriptions of Software Systems. In Proc. of WICSA’01, pp.
77–86. IEEE Computer Society, August 2001.

5. C. Chaudet and F. Oquendo. Pi-SPACE: A Formal Architecture Description
Language Based on Process Algebra for Evolving Software Systems. In Proc. of

ASE’2000, pp. 245–248, September 2000.
6. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
7. H. Garavel. OPEN/CÆSAR: An Open Software Architecture for Verification,

Simulation, and Testing. In Proc. of TACAS’98, LNCS vol. 1384, pp. 68–84.
8. H. Garavel and F. Lang. SVL: a Scripting Language for Compositional Verification.

In Proc. of FORTE’2001, pp. 377–392. IFIP, Kluwer Academic Publishers, August
2001.

9. H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. EASST

Newsletter, 4:13–24, August 2002.
10. H. Garavel and J. Sifakis. Compilation and Verification of LOTOS Specifications.

In Proc. of PSTV’90 pp. 379–394, IFIP, June 1990.
11. H. Garavel and M. Sighireanu. Towards a Second Generation of Formal Description

Techniques – Rationale for the Design of E-LOTOS. In Proc. of FMICS’98, pp.
187–230. CWI, May 1998.

12. D. Garlan, S. Khersonsky, and J. S. Kim. Model Checking Publish-Subscribe
Systems. In Proc. of SPIN’03, LNCS vol. 2648, pp. 166–180.

13. J. F. Groote. A Note on n Similar Parallel Processes. In Proc. of FMICS’97, pp.
65–75. CNR, July 1997.

14. ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. ISO Standard 8807, 1989.

15. ISO/IEC. Enhancements to LOTOS (E-LOTOS). ISO Standard 15437:2001.
16. J. Kramer, J. Magee, and S. Uchitel. Software Architecture Modeling & Analysis:

A Rigorous Approach. In Proc. of SFM’2003, LNCS vol. 2804, pp. 44–51.
17. J. Magee, N. Dulay, S. Eisenbach, and Jeff Kramer. Specifying Distributed Software

Architectures. In Proc. of ESEC’95, LNCS vol. 989, pp. 137–153.
18. R. Mateescu. Local Model-Checking of Modal Mu-Calculus on Acyclic Labeled

Transition Systems. In Proc. of TACAS’2002, LNCS vol. 2280, pp. 281–295.
19. R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-Checking for Regular

Alternation-Free Mu-Calculus. Sci. of Comp. Prog., 46(3):255–281, March 2003.
20. N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework

for Software Architecture Description Languages. IEEE Transactions on Software

Engineering, 26(1):70–93, January 2000.
21. R. Milner. Communicating and Mobile Systems: The Pi Calculus. Cambridge

University Press, 1999.
22. F. Oquendo, I. Alloui, S. Ĉımpan, and H. Verjus. The ArchWare ADL: Definition of

the Abstract Syntax and Formal Semantics. Project Deliverable D1.1b, European
project IST 2001-32360 “ArchWare”, December 2002.

23. G. Pace, F. Lang, and R. Mateescu. Calculating τ -Confluence Compositionally. In
Proc. of CAV’2003, LNCS vol. 2725, pp. 446–459.

24. D. A. Peled, V. R. Pratt, and G. J. Holzmann, editors. Partial Order Methods in

Verification, vol. 29 of DIMACS series. American Mathematical Society, 1997.
25. A.W. Roscoe. Model-Checking CSP. In A Classical Mind, Essays in Honour of

C.A.R. Hoare. Prentice-Hall, 1994.
26. D. Sangiorgi and D. Walker. The Pi-Calculus: A Theory of Mobile Processes.

Cambridge University Press, 2001.
27. M. Shaw and D. Garlan. Software Architecture – Perspectives on an Emerging

Discipline. Prentice Hall, Englewood Cliffs, NJ, 1996.
28. C. Stirling. Modal and Temporal Properties of Processes. Springer Verlag, 2001.
29. B. Victor and F. Moller. The Mobility Workbench – A Tool for the π-Calculus. In

Proc. of CAV’94, LNCS vol. 818, pp. 428–440.

